[1]

Fanzo J, Davis C, McLaren R, Choufani J. 2018. The effect of climate change across food systems: Implications for nutrition outcomes. Global Food Security 18:12−19

doi: 10.1016/j.gfs.2018.06.001
[2]

Reynolds JF, Smith DMS, Lambin EF, Turner BL 2nd, Mortimore M, et al. 2007. Global desertification: building a science for dryland development. Science 316:847−51

doi: 10.1126/science.1131634
[3]

Schimel DS. 2010. Drylands in the Earth system. Science 327:418−19

doi: 10.1126/science.1184946
[4]

Guo J, Li T, Wu T, Wang Z, Zou Z, et al. 2024. Drought and warming interaction cause substantial economic losses in the carbon market potential of China's northern grasslands. Science of The Total Environment 953:176182

doi: 10.1016/j.scitotenv.2024.176182
[5]

Tomić Z, Bijelić Z, Žujović M, Maksimović N, Stanišić N, et al. 2011. Floristic composition of permanent grassland in the nature park Stara Planina (Serbia). Romanian Agricultural Research 28:187−95

[6]

Lakić Ž, Stanković S, Pavlović S, Krnjajić S, Popović V. 2019. Genetic variability in quantitative traits of field pea (Pisum sativum L.) genotypes. Czech Journal of Genetics and Plant Breeding 55:1−7

doi: 10.17221/89/2017-CJGPB
[7]

Stanisavljević R, Djokić D, Milenković J, Terzić D, Stevović V, et al. 2014. Drying of forage grass seed harvested at different maturity and its utility value in autumn and spring sowing time. Zemdirbyste-Agriculture 101:169−76

doi: 10.13080/z-a.2014.101.022
[8]

Taleb MH, Majidi MM, Pirnajmedin F, Ali Mohammad Mirmohammady Maibody S. 2023. Plant functional trait responses to cope with drought in seven cool-season grasses. Scientific Reports 13:5285

doi: 10.1038/s41598-023-31923-y
[9]

Türkoğlu A, Haliloğlu K, Demirel F, Demirel S, Işık M, et al. 2025. Drought-induced genomic and epigenetic variations in Quinoa genotypes revealed by iPBS and CRED-iPBS marker systems. Scientific Reports 15:28060

doi: 10.1038/s41598-025-13370-z
[10]

Sun R, Liu S, Gao J, Zhao L. 2023. Integration of the metabolome and transcriptome reveals the molecular mechanism of drought tolerance in Plumeria rubra. Frontiers in Genetics 14:1274732

doi: 10.3389/fgene.2023.1274732
[11]

Liang X, Li W, Lu H, Zhao S, Du J, et al. 2025. Physiological and metabolomic responses of adzuki bean (Vigna angularis) to individual and combined chilling and waterlogging stress. Frontiers in Plant Science 16:1598648

doi: 10.3389/fpls.2025.1598648
[12]

Ma Q, Xu X, Wang W, Zhao L, Ma D, et al. 2021. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms. Plant Physiology and Biochemistry 166:203−14

doi: 10.1016/j.plaphy.2021.05.008
[13]

Blum A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment 40:4−10

doi: 10.1111/pce.12800
[14]

Sah SK, Reddy KR, Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science 7:571

doi: 10.3389/fpls.2016.00571
[15]

Hrdlickova R, Toloue M, Tian B. 2017. RNA-Seq methods for transcriptome analysis. WIREs RNA 8:e1364

doi: 10.1002/wrna.1364
[16]

Kaundal R, Duhan N, Acharya BR, Pudussery MV, Ferreira JFS, et al. 2021. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Scientific Reports 11:5210

doi: 10.1038/s41598-021-84461-w
[17]

Thirunavukkarasu N, Sharma R, Singh N, Shiriga K, Mohan S, et al. 2017. Genomewide expression and functional interactions of genes under drought stress in maize. International Journal of Genomics 2017:2568706

doi: 10.1155/2017/2568706
[18]

Zhong L, Yang C, Chen Y, Guo L, Liu D, et al. 2024. Reduced strigolactone synthesis weakens drought resistance in tall fescue via root development inhibition. Agronomy 14:725

doi: 10.3390/agronomy14040725
[19]

Fan J, Chen Y, Li X, Huang J, Zhang X, et al. 2024. Transcriptomic and metabolomic insights into the antimony stress response of tall fescue (Festuca arundinacea). Science of The Total Environment 933:172990

doi: 10.1016/j.scitotenv.2024.172990
[20]

Farooq M, Wahid A, Zahra N, Hafeez MB, Siddique KHM. 2024. Recent advances in plant drought tolerance. Journal of Plant Growth Regulation 43:3337−69

doi: 10.1007/s00344-024-11351-6
[21]

Tardieu F, Simonneau T, Muller B. 2018. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annual Review of Plant Biology 69:733−59

doi: 10.1146/annurev-arplant-042817-040218
[22]

Mickelbart MV, Hasegawa PM, Bailey-Serres J. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics 16:237−51

doi: 10.1038/nrg3901
[23]

McBride S, Rossi S, Huang B. 2024. Differential physiological and metabolic responses to drought stress and post-stress recovery for annual bluegrass and creeping bentgrass. Crop Science 64:3594−607

doi: 10.1002/csc2.21378
[24]

Lafta AM, Eide JD, Khan MFR, Finger FL, Fugate KK. 2024. Severe preharvest drought elevates respiration and storage rot in postharvest sugarbeet roots. Journal of Agronomy and Crop Science 210:e12718

doi: 10.1111/jac.12718
[25]

Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, et al. 2006. Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Research 16:599−608

doi: 10.1038/sj.cr.7310077
[26]

Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350−82

doi: 10.1016/0076-6879(87)48036-1
[27]

Guo J, Yang Y, Wang G, Yang L, Sun X. 2010. Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Physiologia Plantarum 139:335−47

doi: 10.1111/j.1399-3054.2010.01370.x
[28]

Jameel J, Anwar T, Majeed S, Qureshi H, Siddiqi EH, et al. 2024. Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms. BMC Plant Biology 24:128

doi: 10.1186/s12870-024-04836-9
[29]

Rasheed F, Mir IR, Sehar Z, Fatma M, Gautam H, et al. 2022. Nitric oxide and salicylic acid regulate glutathione and ethylene production to enhance heat stress acclimation in wheat involving sulfur assimilation. Plants 11:3131

doi: 10.3390/plants11223131
[30]

Harauchi T, Yoshizaki T. 1982. A fluorimetric guaiacol method for thyroid peroxidase activity. Analytical Biochemistry 126:278−84

doi: 10.1016/0003-2697(82)90516-4
[31]

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867−80

doi: 10.1093/oxfordjournals.pcp.a076232
[32]

Shen T, Zhang C, Liu F, Wang W, Lu Y, et al. 2020. High-throughput screening of free proline content in rice leaf under cadmium stress using hyperspectral imaging with chemometrics. Sensors 20(11):3229

doi: 10.3390/s20113229
[33]

Wang D, Xie Y, Zhang W, Yao L, He C, et al. 2024. Study on the biological characteristics of dark septate endophytes under drought and cadmium stress and their effects on regulating the stress resistance of Astragalus membranaceus. Journal of Fungi 10:491

doi: 10.3390/jof10070491
[34]

Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, et al. 2007. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiologia Plantarum 131:555−70

doi: 10.1111/j.1399-3054.2007.00980.x
[35]

Wu Y, Liu C, Kuang J, Ge Q, Zhang Y, et al. 2014. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza. Protoplasma 251:1191−9

doi: 10.1007/s00709-014-0626-z
[36]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[37]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[38]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[39]

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60

doi: 10.1038/nmeth.3176
[40]

Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research 41:e121

doi: 10.1093/nar/gkt263
[41]

Bunnag S, Pongthai P. 2013. Selection of rice (Oryza sativa L. ) cultivars tolerant to drought stress at the vegetative stage under field conditions. American Journal of Plant Sciences 4:1701−8

doi: 10.4236/ajps.2013.49207
[42]

Cui F, Sui N, Duan G, Liu Y, Han Y, et al. 2018. Identification of metabolites and transcripts involved in salt stress and recovery in peanut. Frontiers in Plant Science 9:217

doi: 10.3389/fpls.2018.00217
[43]

Aazami MA, Asghari-Aruq M, Hassanpouraghdam MB, Ercisli S, Baron M, et al. 2021. Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants 10:1887

doi: 10.3390/plants10091877
[44]

Ma B, Zhang J, Guo S, Xie X, Yan L, et al. 2024. RtNAC055 promotes drought tolerance via a stomatal closure pathway linked to methyl jasmonate/hydrogen peroxide signaling in Reaumuria trigyna. Horticulture Research 11:uhae001

doi: 10.1093/hr/uhae001
[45]

Nosalewicz A, Siecińska J, Kondracka K, Nosalewicz M. 2018. The functioning of Festuca arundinacea and Lolium perenne under drought is improved to a different extend by the previous exposure to water deficit. Environmental and Experimental Botany 156:271−78

doi: 10.1016/j.envexpbot.2018.09.016
[46]

Zarif H, Fan C, Yuan G, Zhou R, Chang Y, et al. 2025. Drought stress in roses: a comprehensive review of morphophysiological, biochemical, and molecular responses. International Journal of Molecular Sciences 26:4272

doi: 10.3390/ijms26094272
[47]

Zhou X, Chen Y, Zhao Y, Gao F, Liu H. 2020. The application of exogenous PopW increases the tolerance of Solanum lycopersicum L. to drought stress through multiple mechanisms. Physiology and Molecular Biology of Plants 26:2521−35

doi: 10.1007/s12298-020-00918-8
[48]

Liu CT, Wang W, Mao BG, Chu CC. 2018. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects. Hereditas 40:171−85 (in Chinese)

doi: 10.16288/j.yczz.18-007
[49]

Anokye E, Lowor ST, Dogbatse JA, Padi FK. 2021. Potassium application positively modulates physiological responses of cocoa seedlings to drought stress. Agronomy 11:563

doi: 10.3390/agronomy11030563
[50]

Rady MM, Boriek SHK, Abd El-Mageed TA, Seif El-Yazal MA, Ali EF, et al. 2021. Exogenous gibberellic acid or dilute bee honey boosts drought stress tolerance in Vicia faba by rebalancing osmoprotectants, antioxidants, nutrients, and phytohormones. Plants 10:748

doi: 10.3390/plants10040748
[51]

Wang Z, Wei Y. 2022. Physiological and transcriptomic analysis of antioxidant mechanisms in sweet sorghum seedling leaves in response to single and combined drought and salinity stress. Journal of Plant Interactions 17:1006−16

doi: 10.1080/17429145.2022.2146771
[52]

Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, et al. 2021. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum 172:847−68

doi: 10.1111/ppl.13268
[53]

Liu L, Cheng Z, Yao W, Wang X, Jia F, et al. 2021. Ectopic expression of poplar gene PsnERF138 in tobacco confers salt stress tolerance and growth advantages. Forestry Research 1:13

doi: 10.48130/FR-2021-0013
[54]

Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, et al. 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal 10:792−805

doi: 10.1111/j.1467-7652.2012.00697.x
[55]

Li C, Yan C, Sun Q, Wang J, Yuan C, et al. 2021. The bHLH transcription factor AhbHLH112 improves the drought tolerance of peanut. BMC Plant Biology 21:540

doi: 10.1186/s12870-021-03318-6
[56]

Kavi Kishor PB, Sreenivasulu N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment 37:300−11

doi: 10.1111/pce.12157
[57]

Morgil H, Tardu M, Cevahir G, Kavakli İH. 2019. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Functional & Integrative Genomics 19:715−27

doi: 10.1007/s10142-019-00675-2
[58]

Zhao G, Cheng Q, Zhao Y, Wu F, Mu B, et al. 2023. The abscisic acid-responsive element binding factors MAPKKK18 module regulates abscisic acid-induced leaf senescence in Arabidopsis. Journal of Biological Chemistry 299:103060

doi: 10.1016/j.jbc.2023.103060
[59]

Hussain S, Cheng Y, Li Y, Wang W, Tian H, et al. 2022. AtbZIP62 acts as a transcription repressor to positively regulate ABA responses in Arabidopsis. Plants 11:3037

doi: 10.3390/plants11223037
[60]

Liu R, Liang G, Gong J, Wang J, Zhang Y, et al. 2023. A potential ABA analog to increase drought tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences 24:8783

doi: 10.3390/ijms24108783
[61]

Vik D, Mitarai N, Wulff N, Halkier BA, Burow M. 2018. Dynamic modeling of indole glucosinolate hydrolysis and its impact on auxin signaling. Frontiers in Plant Science 9:550

doi: 10.3389/fpls.2018.00550
[62]

Wang H, Tian CE, Duan J, Wu K. 2008. Research progresses on GH3s, one family of primary auxin-responsive genes. Plant Growth Regulation 56:225−32

doi: 10.1007/s10725-008-9313-4
[63]

Chatterjee A, Paul A, Unnati GM, Rajput R, Biswas T, et al. 2020. MAPK cascade gene family in Camellia sinensis: in-silico identification, expression profiles and regulatory network analysis. BMC Genomics 21:613

doi: 10.1186/s12864-020-07030-x
[64]

Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, Frei Dit Frey N, et al. 2015. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal 82:232−44

doi: 10.1111/tpj.12808
[65]

Sun Y, Wang C, Yang B, Wu F, Hao X, et al. 2014. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). Journal of Experimental Botany 65:2171−88

doi: 10.1093/jxb/eru092
[66]

Su J, Yang L, Zhu Q, Wu H, He Y, et al. 2018. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology 16:e2004122

doi: 10.1371/journal.pbio.2004122
[67]

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111:1021−58

doi: 10.1093/aob/mct067