[1]

World Health Organization. 2023. Road traffic injuries. www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries (Retrieved December 21, 2024)

[2]

Ghosh B, Smith DP. 2014. Customization of automatic incident detection algorithms for signalized urban arterials. Journal of Intelligent Transportation Systems 18(4):426−41

doi: 10.1080/15472450.2013.806843
[3]

Li L, Qin L, Qu X, Zhang J, Wang Y, et al. 2019. Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm. Knowledge-Based Systems 172:1−14

doi: 10.1016/j.knosys.2019.01.015
[4]

Al Kuwaiti A, Nazer K, Al-Reedy A, Al-Shehri S, Al-Muhanna A, et al. 2023. A review of the role of artificial intelligence in healthcare. Journal of Personalized Medicine 13(6):951

doi: 10.3390/jpm13060951
[5]

Wang H, Fu T, Du Y, Gao W, Huang K, et al. 2023. Scientific discovery in the age of artificial intelligence. Nature 620:47−60

doi: 10.1038/s41586-023-06221-2
[6]

Abdel-Aty M, Uddin N, Pande A, Abdalla MF, Hsia L. 2004. Predicting freeway crashes from loop detector data by matched case-control logistic regression. Transportation Research Record 1897:88−95

doi: 10.3141/1897-12
[7]

Abdel-Aty M, Uddin N, Pande A. 2005. Split models for predicting multivehicle crashes during high-speed and low-speed operating conditions on freeways. Transportation Research Record 1908(1):51−58

doi: 10.1177/0361198105190800107
[8]

Oh C, Oh JS, Ritchie SG. 2005. Real-time hazardous traffic condition warning system: Framework and evaluation. IEEE Transactions on Intelligent Transportation Systems 6(3):265−72

doi: 10.1109/TITS.2005.853693
[9]

Lee C, Abdel-Aty M. 2006. Temporal variations in traffic flow and ramp-related crash risk. In Applications of Advanced Technology in Transportation. Chicago: American Society of Civil Engineers. pp. 244–49 doi: 10.1061/40799(213)40

[10]

Yu R, Abdel-Aty M. 2013. Multi-level Bayesian analyses for single-and multi-vehicle freeway crashes. Accident Analysis & Prevention 58:97−105

doi: 10.1016/j.aap.2013.04.025
[11]

Yang K, Wang X, Yu R. 2018. A Bayesian dynamic updating approach for urban expressway real-time crash risk evaluation. Transportation Research Part C: Emerging Technologies 96:192−207

doi: 10.1016/j.trc.2018.09.020
[12]

Huang T, Wang S, Sharma A. 2020. Highway crash detection and risk estimation using deep learning. Accident Analysis & Prevention 135:105392

doi: 10.1016/j.aap.2019.105392
[13]

Pourroostaei Ardakani S, Liang X, Mengistu KT, So RS, Wei X, et al. 2023. Road car accident prediction using a machine-learning-enabled data analysis. Sustainability 15(7):5939

doi: 10.3390/su15075939
[14]

Yu L, Du B, Hu X, Sun L, Han L, et al. 2021. Deep spatio-temporal graph convolutional network for traffic accident prediction. Neurocomputing 423:135−47

doi: 10.1016/j.neucom.2020.09.043
[15]

Guo M, Zhao X, Yao Y, Yan P, Su Y, et al. 2021. A study of freeway crash risk prediction and interpretation based on risky driving behavior and traffic flow data. Accident Analysis & Prevention 160:106328

doi: 10.1016/j.aap.2021.106328
[16]

Zhang S, Abdel-Aty M. 2022. Real-time crash potential prediction on freeways using connected vehicle data. Analytic Methods in Accident Research 36:100239

doi: 10.1016/j.amar.2022.100239
[17]

Yuan C, Li Y, Huang H, Wang S, Sun Z, et al. 2022. Using traffic flow characteristics to predict real-time conflict risk: a novel method for trajectory data analysis. Analytic Methods in Accident Research 35:100217

doi: 10.1016/j.amar.2022.100217
[18]

Payne HJ, Tignor SC. 1978. Freeway incident-detection algorithms based on decision trees with states. Transportation Research Record 1978(682):30−37

[19]

Parkany E, Xie C. 2005. A complete review of incident detection algorithms & their deployment: what works and what doesn't. Technical Report NETCR37. New England Transportation Consortium, USA. https://onlinepubs.trb.org/onlinepubs/trispdfs/00988875.pdf

[20]

Jin X, Srinivasan D, Cheu RL. 2001. Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks. IEEE Transactions on Neural Networks 12(5):1173−87

doi: 10.1109/72.950145
[21]

Dogru N, Subasi A. 2018. Traffic accident detection using random forest classifier. 2018 15th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 25–26 February 2018. USA: IEEE. pp. 40–45 doi: 10.1109/LT.2018.8368509

[22]

White J, Thompson C, Turner H, Dougherty B, Schmidt DC. 2011. WreckWatch: Automatic traffic accident detection and notification with smartphones. Mobile Networks and Applications 16:285−303

doi: 10.1007/s11036-011-0304-8
[23]

Ozbayoglu M, Kucukayan G, Dogdu E. 2016. A real-time autonomous highway accident detection model based on big data processing and computational intelligence. 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016. USA: IEEE. pp. 1807–13 doi: 10.1109/BigData.2016.7840798

[24]

Gu Y, Qian Z, Chen F. 2016. From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies 67:321−42

doi: 10.1016/j.trc.2016.02.011
[25]

Mehrannia P, Bagi SSG, Moshiri B, Al‐Basir OA. 2023. Deep representation of imbalanced spatio-temporal traffic flow data for traffic accident detection. IET Intelligent Transport Systems 17(3):606−19

doi: 10.1049/itr2.12287
[26]

Li L, Lin Y, Du B, Yang F, Ran B. 2022. Real-time traffic incident detection based on a hybrid deep learning model. Transportmetrica A: Transport Science 18(1):78−98

doi: 10.1080/23249935.2020.1813214
[27]

Xie T, Shang Q, Yu Y. 2022. Automated traffic incident detection: Coping with imbalanced and small datasets. IEEE Access 10:35521−40

doi: 10.1109/ACCESS.2022.3161835
[28]

Jilani U, Asif M, Rashid M, Siddique AA, Talha SMU, et al. 2022. Traffic congestion classification using GAN-based synthetic data augmentation and a novel 5-layer convolutional neural network model. Electronics 11(15):2290

doi: 10.3390/electronics11152290
[29]

Huang Y, Wei W, Yang H, Wu Q, Xu K. 2023. Intelligent algorithms for incident detection and management in smart transportation systems. Computers and Electrical Engineering 110:108839

doi: 10.1016/j.compeleceng.2023.108839
[30]

Dabboussi AH, Jammal M. 2024. Traffic data augmentation using GANs for ITS. 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), Abu Dhabi, United Arab Emirates, 29 April 2024−01 May 2024. USA: IEEE. pp. 66-73 doi: 10.1109/DCOSS-IoT61029.2024.00020

[31]

Benabdallah Benarmas R, Beghdad Bey K. 2024. Improving road traffic speed prediction using data augmentation: a deep generative models-based approach. Annals of Data Science 11(6):2199−216

doi: 10.1007/s40745-023-00508-x
[32]

Liao C, Chen XM. 2024. A meta-learning approach to improving transferability for freeway traffic crash risk prediction. Digital Transportation and Safety 4(1):21−30

doi: 10.48130/dts-0024-0027
[33]

Avila A M, Mezić I. 2020. Data-driven analysis and forecasting of highway traffic dynamics. Nature Communications 11(1):2090

doi: 10.1038/s41467-020-15582-5
[34]

Qu Q, Shen Y, Yang M, Zhang R. 2024. Towards efficient traffic crash detection based on macro and micro data fusion on expressways: a digital twin framework. IET Intelligent Transport Systems 18(12):2725−43

doi: 10.1049/itr2.12498
[35]

Yang K, Quddus M, Antoniou C. 2022. Developing a new real-time traffic safety management framework for urban expressways utilizing reinforcement learning tree. Accident Analysis & Prevention 178:106848

doi: 10.1016/j.aap.2022.106848
[36]

Zaitouny A, Fragkou AD, Stemler T, Walker DM, Sun Y, et al. 2022. Multiple sensors data integration for traffic incident detection using the quadrant scan. Sensors 22(8):2933

doi: 10.3390/s22082933
[37]

German Aerospace Center. n.d. SUMO at a glance. SUMO Documentation. https://sumo.dlr.de/docs/SUMO_at_a_Glance.html (Retrieved December 21, 2024)

[38]

Krajzewicz D, Brockfeld E, Mikat J, Ringel J, Rössel C, et al. 2005. Simulation of modern traffic lights control systems using the open source traffic simulation SUMO. Proceedings of the 3rd Industrial Simulation Conference 2005. Berlin, Germany: EUROSIS-ETI. pp. 299–302 https://elib.dlr.de/21012

[39]

Koh SS, Zhou B, Yang P, Yang Z, Fang H, et al. 2018. Reinforcement learning for vehicle route optimization in SUMO. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018. USA: IEEE. pp. 1468–73 doi: 10.1109/HPCC/SmartCity/DSS.2018.00242

[40]

Kastner KH, Pau P. 2015. Experiences with SUMO in a real-life traffic monitoring system. SUMO 2015–Intermodal Simulation for Intermodal Transport 28, Berlin. pp. 1–10 www.researchgate.net/publication/291339917

[41]

Fernandes P, Nunes U. 2010. Platooning of autonomous vehicles with intervehicle communications in SUMO traffic simulator. 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010. USA: IEEE. pp. 1313–18 doi: 10.1109/ITSC.2010.5625277

[42]

Shamsashtiany R, Ameri M. 2018. Road accidents prediction with multilayer perceptron (MLP) modelling case study: roads of Qazvin, Zanjan and Hamadan. Journal of Civil Engineering and Materials Application 2(4):181−92

doi: 10.22034/jcema.2018.91998