[1]

Xu W, Liu J, Yan J, Yang J, Liu H, et al. 2024. Dynamic spatiotemporal graph wavelet network for traffic flow prediction. IEEE Internet of Things Journal 11(5):8019−29

doi: 10.1109/JIOT.2023.3317190
[2]

Abadi M, Barham P, Chen J, Chen Z, Davis A, et al. 2016. TensorFlow: a system for large-scale machine learning. Proc. 12th USENIX symposium on operating systems design and implementation (OSDI 16), Savannah, GA, USA, November 2–4, 2016. USA: USENIX Association. pp. 265−83 www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[3]

Sayed SA, Abdel-Hamid Y, Hefny HA. 2023. Artificial intelligence-based traffic flow prediction: a comprehensive review. Journal of Electrical Systems and Information Technology 10:13

doi: 10.1186/s43067-023-00081-6
[4]

Cai D, Chen K, Lin Z, Li D, Zhou T, et al. 2024. JointSTNet: Joint Pre-Training for Spatial-Temporal Traffic Forecasting. IEEE Transactions on Consumer Electronics 71(2):6239−52

doi: 10.1109/TCE.2024.3476129
[5]

Wang F, Liang Y, Lin Z, Zhou J, Zhou T. 2024. SSA-ELM: a hybrid learning model for short-term traffic flow forecasting. Mathematics 12:1895

doi: 10.3390/math12121895
[6]

Chai W, Zhang L, Lin Z, Zhou J, Zhou T. 2024. GSA-KELM-KF: a hybrid model for short-term traffic flow forecasting. Mathematics 12:103

doi: 10.3390/math12010103
[7]

Wen Y, Xu P, Li Z, Xu W, Wang X. 2023. RPConvformer: a novel Transformer-based deep neural networks for traffic flow prediction. Expert Systems with Applications 218:119587

doi: 10.1016/j.eswa.2023.119587
[8]

Cui Z, Huang B, Dou H, Tan G, Zheng S, et al. 2022. Gsa‐elm: a hybrid learning model for short‐term traffic flow forecasting. IET Intelligent Transport Systems 16:41−52

doi: 10.1049/itr2.12127
[9]

Abdullah SM, Periyasamy M, Kamaludeen NA, Towfek SK, Marappan R, et al. 2023. Optimizing traffic flow in smart cities: soft GRU-based recurrent neural networks for enhanced congestion prediction using deep learning. Sustainability 15:5949

doi: 10.3390/su15075949
[10]

Wu K, Xu C, Yan J, Wang F, Lin Z, et al. 2023. Error-distribution-free kernel extreme learning machine for traffic flow forecasting. Engineering Applications of Artificial Intelligence 123:106411

doi: 10.1016/j.engappai.2023.106411
[11]

Chai W, Luo Q, Lin Z, Yan J, Zhou J, et al. 2024. Spatiotemporal dynamic multi-hop network for traffic flow forecasting. Sustainability 16:5860

doi: 10.3390/su16145860
[12]

Xing Z, Huang M, Peng D. 2023. Overview of machine learning-based traffic flow prediction. Digital Transportation and Safety 2:164−75

doi: 10.48130/DTS-2023-0013
[13]

Smith BL, Demetsky MJ. 1997. Traffic flow forecasting: comparison of modeling approaches. Journal of Transportation Engineering 123:261−66

doi: 10.1061/(ASCE)0733-947X(1997)123:4(261)
[14]

Williams BM, Hoel LA. 2003. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of transportation engineering 129:664−72

doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
[15]

Schimbinschi F, Moreira-Matias L, Nguyen VX, Bailey J. 2017. Topology-regularized universal vector autoregression for traffic forecasting in large urban areas. Expert Systems with Applications 82:301−16

doi: 10.1016/j.eswa.2017.04.015
[16]

Tan G, Zhou T, Huang B, Dou H, Song Y, et al. 2024. A noise-immune and attention-based multi-modal framework for short-term traffic flow forecasting. Soft Computing 28:4775−90

doi: 10.1007/s00500-023-09173-x
[17]

Lu H, Ge Z, Song Y, Jiang D, Zhou T, et al. 2021. A temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecasting. Neurocomputing 427:169−78

doi: 10.1016/j.neucom.2020.11.026
[18]

Liu M, Liu G, Sun L. 2023. Spatial–temporal dependence and similarity aware traffic flow forecasting. Information Sciences 625:81−96

doi: 10.1016/j.ins.2022.12.107
[19]

Yang S, Li H, Luo Y, Li J, Song Y, et al. 2022. Spatiotemporal adaptive fusion graph network for short-term traffic flow forecasting. Mathematics 10:1594

doi: 10.3390/math10091594
[20]

Lin Z, Wang D, Cao C, Xie H, Zhou T, et al. 2025. GSA-KAN: a hybrid model for short-term traffic forecasting. Mathematics 13:1158

doi: 10.3390/math13071158
[21]

Fernandes B, Silva F, Alaiz-Moretón H, Novais P, Analide C, et al. 2019. Traffic flow forecasting on data-scarce environments using ARIMA and LSTM networks. In New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, eds. Rocha Á, Adeli H, Reis L, Costanzo S. Vol 930. Cham: Springer. pp. 273−82 doi: 10.1007/978-3-030-16181-1_26

[22]

Zhao Z, Chen W, Wu X, Chen PCY, Liu J. 2017. LSTM network: a deep learning approach for short-term traffic forecast. IET intelligent transport systems 11:68−75

doi: 10.1049/iet-its.2016.0208
[23]

Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11−13 November 2016. USA: IEEE. pp. 324−28 doi: 10.1109/YAC.2016.7804912

[24]

Ma X, Tao Z, Wang Y, Yu H, Wang Y. 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies 54:187−97

doi: 10.1016/j.trc.2015.03.014
[25]

Fang W, Li X, Lin Z, Zhou J, Zhou T. 2024. Mixture correntropy with variable center LSTM network for traffic flow forecasting. Digital Transportation and Safety 3:264−70

doi: 10.48130/dts-0024-0023
[26]

Qi Q, Cheng R, Ge H. 2023. Short-term inbound rail transit passenger flow prediction based on BILSTM model and influence factor analysis. Digital Transportation and Safety 2:12−22

doi: 10.48130/DTS-2023-0002
[27]

Yang D, Li S, Peng Z, Wang P, Wang J, et al. 2019. MF-CNN: traffic flow prediction using convolutional neural network and multi-features fusion. IEICE Transactions on Information and Systems E102.D:1526−36

doi: 10.1587/transinf.2018edp7330
[28]

Méndez M, Merayo MG, Núñez M. 2023. Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model. Engineering Applications of Artificial Intelligence 121:106041

doi: 10.1016/j.engappai.2023.106041
[29]

Zhang W, Yu Y, Qi Y, Shu F, Wang Y. 2019. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning. Transportmetrica A: Transport Science 15:1688−711

doi: 10.1080/23249935.2019.1637966
[30]

Narmadha S, Vijayakumar V. 2023. Spatio-Temporal vehicle traffic flow prediction using multivariate CNN and LSTM model. Materials Today: Proceedings 81:826−33

doi: 10.1016/j.matpr.2021.04.249
[31]

Huang B, Dou H, Luo Y, Li J, Wang J, et al. 2022. Adaptive spatiotemporal transformer graph network for traffic flow forecasting by iot loop detectors. IEEE Internet of Things Journal 10:1642−53

doi: 10.1109/JIOT.2022.3209523
[32]

Jiang W, Xiao Y, Liu Y, Liu Q, Li Z. 2022. Bi‐GRCN: a spatio‐temporal traffic flow prediction model based on graph neural network. Journal of Advanced Transportation 2022:5221362

doi: 10.1155/2022/5221362
[33]

Li Z, Zhou J, Lin Z, Zhou T. 2024. Dynamic spatial aware graph transformer for spatiotemporal traffic flow forecasting. Knowledge-based systems 297:111946

doi: 10.1016/j.knosys.2024.111946
[34]

Zhang H, Lin Z, Xie H, Zhou J, Song Y, et al. 2025. Two-way heterogeneity model for dynamic spatiotemporal traffic flow prediction. Knowledge-Based Systems 320:113635

doi: 10.1016/j.knosys.2025.113635
[35]

Chai W, Zheng Y, Tian L, Qin J, Zhou T. 2023. GA-KELM: genetic-algorithm-improved kernel extreme learning machine for traffic flow forecasting. Mathematics 11:3574

doi: 10.3390/math11163574
[36]

Cui Z, Huang B, Dou H, Cheng Y, Guan J, et al. 2022. A two-stage hybrid extreme learning model for short-term traffic flow forecasting. Mathematics 10:2087

doi: 10.3390/math10122087
[37]

Ou J, Li J, Wang C, Wang Y, Nie Q. 2024. Building trust for traffic flow forecasting components in intelligent transportation systems via interpretable ensemble learning. Digital Transportation and Safety 3:126−43

doi: 10.48130/dts-0024-0012
[38]

Zou G, Lai Z, Wang T, Liu Z, Li Y. 2024. MT-STNet: a novel multi-task spatiotemporal network for highway traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 25(7):8221−36

doi: 10.1109/TITS.2024.3411638
[39]

Goyal MTSP, Gulghane A. 2020. A review of speed flow density study of two different road Indian road and their comparison. International Journal of Scientific Research & Engineering Trends 6(2):499-504

[40]

Dorokhin S, Artemov A, Likhachev D, Novikov A, Starkov E. 2020. Traffic simulation: an analytical review. IOP Conference Series: Materials Science and Engineering 918:012058

doi: 10.1088/1757-899x/918/1/012058
[41]

Zhang L, Yuan Z, Yang L, Liu Z. 2020. Recent developments in traffic flow modelling using macroscopic fundamental diagram. Transport Reviews 40:689−710

doi: 10.1080/01441647.2020.1738588
[42]

Bramich DM, Menéndez M, Ambühl L. 2022. Fitting empirical fundamental diagrams of road traffic: A comprehensive review and comparison of models using an extensive data set. IEEE Transactions on Intelligent Transportation Systems 23:14104−27

doi: 10.1109/TITS.2022.3142255
[43]

Liu J, Wu N, Qiao Y, Li Z. 2021. A scientometric review of research on traffic forecasting in transportation. IET Intelligent Transport Systems 15:1−16

doi: 10.1049/itr2.12024
[44]

Kashyap AA, Raviraj S, Devarakonda A, Nayak KSR, K V S, et al . 2022. Traffic flow prediction models – a review of deep learning techniques. Cogent Engineering 9:2010510

doi: 10.1080/23311916.2021.2010510
[45]

Jarmuż D, Chmiel J. 2020. A review of approaches to the study of weather's effect on road traffic parameters. Transport Problems 15:241−51

doi: 10.21307/tp-2020-063
[46]

Fang W, Cai W, Fan B, Yan J, Zhou T. 2021. Kalman-LSTM model for short-term traffic flow forecasting. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12−14 March 2021. USA: IEEE. pp. 1604−8 doi: 10.1109/IAEAC50856.2021.9390991

[47]

Jiang W, Luo J. 2022. Graph neural network for traffic forecasting: a survey. Expert Systems with Applications 207:117921

doi: 10.1016/j.eswa.2022.117921
[48]

Chen X, Lu J, Zhao J, Qu Z, Yang Y, et al. 2020. Traffic flow prediction at varied time scales via ensemble empirical mode decomposition and artificial neural network. Sustainability 12:3678

doi: 10.3390/su12093678
[49]

Li Y, Yu R, Shahabi C, Liu Y. 2017. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv 1707.01926

doi: 10.48550/arXiv.1707.01926
[50]

Yu B, Yin H, Zhu Z. 2017. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence (IJCAI). pp. 3634−40 doi: 10.24963/ijcai.2018/505

[51]

Wu Z, Pan S, Long G, Jiang J, Zhang C. 2019. Graph wavenet for deep spatial-temporal graph modeling. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China 2019. Macao, China: AAAI Press. pp. 1907−13 https://dl.acm.org/doi/abs/10.5555/3367243.3367303

[52]

Song C, Lin Y, Guo S, Wan H. 2020. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 34:914−21

doi: 10.1609/aaai.v34i01.5438
[53]

Tian C, Chan WK. 2021. Spatial-temporal attention wavenet: a deep learning framework for traffic prediction considering spatial-temporal dependencies. IET Intelligent Transport Systems 15:549−61

doi: 10.1049/itr2.12044
[54]

Ji J, Wang J, Huang C, Wu J, Xu B, et al. 2023. Spatio-temporal self-supervised learning for traffic flow prediction. Proceedings of the AAAI Conference on Artificial Intelligence 37:4356−64

doi: 10.1609/aaai.v37i4.25555
[55]

Jiang R, Wang Z, Yong J, Jeph P, Chen Q, et al. 2023. Spatio-temporal meta-graph learning for traffic forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 37:8078−86

doi: 10.1609/aaai.v37i7.25976
[56]

Shao Z, Zhang Z, Wei W, Wang F, Xu Y, et al. 2022. Decoupled dynamic spatial-temporal graph neural network for traffic forecasting. arXiv 2206.09112

doi: 10.48550/arXiv.2206.09112
[57]

Weng W, Fan J, Wu H, Hu Y, Tian H, et al. 2023. A decomposition dynamic graph convolutional recurrent network for traffic forecasting. Pattern Recognition 142:109670

doi: 10.1016/j.patcog.2023.109670
[58]

Fan J, Weng W, Tian H, Wu H, Zhu F, et al. 2024. RGDAN: a random graph diffusion attention network for traffic prediction. Neural Networks 172:106093

doi: 10.1016/j.neunet.2023.106093
[59]

Fang Y, Qin Y, Luo H, Zhao F, Xu B, et al. 2023. When spatio-temporal meet wavelets: disentangled traffic forecasting via efficient spectral graph attention networks. 2023 IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, CA, USA, 3−7 April 2023 . USA: IEEE. pp. 517−29 doi: 10.1109/ICDE55515.2023.00046

[60]

Liu H, Dong Z, Jiang R, Deng J, Deng J, et al.2023. Spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting. CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. Birmingham United Kingdom, October 21−25, 2023. New York, United States: Association for Computing Machinery. pp. 4125−29 doi: 10.1145/3583780.361516

[61]

Jiang J, Han C, Zhao WX, Wang J. 2023. PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction. Proceedings of the AAAI Conference on Artificial Intelligence 37:4365−73

doi: 10.1609/aaai.v37i4.25556
[62]

Shao Z, Zhang Z, Wang F, Xu Y. 2022. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting. KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Minin. Washington DC, USA, August 14−18, 2022. New York, United States: Association for Computing Machinery. pp. 1567−77 doi: 10.1145/3534678.3539396

[63]

Gao H, Jiang R, Dong Z, Deng J, Song X. 2023. Spatio-temporal-decoupled masked pre-training for traffic forecasting. arXiv 2312.00516

doi: 10.48550/arXiv.2312.00516
[64]

Choi J, Choi H, Hwang J, Park N. 2022. Graph neural controlled differential equations for traffic forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 36:6367−74

doi: 10.1609/aaai.v36i6.20587
[65]

Choi J, Park N. 2023. Graph neural rough differential equations for traffic forecasting. ACM Transactions on Intelligent Systems and Technology 14:1−27

doi: 10.1145/3604808
[66]

Ye J, Liu Z, Du B, Sun L, Li W, et al. 2022. Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting. KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington DC, USA, August 14−18, 2022. New York, United States: Association for Computing Machinery. pp. 2296−306 doi: 10.1145/3534678.3539274

[67]

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. 2019. PyTorch: an imperative style, high-performance deep learning library. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver BC, Canada, December 8−14, 2019. Red Hook, NY, United States: Curran Associates Inc. pp. 8026−37 doi: 10.5555/3454287.3455008

[68]

Dougherty MS, Kirby HR, Boyle RD. 1993. The use of neural networks to recognise and predict traffic congestion. Traffic Engineering & Control 34:311−14

[69]

Vlahogianni EI, Karlaftis MG, Golias JC. 2005. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C: Emerging Technologies 13:211−34

doi: 10.1016/j.trc.2005.04.007
[70]

Zheng W, Lee DH, Shi Q. 2006. Short-term freeway traffic flow prediction: bayesian combined neural network approach. Journal of Transportation Engineering 132:114−21

doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
[71]

Chan KY, Dillon TS, Singh J, Chang E. 2012. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm. IEEE Transactions on Intelligent Transportation Systems 13:644−54

doi: 10.1109/TITS.2011.2174051
[72]

Davis GA, Nihan NL. 1991. Nonparametric regression and short-term freeway traffic forecasting. Journal of Transportation Engineering 117:178−88

doi: 10.1061/(ASCE)0733-947X(1991)117:2(178)
[73]

Cai P, Wang Y, Lu G, Chen P, Ding C, et al. 2016. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C: Emerging Technologies 62:21−34

doi: 10.1016/j.trc.2015.11.002
[74]

Castro-Neto M, Jeong YS, Jeong MK, Han LD. 2009. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications 36:6164−73

doi: 10.1016/j.eswa.2008.07.069
[75]

Su H, Zhang L, Yu S. Short-term traffic flow prediction based on incremental support vector regression. Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24−27 August 2007. USA: IEEE. pp. 640−45 doi: 10.1109/ICNC.2007.661

[76]

Sengupta S, Basak S, Saikia P, Paul S, Tsalavoutis V, et al. 2020. A review of deep learning with special emphasis on architectures, applications and recent trends. Knowledge-Based Systems 194:105596

doi: 10.1016/j.knosys.2020.105596
[77]

Guo J, Liu Y, Yang Q, Wang Y, Fang S. 2021. GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model. Transportmetrica A: Transport Science 17:190−211

doi: 10.1080/23249935.2020.1745927
[78]

Guo S, Lin Y, Li S, Chen Z, Wan H. 2019. Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems 20:3913−26

doi: 10.1109/TITS.2019.2906365
[79]

Bao Y, Huang J, Shen Q, Cao Y, Ding W, et al. 2023. Spatial–temporal complex graph convolution network for traffic flow prediction. Engineering Applications of Artificial Intelligence 121:106044

doi: 10.1016/j.engappai.2023.106044
[80]

Rahmani S, Baghbani A, Bouguila N, Patterson Z. 2023. Graph neural networks for intelligent transportation systems: a survey. IEEE Transactions on Intelligent Transportation Systems 24:8846−85

doi: 10.1109/TITS.2023.3257759
[81]

Guo K, Hu Y, Sun Y, Qian S, Gao J, et al. 2021. Hierarchical graph convolution network for traffic forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35:151−59

doi: 10.1609/aaai.v35i1.16088
[82]

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al. 2017. Attention is all you need. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, December 4−9, 2017. Red Hook, NY, United States: Curran Associates Inc. pp. 6000−10 doi: 10.5555/3295222.3295349

[83]

Liu Z, Zheng G, Yu Y. 2023. Cross-city few-shot traffic forecasting via traffic pattern bank. CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. Birmingham United Kingdom October 21−25, 2023. New York, United States: Association for Computing Machinery. pp. 1451−60 doi: 10.1145/3583780.361482

[84]

Sun M, Ding W, Zhang T, Liu Z, Xing M, et al. 2023. STDA-Meta: a meta-learning framework for few-shot traffic prediction. 2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS). Ocean Flower Island, China, 17−21 December 2023. USA: IEEE. pp. 534−41 doi: 10.1109/ICPADS60453.2023.00085

[85]

Wang Y, Yu C, Hou J, Chu S, Zhang Y, Zhu Y. 2022. ARIMA model and few-shot learning for vehicle speed time series analysis and prediction. Computational Intelligence and Neuroscience 2022:2526821

doi: 10.1155/2022/2526821
[86]

Yuan Y, Shao C, Ding J, Jin D, Li Y. 2024. Spatio-temporal few-shot learning via diffusive neural network generation. Proc. The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024. Austria: ICLR. pp. 1−28 https://openreview.net/forum?id=QyFm3D3Tzi

[87]

Song Y, Wang T, Cai P, Mondal SK, Sahoo JP. 2023. A comprehensive survey of few-shot learning: evolution, applications, challenges, and opportunities. ACM Computing Surveys 55:1−40

doi: 10.1145/3582688
[88]

Wang Y, Yao Q, Kwok JT, Ni LM. 2020. Generalizing from a few examples: a survey on few-shot learning. ACM Computing Surveys (csur) 53:1−34

doi: 10.1145/3386252
[89]

Iman M, Arabnia HR, Rasheed K. 2023. A review of deep transfer learning and recent advancements. Technologies 11:40

doi: 10.3390/technologies11020040
[90]

Chen K, Liang Y, Han J, Feng S, Zhu M, et al. 2024. Semantic-fused multi-granularity cross-city traffic prediction. Transportation Research Part C: Emerging Technologies 162:104604

doi: 10.1016/j.trc.2024.104604
[91]

Ouyang X, Yang Y, Zhou W, Zhang Y, Wang H, et al. 2024. CityTrans: domain-adversarial training with knowledge transfer for spatio-temporal prediction across cities. IEEE Transactions on Knowledge and Data Engineering 36:62−76

doi: 10.1109/TKDE.2023.3283520
[92]

Li J, Liao C, Hu S, Chen X, Lee DH. 2024. Physics-guided multi-source transfer learning for network-scale traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 25:17533−46

doi: 10.1109/TITS.2024.3405970
[93]

Li K, Bai W, Huang S, Tan G, Zhou T, et al. 2024. Lag-related noise shrinkage stacked LSTM network for short-term traffic flow forecasting. IET Intelligent Transport Systems 18:244−57

doi: 10.1049/itr2.12448
[94]

Adetiloye T, Awasthi A. 2019. Multimodal big data fusion for traffic congestion prediction. Multimodal Analytics for Next-Generation Big Data Technologies and Applications, eds. Seng K, Ang LM, Liew AC, Gao J. Cham: Springer. pp. 319−35 doi: 10.1007/978-3-319-97598-6_13

[95]

Zhao J, Xie X, Xu X, Sun S. 2017. Multi-view learning overview: Recent progress and new challenges. Information Fusion 38:43−54

doi: 10.1016/j.inffus.2017.02.007
[96]

Huang X, Ye Y, Yang X, Xiong L. 2023. Multi-view dynamic graph convolution neural network for traffic flow prediction. Expert Systems with Applications 222:119779

doi: 10.1016/j.eswa.2023.119779
[97]

Du S, Li T, Gong X, Horng S-J. 2020. A hybrid method for traffic flow forecasting using multimodal deep learning. International journal of computational intelligence systems 13:85−97

doi: 10.2991/ijcis.d.200120.001
[98]

Mohammad AA, Al Nawaiseh HM, Alhajyaseen WK, Dias C, Mehran B. 2023. Lane-based analysis of the saturation flow rate considering traffic composition. Transportation Planning and Technology 46:653−71

doi: 10.1080/03081060.2023.2214144
[99]

Bhaumik KK, Niloy FF, Mahmud S, Woo SS. 2024. STLGRU: spatio-temporal lightweight graph GRU for traffic flow prediction. Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science, eds. Yang DN, Xie X, Tseng VS, Pei J, Huang JW, Lin JCW. Singapore: Springer. pp. 288−99 doi: 10.1007/978-981-97-2266-2_23

[100]

Liu X, Xia Y, Liang Y, Hu J, Wang Y, et al. 2024. Largest: a benchmark dataset for large-scale traffic forecasting. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, December 10−16, 2023. Red Hook, NY, USA: Curran Associates Inc. pp. 75354−71 doi: 10.5555/3666122.3669415

[101]

Wang J, Jiang J, Jiang W, Li C, Zhao WX. 2021. LibCity: an open library for traffic prediction. SIGSPATIAL '21: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, Beijing China, November 2−5, 2021. New York, United States: Association for Computing Machinery. pp. 145−48 doi: 10.1145/3474717.3483923

[102]

Shao Z, Wang F, Xu Y, Wei W, Yu C, et al. 2024. Exploring progress in multivariate time series forecasting: comprehensive benchmarking and heterogeneity analysis. IEEE Transactions on Knowledge and Data Engineering 37:291−305

doi: 10.1109/TKDE.2024.3484454