[1]

Klayman DL. 1985. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049−1055

doi: 10.1126/science.3887571
[2]

Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, et al. 2009. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123−1128

doi: 10.1016/j.phytochem.2009.07.009
[3]

Wang Z, Qiu J, Guo TB, Liu A, Wang Y, et al. 2007. Anti-inflammatory properties and regulatory mechanism of a novel derivative of artemisinin in experimental autoimmune encephalomyelitis. The Journal of Immunology 179:5958−5965

doi: 10.4049/jimmunol.179.9.5958
[4]

Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJG, et al. 2008. The antiviral activities of artemisinin and artesunate. Clinical Infectious Diseases 47:804−811

doi: 10.1086/591195
[5]

Crespo-Ortiz MP, Wei MQ. 2012. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. Journal of Biomedicine and Biotechnology 2012:247597

doi: 10.1155/2012/247597
[6]

Kader JC, Julienne M, Vergnolle C. 1984. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. European Journal of Biochemistry 139:411−416

doi: 10.1111/j.1432-1033.1984.tb08020.x
[7]

Kader JC. 1996. Lipid-transfer proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:627−654

doi: 10.1146/annurev.arplant.47.1.627
[8]

José-Estanyol M, Gomis-Rüth FX, Puigdomènech P. 2004. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiology and Biochemistry 42:355−365

doi: 10.1016/j.plaphy.2004.03.009
[9]

Douliez JP, Michon T, Elmorjani K, Marion D. 2000. Mini review: structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. Journal of Cereal Science 32:1−20

doi: 10.1006/jcrs.2000.0315
[10]

DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R, et al. 2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. The Plant Cell 21:1230−1238

doi: 10.1105/tpc.108.064451
[11]

Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399−403

doi: 10.1038/nature00962
[12]

Blein JP, Coutos-Thévenot P, Marion D, Ponchet M. 2002. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends in Plant Science 7:293−296

doi: 10.1016/s1360-1385(02)02284-7
[13]

Cameron KD, Teece MA, Smart LB. 2006. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiology 140:176−183

doi: 10.1104/pp.105.069724
[14]

Nieuwland J, Feron R, Huisman BAH, Fasolino A, Hilbers CW, et al. 2005. Lipid transfer proteins enhance cell wall extension in tobacco. The Plant Cell 17:2009−2019

doi: 10.1105/tpc.105.032094
[15]

Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, et al. 2000. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. The Plant Cell 12:151−163

doi: 10.1105/tpc.12.1.151
[16]

Zhang D, Liang W, Yin C, Zong J, Gu F, et al. 2010. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiology 154:149−162

doi: 10.1104/pp.110.158865
[17]

Chen C, Chen G, Hao X, Cao B, Chen Q et al. 2011. CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Science 181:439−448

doi: 10.1016/j.plantsci.2011.07.003
[18]

Coutos-Thevenot P, Jouenne T, Maes O, Guerbette F, Grosbois M, et al. 1993. Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. European Journal of Biochemistry 217:885−889

doi: 10.1111/j.1432-1033.1993.tb18317.x
[19]

Potocka I, Baldwin TC, Kurczynska EU. 2012. Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Reports 31:2031−2045

doi: 10.1007/s00299-012-1314-0
[20]

Pagnussat L, Burbach C, Baluška F, de la Canal L. 2012. An extracellular lipid transfer protein is relocalized intracellularly during seed germination. Journal of Experimental Botany 63:6555−6563

doi: 10.1093/jxb/ers311
[21]

Sun JY, Gaudet DA, Lu ZX, Frick M, Puchalski B, et al. 2008. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Molecular Plant-microbe Interactions 21:346−360

doi: 10.1094/MPMI-21-3-0346
[22]

Jia Z, Gou J, Sun Y, Yuan L, Tang Q, et al. 2010. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiology 30:1599−1605

doi: 10.1093/treephys/tpq093
[23]

Guo C, Ge X, Ma H. 2013. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Molecular Biology 82:239−253

doi: 10.1007/s11103-013-0057-9
[24]

Guo L, Yang H, Zhang X, Yang S. 2013. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. Journal of Experimental Botany 64:1755−1767

doi: 10.1093/jxb/ert040
[25]

Wei K, Zhong X. 2014. Non-specific lipid transfer proteins in maize. BMC Plant Biology 14:281

doi: 10.1186/s12870-014-0281-8
[26]

Edstam MM, Laurila M, Höglund A, Raman A, Dahlström KM, et al. 2014. Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiology and Biochemistry 75:55−69

doi: 10.1016/j.plaphy.2013.12.001
[27]

Gonçalves GR, da Silva MS, dos Santos LA, Guimarães TZA, Taveira GB, et al. 2024. Structural and functional characterization of new lipid transfer proteins with chitin-binding properties: insights from protein structure prediction, molecular docking, and antifungal activity. Biochemistry 63:1824−1836

doi: 10.1021/acs.biochem.4c00124
[28]

Wang D, Song J, Lin T, Yin Y, Mu J, et al. 2023. Identification of potato Lipid transfer protein gene family and expression verification of drought genes StLTP1 and StLTP7. Plant Direct 7:e491

doi: 10.1002/pld3.491
[29]

Maghraby A, Alzalaty M. 2024. Genome-wide identification and evolutionary analysis of the AP2/EREBP, COX and LTP genes in Zea mays L. under drought stress. Scientific Reports 14:7610

doi: 10.1038/s41598-024-57376-5
[30]

Moraes GP, Benitez LC, do Amaral MN, Vighi IL, Auler PA, et al. 2015. Expression of LTP genes in response to saline stress in rice seedlings. Genetics and Molecular Research 14:8294−8305

doi: 10.4238/2015.July.27.18
[31]

Adhikari PB, Han JY, Ahn CH, Choi YE. 2019. Lipid transfer proteins (AaLTP3 and AaLTP4) are involved in sesquiterpene lactone secretion from glandular trichomes in Artemisia annua. Plant & Cell Physiology 60:2826−2836

doi: 10.1093/pcp/pcz171
[32]

Liao B, Shen X, Xiang L, Guo S, Chen S, et al. 2022. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant 15:1310−1328

doi: 10.1016/j.molp.2022.05.013
[33]

Abe M, Katsumata H, Komeda Y, Takahashi T. 2003. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635−643

doi: 10.1242/dev.00292
[34]

Nadakuduti SS, Pollard M, Kosma DK, Allen C Jr, Ohlrogge JB, et al. 2012. Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiology 159:945−960

doi: 10.1104/pp.112.198374
[35]

Ma YN, Xu DB, Li L, Zhang F, Fu XQ, et al. 2018. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua. Science Advances 4:eaas9357

doi: 10.1126/sciadv.aas9357
[36]

He W, Liu H, Li Y, Wu Z, Xie Y, et al. 2023. Genome-wide characterization of B-box gene family in Artemisia annua L. and its potential role in the regulation of artemisinin biosynthesis. Industrial Crops and Products 199:116736

doi: 10.1016/J.INDCROP.2023.116736
[37]

He W, Liu H, Wu Z, Miao Q, Hu X, et al. 2024. The AaBBX21–AaHY5 module mediates light-regulated artemisinin biosynthesis in Artemisia annua L. Journal of Integrative Plant Biology 66:1735−1751

doi: 10.1111/jipb.13708
[38]

Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. 2017. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33:3387−3395

doi: 10.1093/bioinformatics/btx431
[39]

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10:845−858

doi: 10.1038/nprot.2015.053
[40]

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947−2948

doi: 10.1093/bioinformatics/btm404
[41]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−1549

doi: 10.1093/molbev/msy096
[42]

Shen Q, Zhang L, Liao Z, Wang S, Yan T, et al. 2018. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Molecular Plant 11:776−788

doi: 10.1016/j.molp.2018.03.015
[43]

Yan T, Li L, Xie L, Chen M, Shen Q, et al. 2018. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytologist 218:567−578

doi: 10.1111/nph.15005
[44]

Zhang L, Jing F, Li F, Li M, Wang Y, et al. 2009. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnology and Applied Biochemistry 52:199−207

doi: 10.1042/BA20080068
[45]

Liu H, He W, Yao X, Yan X, Wang X, et al. 2023. The light- and jasmonic acid-induced AaMYB108-like positive regulates the initiation of glandular secretory trichome in Artemisia annua L. International Journal of Molecular Sciences 24:12929

doi: 10.3390/ijms241612929
[46]

Boutrot F, Chantret N, Gautier MF. 2008. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9:86

doi: 10.1186/1471-2164-9-86
[47]

Li J, Gao G, Xu K, Chen B, Yan G, et al. 2014. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS One 9:e84556

doi: 10.1371/journal.pone.0084556
[48]

Chew W, Hrmova M, Lopato S. 2013. Role of homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors. International Journal of Molecular Sciences 14:8122−8147

doi: 10.3390/ijms14048122
[49]

Wang B, Kashkooli AB, Sallets A, Ting HM, de Ruijter NCA, et al. 2016. Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metabolic Engineering 38:159−169

doi: 10.1016/j.ymben.2016.07.004
[50]

Hoh F, Pons JL, Gautier MF, de Lamotte F, Dumas C. 2005. Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding. Acta Crystallographica Section D Structural Biology 61:397−406

doi: 10.1107/S0907444905000417
[51]

Jain A, Salunke DM. 2017. Crystal structure of nonspecific lipid transfer protein from Solanum melongena. Proteins: Structure, Function, and Bioinformatics 85:1820−1830

doi: 10.1002/prot.25335
[52]

Madni ZK, Tripathi SK, Salunke DM. 2020. Structural insights into the lipid transfer mechanism of a non-specific lipid transfer protein. The Plant Journal 102:340−352

doi: 10.1111/tpj.14627
[53]

Waigmann E, Turner A, Peart J, Roberts K, Zambryski P. 1997.Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta 203:75−84

doi: 10.1007/s00050167
[54]

Gossart N, Berhin A, Sergeant K, Alam I, André C, et al. 2023. Engineering Nicotiana tabacum trichomes for triterpenic acid production. Plant Science 328:111573

doi: 10.1016/j.plantsci.2022.111573
[55]

Li J, Hu H, Fu H, Li J, Zeng T, et al. 2024. Exploring the co-operativity of secretory structures for defense and pollination in flowering plants. Planta 259:41

doi: 10.1007/s00425-023-04322-w
[56]

Liu D, Dou W, Song H, Deng H, Tian Z, et al. 2025. Insights into the functional mechanism of the non-specific lipid transfer protein nsLTP in Kalanchoe fedtschenkoi (Lavender scallops). Protein Expression and Purification 226:106607

doi: 10.1016/j.pep.2024.106607
[57]

Chen Q, Li L, Qi X, Fang H, Yu X, et al. 2023. The non-specific lipid transfer protein McLTPII.9 of Mentha canadensis is involved in peltate glandular trichome density and volatile compound metabolism. Frontiers in Plant Science 14:1188922

doi: 10.3389/fpls.2023.1188922
[58]

Kashkooli AB, van Dijk ADJ, Bouwmeester H, van der Krol A. 2023. Individual lipid transfer proteins from Tanacetum parthenium show different specificity for extracellular accumulation of sesquiterpenes. Plant Molecular Biology 111:153−166

doi: 10.1007/s11103-022-01316-2
[59]

Chatzopoulou FM, Makris AM, Argiriou A, Degenhardt J, Kanellis AK. 2010. EST analysis and annotation of transcripts derived from a trichome-specific cDNA library from Salvia fruticosa. Plant Cell Reports 29:523−534

doi: 10.1007/s00299-010-0841-9
[60]

Wang G, Tian L, Aziz N, Broun P, Dai X, et al. 2008. Terpene biosynthesis in glandular trichomes of hop. Plant Physiology 148:1254−1266

doi: 10.1104/pp.108.125187
[61]

Falara V, Fotopoulos V, Margaritis T, Anastasaki T, Pateraki I, et al. 2008. Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus. Plant Molecular Biology 68:633−651

doi: 10.1007/s11103-008-9399-0
[62]

Bertea CM, Voster A, Verstappen FWA, Maffei M, Beekwilder J, et al. 2006. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Archives of Biochemistry and Biophysics 448:3−12

doi: 10.1016/j.abb.2006.02.026
[63]

Aziz N, Paiva NL, May GD, Dixon RA. 2005. Transcriptome analysis of alfalfa glandular trichomes. Planta 221:28−38

doi: 10.1007/s00425-004-1424-1
[64]

Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, et al. 2001. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiology 125:539−555

doi: 10.1104/pp.125.2.539
[65]

Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, et al. 2000. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proceedings of the National Academy of Sciences of the United States of America 97:2934−2939

doi: 10.1073/pnas.97.6.2934
[66]

Tsuboi S, Osafune T, Tsugeki R, Nishimura M, Yamada M. 1992. Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. The Journal of Biochemistry 111:500−508

doi: 10.1093/oxfordjournals.jbchem.a123787
[67]

Salminen TA, Blomqvist K, Edqvist J. 2016. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta 244:971−997

doi: 10.1007/s00425-016-2585-4
[68]

Turchi L, Baima S, Morelli G, Ruberti I. 2015. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. Journal of Experimental Botany 66:5043−5053

doi: 10.1093/jxb/erv174
[69]

Wu M, Bian X, Hu S, Huang B, Shen J, et al. 2024. A gradient of the HD-Zip regulator Woolly regulates multicellular trichome morphogenesis in tomato. The Plant Cell 36:2375−2392

doi: 10.1093/plcell/koae077
[70]

Verma S, Attuluri VPS, Robert HS. 2022. Transcriptional control of Arabidopsis seed development. Planta 255:90

doi: 10.1007/s00425-022-03870-x