[1]

Cron GV, Karimi N, Glennon KL, Udell CA, Witkowski ETF, et al. 2016. One African baobab species or two? Synonymy of Adansonia kilima and A. digitata Taxon 65(5):1037−1049

doi: 10.12705/655.6
[2]

Sanchez AC, Osborne PE, Haq N. 2011. Climate change and the African baobab (Adansonia digitata L.): the need for better conservation strategies. African Journal of Ecology 49(2):234−245

doi: 10.1111/j.1365-2028.2011.01257.x
[3]

Wickens GE. 1982. The baobab: Africa's upside-down tree. Kew Bulletin 37(2):173−209

doi: 10.2307/4109961
[4]

Wickens GE. 2008. Baobab biology. In: The Baobabs: Pachycauls of Africa, Madagascar and Australia. Dordrecht: Springer. pp. 139−202 doi: 10.1007/978-1-4020-6431-9_8

[5]

Birhane E, Asgedom KT, Tadesse T, Hishe H, Abrha H, et al. 2020. Vulnerability of baobab (Adansonia digitata L.) to human disturbances and climate change in western Tigray, Ethiopia: conservation concerns and priorities. Global Ecology and Conservation 22:e00943

doi: 10.1016/j.gecco.2020.e00943
[6]

Rashford J. 2018. The use of baobab leaves (Adansonia digitata L.) for food in Africa: a review. Economic Botany 72(4):478−495

doi: 10.1007/s12231-018-9438-y
[7]

Dhillion SS, Gustad G. 2004. Local management practices influence the viability of the baobab (Adansonia digitata Linn.) in different land use types, Cinzana, Mali. Agriculture, Ecosystems & Environment 101(1):85−103

doi: 10.1016/S0167-8809(03)00170-1
[8]

Sidibe M, Williams JT. 2002. Baobab, Adansonia digitata L. Southampton, UK: International Centre for Underutilised Crops (ICUC)

[9]

Assogbadjo AE, Glèlè Kakaï R, Chadare FJ, Thomson L, Kyndt T, et al. 2008. Folk classification, perception, and preferences of baobab products in west Africa: consequences for species conservation and improvement. Economic Botany 62(1):74−84

doi: 10.1007/s12231-007-9003-6
[10]

Wang Z, Zhou Z, Wang C. 2021. Defoliation-induced tree growth declines are jointly limited by carbon source and sink activities. Science of the Total Environment 762:143077

doi: 10.1016/j.scitotenv.2020.143077
[11]

Burkill HM. 2000. The Useful Plants of West Tropical Africa: Families S-Z. London. UK: Royal Botanic Gardens

[12]

Nordeide MB, Hatløy A, Følling M, Lied E, Oshaug A. 1996. Nutrient composition and nutritional importance of green leaves and wild food resources in an agricultural district, Koutiala, in Southern Mali. International Journal of Food Sciences and Nutrition 47(6):455−468

doi: 10.3109/09637489609031874
[13]

Dansi A, Adjatin A, Adoukonou-Sagbadja H, Faladé V, Yedomonhan H, et al. 2008. Traditional leafy vegetables and their use in the Benin Republic. Genetic Resources and Crop Evolution 55(8):1239−1256

doi: 10.1007/s10722-008-9324-z
[14]

Dovie DBK. 2003. Rural economy and livelihoods from the non-timber forest products trade. Compromising sustainability in southern Africa? International Journal of Sustainable Development & World Ecology 10(3):247−262

doi: 10.1080/13504500309469803
[15]

Codjia JTC, Assogbadjo AE, Ekué MRM. 2003. Diversité et valorisation au niveau local des ressources végétales forestières alimentaires du Bénin [Diversity and local valorization of food forest plant resources in Benin]. Cahiers Agricultures 12:321−331 (in French)

[16]

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, et al. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland. www.mendeley.com/research/climate-change-2014-synthesis-report-contribution-working-groups-i-ii-iii-fifth-assessment-report-in-20

[17]

McClean CJ, Lovett JC, Küper W, Hannah L, Sommer JH, et al. 2005. African plant diversity and climate change. Annals of the Missouri Botanical Garden 92(2):139−152

[18]

Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, et al. 2006. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology 12(3):424−440

doi: 10.1111/j.1365-2486.2006.01115.x
[19]

Fadrique B, Báez S, Duque Á, Malizia A, Blundo C, et al. 2018. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564(7735):207−212

doi: 10.1038/s41586-018-0715-9
[20]

Feeley KJ, Silman MR, Duque A. 2016. Where are the tropical plants? A call for better inclusion of tropical plants in studies investigating and predicting the effects of climate change. Frontiers of Biogeography 7(4):174−176

doi: 10.21425/f57427602
[21]

Chen IC, Shiu HJ, Benedick S, Holloway JD, Chey VK, et al. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences of the United States of America 106(5):1479−1483

doi: 10.1073/pnas.0809320106
[22]

Gaoue OG, Ticktin T. 2007. Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: variation across ecological regions and its impacts on population structure. Biological Conservation 137(3):424−436

doi: 10.1016/j.biocon.2007.02.020
[23]

Schumann K, Wittig R, Thiombiano A, Becker U, Hahn K. 2010. Impact of land-use type and bark- and leaf-harvesting on population structure and fruit production of the baobab tree (Adansonia digitata L.) in a semi-arid savanna, West Africa. Forest Ecology and Management 260(11):2035−2044

doi: 10.1016/j.foreco.2010.09.009
[24]

Venter SM, Witkowski ETF. 2010. Baobab (Adansonia digitata L.) density, size-class distribution and population trends between four land-use types in northern Venda, South Africa. Forest Ecology and Management 259(3):294−300

doi: 10.1016/j.foreco.2009.10.016
[25]

Patrut A, Woodborne S, Patrut RT, Rakosy L, Lowy DA, et al. 2018. The demise of the largest and oldest African baobabs. Nature Plants 4(7):423−426

doi: 10.1038/s41477-018-0170-5
[26]

Chikamai B, Tchatat M, Tieguhong J, Ndoye O. 2009. Forest management for non-wood products and services in Sub-Saharan Africa. Discovery and Innovation 21(3):48213

doi: 10.4314/dai.v21i3.48213
[27]

Guevarra AB, Whitney AS, Thompson JR. 1978. Influence of intra-row spacing and cutting regimes on the growth and yield of Leucaena. Agronomy Journal 70(6):1033−1037

doi: 10.2134/agronj1978.00021962007000060034x
[28]

Howeler RH. 2012. The Cassava Handbook: A Reference Manual Based on the Asian Regional Cassava Training Course, Held in Thailand. Bangkok, Thailand: Centro Internacional de Agricultura Tropical (CIAT). 801 pp. https://hdl.handle.net/10568/54299

[29]

Kombieni HA. 2016. Technologies de l'information et de la communication: contribution à l'amélioration des conditions de vie des populations à Parakou (Benin) [Information and communication technologies: contribution to improving the living conditions of populations in Parakou (Benin)]. Revue de Géographie Tropicale et d'Environnement [Journal of Tropical Geography and Environment] 2016:85−97 (in French)

[30]

Kassambara A, Mundt F. 2016. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7.999. https://github.com/kassambara/factoextra

[31]

Rosseel Y. 2012. lavaan: an R package for structural equation modeling. Journal of Statistical Software 48(2):1−36

doi: 10.18637/jss.v048.i02
[32]

Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, et al. 2016. Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment 14(7):369−378

doi: 10.1002/fee.1311
[33]

Husseini R, Mahunu GK, Wireku P, Dzomeku IK. 2016. Response of growth and leaf yield of Adansonia digitata seedlings to soil amendments and harvesting regimes. Journal of Multidisciplinary Engineering Science and Technology 3:6114−6119

[34]

Amaglo NK, Timpo GM, Ellis WO, Bennett RN. 2006. Effet de l'écartement et la fréquence des récoltes sur la croissance et le rendement en feuilles de Moringa oleifera Lam. Moringa et Autres Végétaux à Fort Potentiel Nutritionnel: Stratégies, Normes et Marchés Pour un Meilleur Impact sur la Nutrition en Afrique, Atelier International, Accra, Ghana. 1–8 November, 2006. https://studylibfr.com/doc/2056579/effet-de-l-%C3%A9cartement-et-la-fr%C3%A9quence-des-r%C3%A9coltes-sur-la..

[35]

Adegbenro CO, Snider JL, Parkash V, Jespersen D, Vamerali T, et al. 2025. Effect of cultivar differences in seed size on early season growth and physiology of cotton under low and high-temperature extremes. Agrosystems, Geosciences & Environment 8(2):e70113

doi: 10.1002/agg2.70113
[36]

Edao M, Ahmed M, Kibru E, Nebiyu A. 2025. Assessment of primary macronutrient deficiency of maize (Zea mays L.) through nutrient omission trials in Omo Nadda district, southwestern Ethiopia. Agrosystems, Geosciences & Environment 8(3):e70188

doi: 10.1002/agg2.70188
[37]

Lisboa IP, Proctor CA, Elmore RW, McMechan AJ, Mueller ND, et al. 2024. Evaluating the yield of surviving plants from early-season hail damage in corn: a field survey. Agrosystems, Geosciences & Environment 7(3):e20533

doi: 10.1002/agg2.20533
[38]

Zhang H, Zhao Y, Zhu JK. 2020. Thriving under stress: how plants balance growth and the stress response. Developmental Cell 55(5):529−543

doi: 10.1016/j.devcel.2020.10.012
[39]

Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, et al. 2022. Plants' physio-biochemical and Phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants 11(13):1620

doi: 10.3390/plants11131620
[40]

Bationo BA, Lamien N, Demers N, Kandji S. 2009. Culture du baobab Adansonia digitata L. (Bombacaceae) en planche maraîchère: une méthode pour simplifier sa récolte et favoriser sa propagation au Sahel. Bois & Forets des Tropiques 299(299):79

doi: 10.19182/bft2009.299.a20426
[41]

de Freitas IC, Ferreira EA, Alves MA, de Oliveira JC, Frazão LA. 2023. Growth, nodulation, production, and physiology of leguminous plants in integrated production systems. Agrosystems, Geosciences & Environment 6(1):e20343

doi: 10.1002/agg2.20343
[42]

Wang T, Yang H, Chen H, Zhang W, Liu Z, et al. 2025. Growth of Brasenia schreberi requries good water quality and appropriate sediment nitrogen content. Frontiers in Plant Science 16:1535395

doi: 10.3389/fpls.2025.1535395
[43]

Sharma RR, Singh R, Singh DB. 2006. Influence of pruning intensity on light penetration and leaf physiology in high-density orchards of mango trees. Fruits 61(2):117−123

doi: 10.1051/fruits:2006010
[44]

Zhao G. 2024. Plant compensatory growth: its mechanisms and implications to agricultural sustainability under global environmental changes. International Journal of Sustainable Development & World Ecology 31(3):348−360

doi: 10.1080/13504509.2023.2289475
[45]

Xu A, Zhang L, Wang X, Cao B. 2022. Nitrogen fertilization and CO2 concentration synergistically affect the growth and protein content of Agropyron mongolicum. PeerJ 10:e14273

doi: 10.7717/peerj.14273
[46]

Hounsou-Dindin G. 2017. Developing best agro-ecological practices for African baobab tree Adansonia digitata L. leaves production in smallholders farming systems in Benin. Master's thesis. University of Abomey-Calavi. Republic of Benin. https://repository.ruforum.org/sites/default/files/RU%202015%20GRG-135_Msc%20Thesis_HOUNSOU-DINDIN%20Guillaume%20%28Management%20of%20Natural%20Resources%29.pdf

[47]

Msalilwa UL, Ndakidemi PA, Makule EE, Munishi LK. 2020. Demography of baobab (Adansonia digitata L.) population in different land uses in the semi-arid areas of Tanzania. Global Ecology and Conservation 24:e01372

doi: 10.1016/j.gecco.2020.e01372
[48]

Mosisa W, Dechassa N, Kibret K, Zeleke H, Bekeko Z. 2022. Effects of timing and nitrogen fertilizer application rates on maize yield components and yield in eastern Ethiopia. Agrosystems, Geosciences & Environment 5(4):e20322

doi: 10.1002/agg2.20322
[49]

Pais IP, Moreira R, Semedo JN, Ramalho JC, Lidon FC, et al. 2022. Wheat crop under waterlogging: potential soil and plant effects. Plants 12(1):149

doi: 10.3390/plants12010149
[50]

Hasan MM, Liu XD, Rahman MA, Hazzazi Y, Wassem M, et al. 2025. Plants breathing under pressure: mechanistic insights into soil compaction-induced physiological, molecular and biochemical responses in plants. Planta 261(3):52

doi: 10.1007/s00425-025-04624-1
[51]

Zahedi SM, Karimi M, Venditti A, Zahra N, Siddique KHM, et al. 2025. Plant adaptation to drought stress: the role of anatomical and morphological characteristics in maintaining the water status. Journal of Soil Science and Plant Nutrition 25(1):409−427

doi: 10.1007/s42729-024-02141-w
[52]

Askari-Khorasgani O, Pardo FBF, Pessarakli M. 2021. Plant morphological and physiological responses to drought stress. In Handbook of Plant and Crop Physiology. 4th Edition. Boca Raton, FL: CRC Press. pp. 482–515 doi: 10.1201/9781003093640

[53]

Van den Bilcke N, De Smedt S, Simbo DJ, Samson R. 2013. Sap flow and water use in African baobab (Adansonia digitata L.) seedlings in response to drought stress. South African Journal of Botany 88:438−446

doi: 10.1016/j.sajb.2013.09.006
[54]

De Smedt S, Cuní Sanchez A, Van den Bilcke N, Simbo D, Potters G, et al. 2012. Functional responses of baobab (Adansonia digitata L.) seedlings to drought conditions: differences between western and south-eastern Africa. Environmental and Experimental Botany 75:181−187

doi: 10.1016/j.envexpbot.2011.09.011
[55]

Cuni Sanchez A, Haq N, Assogbadjo AE. 2010. Variation in baobab (Adansonia digitata L.) leaf morphology and its relation to drought tolerance. Genetic Resources and Crop Evolution 57(1):17−25

doi: 10.1007/s10722-009-9447-x
[56]

Karthika KS, Rashmi I, Parvathi MS. 2018. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance, eds. Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B. Singapore: Springer. pp.1−49 doi: 10.1007/978-981-10-9044-8_1

[57]

Kutschera U, Niklas KJ. 2013. Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Science 207:45−56

doi: 10.1016/j.plantsci.2013.02.004
[58]

Fagnant L, Delaplace P, Delory BM, Dumont B. 2025. Thinopyrum intermedium showed a slower establishment phase compared to winter wheat in a controlled environment. Agrosystems, Geosciences & Environment 8(1):e70021

doi: 10.1002/agg2.70021
[59]

Sreekanta S, Haaning A, Dobbels A, O'Neill R, Hofstad A, et al. 2024. Variation in shoot architecture traits and their relationship to canopy coverage and light interception in soybean (Glycine max). BMC Plant Biology 24(1):194

doi: 10.1186/s12870-024-04859-2