| [1] |
Hormaza JI, Yamane H, Rodrigo J. 2007. Apricot. In Fruits and Nuts, ed. Kole C. Berlin, Heidelberg: Springer. pp. 171–187 doi: 10.1007/978-3-540-34533-6_7 |
| [2] |
Herrera S, Hormaza JI, Lora J, Ylla G, Rodrigo J. 2021. Molecular characterization of genetic diversity in apricot cultivars: current situation and future perspectives. |
| [3] |
Fernández-Serrano P, Tarancón P, Besada, C. 2021. Consumer information needs and sensory label design for fresh fruit packaging. An exploratory study in Spain. |
| [4] |
Barba M, Ilardi V, Pasquini G. 2015. Control of pome and stone fruit virus diseases. |
| [5] |
Rubio M, Martínez-Gómez P, Dicenta F. 2023. Apricot breeding for multiple resistance to Plum pox virus and Apple chlorotic leaf spot virus. |
| [6] |
Pascal T, Pfeiffer F, Kervella J. 2010. Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Grgene for leaf color. |
| [7] |
Taiti C, Vivaldo G, Masi E, Giordani E, Nencetti V. 2023. Postharvest monitoring and consumer choice on traditional and modern apricot cultivars. |
| [8] |
Zhou W, Niu Y, Ding X, Zhao S, Li Y, et al. 2020. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China. |
| [9] |
Sharkawy SSA, Alkolaly AM, Kafsheer DA. 2023. Use of biological and chemical compounds for the integrated management of apricot powdery mildew in Egypt. |
| [10] |
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, et al. 2019. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. |
| [11] |
He J, Zhao X, Laroche A, Lu ZX, Liu H, et al. 2014. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. |
| [12] |
Gürcan K, Teber S, Ercisli S, Yilmaz KU. 2016. Genotyping by sequencing (GBS) in apricots and genetic diversity assessment with GBS-derived single-nucleotide polymorphisms (SNPs). |
| [13] |
Zhebentyayeva T, Shankar V, Scorza R, Callahan A, Ravelonandro M, et al. 2019. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. |
| [14] |
Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, et al. 2015. Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. |
| [15] |
Guajardo V, Solís S, Sagredo B, Gainza F, Muñoz C, et al. 2015. Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). |
| [16] |
Khojand S, Zeinalabedini M, Azizinezhad R, Imani A, Ghaffari MR. 2024. Genomic exploration of Iranian almond (Prunus dulcis) germplasm: decoding diversity, population structure, and linkage disequilibrium through genotyping-by-sequencing analysis. |
| [17] |
Salazar JA, Pacheco I, Shinya P, Zapata P, Silva C, et al. 2017. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.). |
| [18] |
Chung YS, Choi SC, Jun TH, Kim C. 2017. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. |
| [19] |
Dondini L, Domenichini C, Dong Y, Gennari F, Bassi D, et al. 2022. Quantitative trait loci mapping and identification of candidate genes linked to fruit acidity in apricot (Prunus armeniaca L.). |
| [20] |
Socquet-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, et al. 2013. Mapping architectural, phenological, and fruit quality QTLs in apricot. |
| [21] |
Hurtado M, Romero C, Vilanova S, Abbott A, Llácer G, et al. 2002. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. |
| [22] |
Lambert P, Dicenta F, Rubio M, Audergon JM. 2007. QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) 'Polonais' × 'Stark Early Orange' F1 progeny. |
| [23] |
Salazar JA, Batnini MA, Trifi-Farah N, Ruiz D, Martínez-Gómez P, et al. 2016. Quantitative trait loci (QTLs) identification and the transmission of resistance to powdery mildew in apricot. |
| [24] |
Kim C, Guo H, Kong W, Chandnani R, Shuang LS, et al. 2016. Application of genotyping by sequencing technology to a variety of crop breeding programs. |
| [25] |
Ortuño-Hernández G, Silva M, Toledo R, Ramos H, Reis-Mendes A, et al. 2025. Nutraceutical profile characterization in apricot (Prunus armeniaca L.) fruits. |
| [26] |
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19:11−15 |
| [27] |
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. |
| [28] |
Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, et al. 2016. Inheritance of reproductive phenology traits and related QTL identification in apricot. |
| [29] |
Ooijen V. 2018. JoinMap® 5, Software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma BV, Wageningen, Netherlands www.kyazma.nl/index.php/JoinMap/ |
| [30] |
Campoy JA, Sun H, Goel M, Jiao WB, Folz-Donahue K, et al. 2020. Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. |
| [31] |
Canli FA. 2008. Progress in genetic mapping of Prunus species. Erciyes Ü niversities Fen Bilimleri Enstitüsü Dergisi 24:414−424 |
| [32] |
Poland JA, Rife TW. 2012. Genotyping-by-sequencing for plant breeding and genetics. |
| [33] |
Dondini L, Lain O, Vendramin V, Rizzo M, Vivoli D, et al. 2011. Identification of QTL for resistance to plum pox virus strains M and D in Lito and Harcot apricot cultivars. |
| [34] |
Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, et al. 2007. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. |
| [35] |
Marandel G, Salava J, Abbott A, Candresse T, Decroocq V. 2009. Quantitative trait loci meta-analysis of Plum pox virus resistance in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. |
| [36] |
Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, et al. 2009. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). |
| [37] |
Pilařová P, Marandel G, Decroocq V, Salava J, Krška B, et al. 2010. Quantitative trait analysis of resistance to plum pox virus in the apricot F1 progeny 'Harlayne' × 'Vestar'. |
| [38] |
Socquet-Juglard D, Duffy B, Pothier JF, Christen D, Gessler C, et al. 2013. Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot. |
| [39] |
Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, et al. 2008. Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. |
| [40] |
Vera Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Terol J, et al. 2011. Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. |
| [41] |
Pina A, Irisarri P, Errea P, Zhebentyayeva T. 2021. Mapping quantitative trait loci associated with graft (In)compatibility in apricot (Prunus armeniaca L.). |
| [42] |
Zhang Q, Liu J, Liu W, Liu N, Zhang Y, et al. 2022. Construction of a high-density genetic map and identification of quantitative trait loci linked to fruit quality traits in apricots using specific-locus amplified fragment sequencing. |
| [43] |
Carrasco B, González M, Gebauer M, García-González R, Maldonado J, et al. 2018. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling. |
| [44] |
Baccichet I, Chiozzotto R, Tura D, Tagliabue AG, Tartarini S, et al. 2025. Dissection of acidity-related traits in an apricot (Prunus armeniaca L.) germplasm collection revealed the genetic architecture of organic acids content and profile. |
| [45] |
Marimon N, Luque J, Arús P, Eduardo I. 2020. Fine mapping and identification of candidate genes for the peach powdery mildew resistance gene Vr3. |
| [46] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. |
| [47] |
Yan H, Pei X, Zhang H, Li X, Zhang X, et al. 2021. MYB-mediated regulation of anthocyanin biosynthesis. |
| [48] |
Fraser PD, Bramley PM. 2004. The biosynthesis and nutritional uses of carotenoids. |
| [49] |
Babu MA, Srinivasan R, Subramanian P, Kodiveri Muthukaliannan G. 2021. RNAi silenced ζ-carotene desaturase developed variegated tomato transformants with increased phytoene content. |
| [50] |
Ambawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. |
| [51] |
Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, et al. 2005. The critical role of Arabidopsis electron-transfer flavoprotein: ubiquinone oxidoreductase during dark-induced starvation. |
| [52] |
Araújo WL, Ishizaki K, Nunes-Nesi A, Tohge T, Larson TR, et al. 2011. Analysis of a range of catabolic mutants provides evidence that phytanoyl-coenzyme a does not act as a substrate of the electron-transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase complex in Arabidopsis during dark-induced senescence. |
| [53] |
Xi X, Zong Y, Li S, Cao D, Sun X, et al. 2019. Transcriptome analysis clarified genes involved in betalain biosynthesis in the fruit of red pitayas (Hylocereus costaricensis). |
| [54] |
Li X, Zhu L, Song J, Wang W, Kuang T, et al. 2023. LHCA4 residues surrounding red chlorophylls allow for fine-tuning of the spectral region for photosynthesis in Arabidopsis thaliana. |
| [55] |
Brandt U, Zickermann V. 2020. NADH-ubiquinone oxidoreductase (Complex I). In Encyclopedia of Biophysics, eds. Roberts C, Watts A, European Biophysical Societies. Berlin, Heidelberg: Springer. pp. 1–4 doi: 10.1007/978-3-642-35943-9_26-1 |
| [56] |
Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. |
| [57] |
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. |
| [58] |
Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. 2021. Mechanisms and regulation of organic acid accumulation in plant vacuoles. |
| [59] |
Huang XY, Xiang Y, Zhao YW, Wang CK, Wang JH, et al. 2023. Regulation of a vacuolar proton-pumping P-ATPase MdPH5 by MdMYB73 and its role in malate accumulation and vacuolar acidification. |
| [60] |
Decker D, Kleczkowski LA. 2019. UDP-sugar producing pyrophosphorylases: distinct and essential enzymes with overlapping substrate specificities, providing de novo precursors for glycosylation reactions. |
| [61] |
Zhang W. 2025. An overview of UDP-glucose pyrophosphorylase in plants. |
| [62] |
Bellin L, Scherer V, Dörfer E, Lau A, Vicente AM, et al. 2021. Cytosolic CTP production limits the establishment of photosynthesis in Arabidopsis. |
| [63] |
Yu B, Liu N, Tang S, Qin T, Huang J. 2022. Roles of glutamate receptor-like channels (GLRs) in plant growth and response to environmental stimuli. |
| [64] |
Wang H, Wang C, Fan W, Yang J, Appelhagen I, et al. 2018. A novel glycosyltransferase catalyses the transfer of glucose to glucosylated anthocyanins in purple sweet potato. |
| [65] |
Ren Y, Liao S, Xu Y. 2023. An update on sugar allocation and accumulation in fruits. |
| [66] |
Liu J, Huang C, Xing D, Cui S, Huang Y, et al. 2024. The genomic database of fruits: a comprehensive fruit information database for comparative and functional genomic studies. |