[1]

Hriciková S, Kožárová I, Hudáková N, Reitznerová A, Nagy J, et al. 2023. Humic substances as a versatile intermediary. Life 13(4):858

doi: 10.3390/life13040858
[2]

Qiao H, Liu Z, Peng X, Xian H, Cheng K, et al. 2024. Significance of humic matters-soil mineral interactions for environmental remediation: a review. Chemosphere 365:143356

doi: 10.1016/j.chemosphere.2024.143356
[3]

Zhu X, Liu J, Li L, Zhen G, Lu X, et al. 2023. Prospects for humic acids treatment and recovery in wastewater: a review. Chemosphere 312:137193

doi: 10.1016/j.chemosphere.2022.137193
[4]

Santamaría-Fernández R, Cave MR, Hill SJ. 2003. The effect of humic acids on the sequential extraction of metals in soils and sediments using ICP-AES and chemometric analysis. Journal of Environmental Monitoring 5(6):929−934

doi: 10.1039/b306865j
[5]

Khurana P, Pulicharla R, Brar SK. 2024. Occurrence of imipenem in natural water: effect of humic acid on its stability and transformation. Science of The Total Environment 927:177846

doi: 10.1016/j.scitotenv.2024.177846
[6]

Lin Q, Luo A, Yu C, Chen K, Hamid Y, et al. 2024. Insights into the role of endogenous humic acid on antibiotics bioadsorption process in wastewater: mechanisms and potential implications. Journal of Water Process Engineering 64:105606

doi: 10.1016/j.jwpe.2024.105606
[7]

Yang C, Lai J, Li S, Wang J, Yang L, et al. 2024. Insight into the humic acid/antibiotic complexation for boosting tetracycline degradation by heterogeneous persulfate activation. Journal of Environmental Chemical Engineering 12(1):111712

doi: 10.1016/j.jece.2023.111712
[8]

Mzinyathi M, Muthuraj V, Ajala EO, Kakavandi B, Janse van Rensburg SJ, et al. 2025. Chlorine dioxide drinking water pre-oxidation and disinfection: a review of its effectiveness, mechanisms, and disinfection by-products. Desalination and Water Treatment 323:101340

doi: 10.1016/j.dwt.2025.101340
[9]

Nguyen HVM, Lim HB, Hur J, Shin HS. 2026. Hydrophobic neutral dissolved organic matter: first insights into compositional changes and formation of disinfection by-products induced by rainfall and degradation. Journal of Environmental Sciences 161:307−319

doi: 10.1016/j.jes.2025.08.022
[10]

Wang Q, Luo W, Huang K, Li H, Xu Q. 2025. Unveiling the impact of initial pH on humic acid degradation using ultraviolet light-activated peroxydisulfate in landfill leachate treatment. Journal of Environmental Chemical Engineering 13(5):119062

doi: 10.1016/j.jece.2025.119062
[11]

Verma Y, Sharma G, Iqbal J, Naushad M, Lai CW, et al. 2024. Recent advances in transition metal-based photocatalytic heterojunctions for algal inhibition and water disinfection: a review. Materials Today Sustainability 28:101041

doi: 10.1016/j.mtsust.2024.101041
[12]

Ma J, Ding N, Liu H. 2023. Research progress in photocatalytic activated persulfate degradation of antibiotics by bismuth-based photocatalysts. Separation and Purification Technology 324:124628

doi: 10.1016/j.seppur.2023.124628
[13]

Yaah VBK, Quimbayo JSM, Ahmadi S, Lempelto A, Sliz R, et al. 2025. One-pot co-precipitation of enhanced visible light active BiOCl based photocatalysts: characterization, mechanism and DFT modelling. Inorganic Chemistry Communications 182(3):115699

doi: 10.1016/j.inoche.2025.115699
[14]

Anwar S, Aslam Z, Aslam U, Mehmood U, Rana AG, et al. 2026. Advances and challenges in photocatalytic water splitting: recent developments and trends. Fuel 404(B):136280

doi: 10.1016/j.fuel.2025.136280
[15]

Cao M, Xu P, Tian K, Shi F, Zheng Q, et al. 2023. Recent advances in microwave-enhanced advanced oxidation processes (MAOPs) for environmental remediation: a review. Chemical Engineering Journal 471:144208

doi: 10.1016/j.cej.2023.144208
[16]

Hassani A, Pourshirband N, Sayyar Z, Eghbali P. 2025. Fenton and Fenton-like-based advanced oxidation processes. In Innovative and Hybrid Advanced Oxidation Processes for Water Treatment, ed. Hamdaoui O. Amsterdam: Elsevier. pp. 171−203 doi: 10.1016/B978-0-443-14100-3.00006-5

[17]

Li S, Zhang T, Zheng H, Dong X, Leong YK, et al. 2024. Advances and challenges in the removal of organic pollutants via sulfate radical-based advanced oxidation processes by Fe-based metal-organic frameworks: a review. Science of The Total Environment 926:171885

doi: 10.1016/j.scitotenv.2024.171885
[18]

Wang L, Tang Y, Wang P, Fu Y, Xu C, et al. 2025. Radical generation in thermally activated peroxydisulfate process with temperature threshold as low as 45 °C. Chemical Engineering Journal 526:171071

doi: 10.1016/j.cej.2025.171071
[19]

Zhang J, Li Z, Lei Q, Zhong D, Ke Y, et al. 2023. Significantly activated persulfate by novel carbon quantum dots-modified N-BiOCl for complete degradation of bisphenol-a under visible light irradiation. Science of The Total Environment 870:161804

doi: 10.1016/j.scitotenv.2023.161804
[20]

Pu C, Lu G, Qi H, Isaev AB, Zhu M. 2023. Enhanced persulfate activation process by magnetically separable catalysts for water purification: a review. Chinese Journal of Structural Chemistry 42(6):100093

doi: 10.1016/j.cjsc.2023.100093
[21]

Wang W, Zhou S, Zhu Y, Li W. 2025. A g-C3N4/BiOI heterojunction activated persulfate (PDS) for photocatalytic degradation of tetracycline in water/wastewater. Chemical Engineering Science 315:121881

doi: 10.1016/j.ces.2025.121881
[22]

Wang J, Chang X, Zhao Y, Xu H, He G, et al. 2022. A novel Bi2WO6/BiOBr/RGO photocatalyst for enhanced degradation of ciprofloxacin under visible light irradiation: performance, mechanism and toxicity evaluation. Diamond and Related Materials 128:109274

doi: 10.1016/j.diamond.2022.109274
[23]

Naderi A, Sagadevan S, Rezaei Kalantary R, Kakavandi B, Pelalak R, et al. 2026. Heterogeneous sulfate radical-based advanced oxidation process for the efficient pharmaceutical wastewater treatment: performance, practicability, and mechanism. Journal of Colloid and Interface Science 703:139106

doi: 10.1016/j.jcis.2025.139106
[24]

Ouyang L, Wang H, Duan L, Zhang J, Jiang S, et al. 2025. Synergistic photocatalytic degradation of tetracycline by Fe(II)/PMS and g-C3N5/BiVO4 S-scheme heterojunction: mechanism and performance. Diamond and Related Materials 158:112640

doi: 10.1016/j.diamond.2025.112640
[25]

Alhammadi S, Kang S, Ryu DG, Mady AH, Azhar MHA, et al. 2024. Magnesium incorporation-mediated formation of oxygen vacancies in zinc ferrite for PMS activation toward effective photocatalytic 4-nitrophenol degradation. Applied Surface Science 677:161064

doi: 10.1016/j.apsusc.2024.161064
[26]

Hassani A, Varank G, Eghbali P, Can-Güven E, Guvenc SY, et al. 2025. Ultrasound-assisted oxidants for the degradation of organic pollutants: a state-of-the-art mechanistic review. Journal of Environmental Chemical Engineering 13(3):116682

doi: 10.1016/j.jece.2025.116682
[27]

Xu Z, Zhang C, Zhang Y, Gu Y, An Y. 2022. BiOCl-based photocatalysts: synthesis methods, structure, property, application, and perspective. Inorganic Chemistry Communications 138:109277

doi: 10.1016/j.inoche.2022.109277
[28]

Xie K, Xu S, Xu K, Hao W, Wang J, et al. 2023. BiOCl Heterojunction photocatalyst: construction, photocatalytic performance, and applications. Chemosphere 317:137823

doi: 10.1016/j.chemosphere.2023.137823
[29]

Yang C, Rong Q, Shi F, Cao M, Li G, et al. 2024. Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters 35(12):109767

doi: 10.1016/j.cclet.2024.109767
[30]

Tian W, Chen S, Zhang H, Wang H, Wang S. 2022. Sulfate radical-based advanced oxidation processes for water decontamination using biomass-derived carbon as catalysts. Current Opinion in Chemical Engineering 37:100838

doi: 10.1016/j.coche.2022.100838
[31]

Li X, Jie B, Lin H, Deng Z, Qian J, et al. 2022. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): recent advances and prospects. Journal of Environmental Management 308:114664

doi: 10.1016/j.jenvman.2022.114664
[32]

Tian Y, Chu M, Yang J, Yao S, Li S. 2025. Advances in single/dual-atom catalysts for activating persulfate applied to organic pollutant degradation: the critical role of active site configuration. Resources Chemicals and Materials 2025:In press, journal pre-proof

doi: 10.1016/j.recm.2025.100166
[33]

Yu CB, Xu C, He L, Huang WY, Yang K, et al. 2025. Trigger efficient peroxydisulfate-assisted photocatalysis by S-scheme Co3O4/BiOCl heterojunctions: Vital roles of Co2+/Co3+ redox centers and oxygen vacancies. Journal of Environmental Chemical Engineering 13(6):119195

doi: 10.1016/j.jece.2025.119195
[34]

Li G, Yang C, Yang Q, Zheng Q, Li M, et al. 2026. A magnetically recyclable CoFe2O4/BiOBr S-scheme heterojunction for efficient photocatalytic degradation of diuron: performance, durability and mechanism exploration. Chinese Chemical Letters 37(1):111207

doi: 10.1016/j.cclet.2025.111207
[35]

Ma C, Mi X, Li P, He Z, Wang H. 2024. Photo-assisted oxygen-rich vacancy copper oxide catalyst to activate peroxymonosulfate (PMS) for efficient degradation of fulvic acid. Journal of Water Process Engineering 66:106060

doi: 10.1016/j.jwpe.2024.106060
[36]

Valenti-Quiroga M, Cabrera-Codony A, Emiliano P, Valero F, Monclús H, et al. 2024. In-depth analysis of natural organic matter fractions in drinking water treatment performance: fate and role of humic substances in trihalomethanes formation potential. Science of The Total Environment 954:176600

doi: 10.1016/j.scitotenv.2024.176600
[37]

Wu J, Zhao L, Gao X, Li Y. 2025. Multiscale structural regulation of Two-Dimensional materials for photocatalytic reduction of CO2. Progress in Materials Science 148:101386

doi: 10.1016/j.pmatsci.2024.101386
[38]

He Q, Gao K, Ding P, Zhang L, Yang J, et al. 2025. Bimetallic cocatalyst for synergistic enhancement of Bi4TaO8Cl/Ti3C2−MXene@PtPd Ohm junctions photocatalytic hydrogen evolution performance. Separation and Purification Technology 379(3):135086

doi: 10.1016/j.seppur.2025.135086
[39]

Sharma G, Kumar A, Sharma S, Naushad M, Vo DVN, et al. 2022. Visible-light driven dual heterojunction formed between g-C3N4/BiOCl@MXene-Ti3C2 for the effective degradation of tetracycline. Environmental Pollution 308:119597

doi: 10.1016/j.envpol.2022.119597
[40]

Chen Z, Ma Y, Chen W, Tang Y, Li L, et al. 2023. Enhanced photocatalytic degradation of ciprofloxacin by heterostructured BiOCl/Ti3C2Tx MXene nanocomposites. Journal of Alloys and Compounds 950:169797

doi: 10.1016/j.jallcom.2023.169797
[41]

Ding T, Hu Y, Nie Z, Zheng M, Huang Y. 2025. Construction of nitrogen-doped graphene/BiOCl Schottky heterojunction for efficient photocatalytic degradation and CO2 reduction. Environmental Research 264(1):120315

doi: 10.1016/j.envres.2024.120315
[42]

Cao M, Xu P, Shi F, Li G, Zhang G, et al. 2024. Ultra-Fast atrazine degradation through synergistic enhancement: exploring the synergistic mechanism of CoFe2O4/MXene and thermal on peroxymonosulfate activation. Chemical Engineering Journal 497:154388

doi: 10.1016/j.cej.2024.154388
[43]

Cheng X, Liao J, Xue Y, Lin Q, Yang Z, et al. 2022. Ultrahigh-flux and self-cleaning composite membrane based on BiOCl-PPy modified MXene nanosheets for contaminants removal from wastewater. Journal of Membrane Science 644:120188

doi: 10.1016/j.memsci.2021.120188
[44]

Khan S, Ahmad W, Akhtar N, Shah R, Ali A, et al. 2025. Cutting-edge research progress in synthesis and applications of MXene-based nanocomposites for water purification: a comprehensive review. Journal of Environmental Chemical Engineering 13(6):119941

doi: 10.1016/j.jece.2025.119941
[45]

Bi F, Jiang Z, Wang M, Lin Q, Liu X, et al. 2025. Enhanced remediation of cadmium-contaminated farmland by smooth vetch (Vicia villosa var.) coupled with phosphorus/sulfur co-doped biochar: synergetic performance and mechanism. Journal of Cleaner Production 496:144986

doi: 10.1016/j.jclepro.2025.144986
[46]

Mu F, Dai B, Dai C, Chu X, Xu J, et al. 2025. Novel 2D/1D MXene/Bi5O7I Schottky junction for photocatalytic degradation of bisphenol AF by peroxymonosulfate-assisted photocatalysis. Chinese Chemical Letters 2025:In press, journal pre-proof

doi: 10.1016/j.cclet.2025.111866
[47]

Xia L, Zhang K, Wang X, Guo Q, Wu Y, et al. 2023. 0D/2D Schottky junction synergies with 2D/2D S-scheme heterojunction strategy to achieve uniform separation of carriers in 0D/2D/2D quasi CNQDs/TCN/ZnIn2S4 towards photocatalytic remediating petroleum hydrocarbons polluted marine. Applied Catalysis B: Environmental 325:122387

doi: 10.1016/j.apcatb.2023.122387
[48]

Li H, Wang C, Li X, Zhang L, Wang Z. 2023. MXene-induced electronic structure modulation in BiOCl for boosting peroxymonosulfate activation under visible light: a combined experimental and DFT study. Environmental Science & Technology 57:11837−11847

doi: 10.1021/acs.est.3c02178
[49]

Wang Q, Yu M, Xu W, Li D, Lin X, et al. 2025. Photo-generation of hole dominated selective degradation of hydrophobic organic pollutants with tetracyanoquinodimethane (TCNQ)-modified BiOIO3 catalyst. Chemical Engineering Journal 504:159036

doi: 10.1016/j.cej.2024.159036
[50]

Jin L, You S, Ren N, Liu Y. 2023. Selective activation of peroxymonosulfate to singlet oxygen by engineering oxygen vacancy defects in Ti3CNTX MXene for effective removal of micropollutants in water. Fundamental Research 3(5):770−776

doi: 10.1016/j.fmre.2022.03.005
[51]

Zhong KQ, Zhang HC, Xie DH, Guo PC, Zhang X, et al. 2025. Boosting carbonate radicals production to enhance photocatalytic Degradation of micropollutants. Water Research 287(B):124441

doi: 10.1016/j.watres.2025.124441
[52]

Liu J, Yuan X, Dong H, Sans C. 2025. Progress in MnO2/MnO2-based materials catalytic ozonation process for water and wastewater treatment. Journal of Environmental Management 383:125493

doi: 10.1016/j.jenvman.2025.125493
[53]

Wang W, Zhang S, Cui Z, Gao F, Tai Y, et al. 2025. Enhanced photocatalytic ozonation of bisphenol A using Ce doped Bi-MOF derived oxygen-rich vacancies Bi2O3/CeO2. Separation and Purification Technology 364:132350

doi: 10.1016/j.seppur.2025.132350
[54]

Zhang Z, Lin J, Liu J, Li L, Zhuang W, et al. 2025. Effect of Cl on activated peroxymonosulfate based advanced oxidation process: transformation of radicals and mechanism of singlet oxygen generation. Separation and Purification Technology 367:132821

doi: 10.1016/j.seppur.2025.132821
[55]

Ye J, Ren M, Qian J, Li X, Chen Q. 2025. Advances in graphene quantum dots-based photocatalysts for enhanced charge transfer in photocatalytic reactions. Chinese Chemical Letters 36(9):110857

doi: 10.1016/j.cclet.2025.110857
[56]

Singh A, Dhau J, Kumar R, Badru R, Singh P, et al. 2024. Tailored carbon materials (TCM) for enhancing photocatalytic degradation of polyaromatic hydrocarbons. Progress in Materials Science 144:101289

doi: 10.1016/j.pmatsci.2024.101289
[57]

Ruiz-Castillo AL, Hinojosa-Reyes M, Camposeco R, Hinojosa-Reyes L. 2026. Advances in Bi2O3-based photocatalysts: a review on synergistic modifications and wastewater treatment applications. Inorganic Chemistry Communications 183(1):115730

doi: 10.1016/j.inoche.2025.115730
[58]

Lgaz H, Lee HS, Boukhlifi F, Messali M. 2026. Tetrabromobisphenol A (TBBPA) remediation: state-of-the-art mechanistic insights, innovative technologies, and sustainable management approaches. Separation and Purification Technology 382(3):135905

doi: 10.1016/j.seppur.2025.135905
[59]

Orimolade BO, Peleyeju MG, Yusuf TL. 2026. A comprehensive review on bismuth-based ternary heterojunctions in photocatalytic wastewater treatment. Journal of Environmental Management 397:128319

doi: 10.1016/j.jenvman.2025.128319
[60]

Amani AM, Abbasi M, Najdian A, Mohamadpour F, Kasaee SR, et al. 2025. MXene-based materials for enhanced water quality: advances in remediation strategies. Ecotoxicology and Environmental Safety 291:117817

doi: 10.1016/j.ecoenv.2025.117817
[61]

Erdem NG, Simsek EB. 2025. Engineering MXene based MWO4 (M = Cu, Ni, Co) catalysts for dual-functional photocatalysis: Insights into wastewater remediation and hydrogen production. Surfaces and Interfaces 75:107786

doi: 10.1016/j.surfin.2025.107786
[62]

Liu Y, Wang P, Yin C, Xu C, Kang X, et al. 2025. Strategy for enhancing the degradation of tetracycline - a typical refractory antibiotic by Z-type heterojunction g-C3N5/BiOCl under visible light: electron capture effect of PDS. Journal of Environmental Chemical Engineering 13(2):115565

doi: 10.1016/j.jece.2025.115565
[63]

Kaur M, Hait P, Basu S. 2025. Flower-like NiAl-LDH/BiVO4 Z-scheme photocatalysts for sunlight-driven degradation of azo dye: performance and mechanistic insights. RSC Advances 15(44):37166−37182

doi: 10.1039/d5ra06146f
[64]

Zhang H, Tian L, Han J, Wei Z, Wu Z, wt al. 2024. Insights into the PMS activation towards phenol removal mechanism by a Ti3C2-MXene doped BiVO4 photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects 698:134561

doi: 10.1016/j.colsurfa.2024.134561
[65]

Lin L, Xie D, Xu L, Huang Y, Qing XD, et al. 2023. One-step synthesis of floatable BiOCl/BiOBr@FACs enriched in oxygen vacancies for improved photocatalytic activity via peroxymonosulfate activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 676:132165

doi: 10.1016/j.colsurfa.2023.132165
[66]

Mu FH, Yang H, Xu SP, Chu XZ, Dai BL, et al. 2025. Peroxymonosulfate-assisted layered MXene/flower-like C-doped SnS2 Schottky junction photocatalyst for ciprofloxacin effective degradation. Journal of Alloys and Compounds 1039:183354

doi: 10.1016/j.jallcom.2025.183354
[67]

Shen T, Wang P, Shi F, Xu P, Zhang G. 2024. Metal foam-based functional materials application in advanced oxidation and reduction processes for water remediation: design, mechanisms, and prospects. Chemical Engineering Journal 500:156825

doi: 10.1016/j.cej.2024.156825
[68]

Grzegórska A, Ofoegbu JC, Cervera-Gabalda L, Gómez-Polo C, Sannino D, et al. 2023. Magnetically recyclable TiO2/MXene/MnFe2O4 photocatalyst for enhanced peroxymonosulphate-assisted photocatalytic degradation of carbamazepine and ibuprofen under simulated solar light. Journal of Environmental Chemical Engineering 11(5):110660

doi: 10.1016/j.jece.2023.110660
[69]

Qu JH, Wang JY, Li ZR, Wang JC, Liu YT, et al. 2025. Surfactant-Triggered Alkyl-like Radical Formation in Anaerobic Thermally Activated Persulfate System for Deep Removal of Highly Chlorinated Contaminants. Environmental Science & Technology 59(50):27730−27739

doi: 10.1021/acs.est.5c09101
[70]

Ye F, Wang JR, Ding Y, Bai JW, Shi Y, et al. 2025. Photoswitching-modulated interfacial electron transfer in single-atom Co-TiO2 for enhanced pollutant mineralization in persulfate-based AOPs. Environmental Science & Technology 59(33):17869−17880

doi: 10.1021/acs.est.5c04734
[71]

Xiao T, Hou JW, Zhang SX, Liu DP, Gao HJ, et al. 2025. Two-Dimensional Heterospectral Correlation Analysis Elucidates Photodegradation Pathways of Riverine Dissolved Organic Matter Using Excitation–Emission Matrix and Ultraviolet Spectroscopy. Analytical Chemistry 97(30):16346−16354

doi: 10.1021/acs.analchem.5c01963
[72]

Wu W, Gao Y, Zhang J, Li L, Li Y, et al. 2024. Humic acid removal by persulfate activated with UV combined with magnetic ion exchange resin: performance and mechanism. The Chinese Journal of Process Engineering 24(5):566−579 (in Chinese)

doi: 10.12034/j.issn.1009-606X.223268