[1]

Zhang Y, Yang L, Chen J, Sun W, Wang Y. 2014. Taxonomic and phylogenetic analysis of Epimedium L. based on amplified fragment length polymorphisms. Scientia Horticulturae 170:284−292

doi: 10.1016/j.scienta.2014.02.025
[2]

Ma H, He X, Yang Y, Li M, Hao D, et al. 2011. The genus Epimedium: an ethnopharmacological and phytochemical review. Journal of Ethnopharmacology 134(3):519−541

doi: 10.1016/j.jep.2011.01.001
[3]

Luo P, Zhang H, Cheng G, Wang P, Wong Y, et al. 2025. Antineoplastic effects of icaritin: molecular mechanisms and applications. Acta Materia Medica 4(2):186−199

doi: 10.15212/amm-2024-0035
[4]

Guan YM, Zhang Y, Pan XX, Liu N, Zhang YY, et al. 2024. Anthracnose of Macleaya cordata Caused by Colletotrichum aenigma in China. Plant Disease 108(3):794

doi: 10.1094/pdis-08-23-1478-pdn
[5]

Liu YM, Huang YL, Li T, Feng MR, Shi WG et al. 2020. Biodiversity comparison of endophytic fungi from wild and artificially cultivated Dendrobium officinale and screening of fungal strains with anti-anthracnose activities. Journal of South China Agricultural University 41(3):47−55 (in Chinese)

doi: 10.7671/j.issn.1001-411X.202001034
[6]

Wu JP, Zhou J, Jiao ZB, Fu JP, Xiao Y, et al. 2020. Amorphophallus konjac anthracnose caused by Colletotrichum siamense in China. Journal of Applied Microbiology 128(1):225−231

doi: 10.1111/jam.14460
[7]

Zhang Q, Nizamani MM, Feng Y, Yang YQ, Jayawardena RS, et al. 2023. Genome-scale and multi-gene phylogenetic analyses of Colletotrichum spp. host preference and associated with medicinal plants. Mycosphere 14:1−106

doi: 10.5943/mycosphere/14/si2/1
[8]

Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G, et al. 2016. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics 17(1):555

doi: 10.1186/s12864-016-2917-6
[9]

Guarnaccia V, Groenewald JZ, Polizzi G, Crous PW. 2017. High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia 39(1):32−50

doi: 10.3767/persoonia.2017.39.02
[10]

Moral J, Agustí-Brisach C, Raya MC, Jurado-Bello J, López-Moral A, et al. 2021. Diversity of Colletotrichum species associated with olive anthracnose worldwide. Journal of Fungi 7(9):741

doi: 10.3390/jof7090741
[11]

Lu J, Liu Y, Song M, Xi Y, Yang H, et al. 2024. The CsPbs2-interacting protein oxalate decarboxylase CsOxdC3 modulates morphosporogenesis, virulence, and fungicide resistance in Colletotrichum siamense. Microbiological Research 284:127732

doi: 10.1016/j.micres.2024.127732
[12]

Xing F, Zhang L, Ge W, Fan H, Tian C, et al. 2024. Comparative transcriptome analysis reveals the importance of phenylpropanoid biosynthesis for the induced resistance of 84K poplar to anthracnose. BMC Genomics 25(1):306

doi: 10.1186/s12864-024-10209-1
[13]

Dean R, Van Kan JAL, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13(4):414−430

doi: 10.1111/j.1364-3703.2011.00783.x
[14]

Evallo E, Taguiam JD, Balendres MA. 2022. Colletotrichum fructicola associated with fruit anthracnose of persimmon. Journal of Phytopathology 170(3):194−201

doi: 10.1111/jph.13068
[15]

Li P, Dai X, Wang S, Shi H, Chen Z, et al. 2025. Occurrence of anthracnose caused by Colletotrichum fructicola on mulberry in Zhejiang, China. Plant Disease 109(7):1587

doi: 10.1094/pdis-12-24-2611-pdn
[16]

Wang M, Wang H. 2021. First report of leaf anthracnose caused by Colletotrichum liriopes on Ophiopogon japonicus in China. Crop Protection 140:105418

doi: 10.1016/j.cropro.2020.105418
[17]

Wang J, Zhang X, Greene GH, Xu G, Dong X. 2022. PABP/purine-rich motif as an initiation module for cap-independent translation in pattern-triggered immunity. Cell 185(17):3186−3200

doi: 10.1016/j.cell.2022.06.037
[18]

Kopczewski T, Kuźniak E, Ciereszko I, Kornaś A. 2022. Alterations in primary carbon metabolism in cucumber infected with Pseudomonas syringae pv lachrymans: local and systemic responses. International Journal of Molecular Sciences 23(20):12418

doi: 10.3390/ijms232012418
[19]

Li J, Wang C, Liang W, Liu S. 2021. Rhizosphere microbiome: the emerging barrier in plant-pathogen interactions. Frontiers in Microbiology 12:772420

doi: 10.3389/fmicb.2021.772420
[20]

Liu Y, Zhang H, Wang J, Gao W, Sun X, et al. 2024. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant "cry for help" response to assemble disease suppressing and growth promoting rhizomicrobiome. Nature Communications 15(1):1907

doi: 10.1038/s41467-024-46254-3
[21]

Wang H, Xu D, Pu L, Zhou G. 2014. Southern rice black-streaked dwarf virus alters insect vectors' host orientation preferences to enhance spread and increase rice ragged stunt virus co-infection. Phytopathology 104(2):196−201

doi: 10.1094/PHYTO-08-13-0227-R
[22]

Enebe MC, Babalola OO. 2019. The impact of microbes in the orchestration of plants' resistance to biotic stress: a disease management approach. Applied Microbiology and Biotechnology 103(1):9−25

doi: 10.1007/s00253-018-9433-3
[23]

Yang B, Yue C, Guo C, Zheng M, Yao X, et al. 2025. Disease-resistant watermelon variety against Fusarium wilt by remodeling rhizosphere soil microenvironment. BMC Microbiology 25(1):350

doi: 10.1186/s12866-025-04065-6
[24]

Ketehouli T, Pasche J, Buttrós VH, Goss EM, Martins SJ. 2024. The underground world of plant disease: rhizosphere dysbiosis reduces above‐ground plant resistance to bacterial leaf spot and alters plant transcriptome. Environmental Microbiology 26(7):e16676

doi: 10.1111/1462-2920.16676
[25]

Lee SM, Kong HG, Song GC, Ryu CM. 2021. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. The ISME Journal 15(1):330−347

doi: 10.1038/s41396-020-00785-x
[26]

GentrySL, Lorch JM, Lankton JS, Pringle A. 2021. Koch's postulates: Confirming Nannizziopsis guarroi as the cause of yellow fungal disease in Pogona vitticeps. Mycologia 113:1253−1263

doi: 10.1080/00275514.2021.1954445
[27]

Sharifzadeh A, Fasaei BN, Asadi S, Fatemi N, Houshmandzad M, et al. 2024. Evaluation of antifungal and apoptotic effects of linalool, citral, and carvacrol separately and in combination with nystatin against clinical isolates of Pichia kudriavzevii. BMC Microbiology 24(1):333

doi: 10.1186/s12866-024-03487-y
[28]

Jiang K, Li Z, Zeng X, Chen X, Liang S, et al. 2025. Two new species of Colletotrichum (Glomerellales, Glomerellaceae) causing anthracnose on Epimedium sagittatum. MycoKeys 115:363−381

doi: 10.3897/mycokeys.115.144522
[29]

Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478−486

doi: 10.1016/j.tplants.2012.04.001
[30]

Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37:634−663

doi: 10.1111/1574-6976.12028
[31]

Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, et al. 2007. Fungal biodiversity in aquatic habitats. Biodiversity and Conservation 16(1):49−67

doi: 10.1007/s10531-006-9120-z
[32]

Garcia-Solache MA, Casadevall A. 2010. Global warming will bring new fungal diseases for mammals. mBio 1(1):e00061-10

doi: 10.1128/mBio.00061-10
[33]

Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, et al. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52:347−375

doi: 10.1146/annurev-phyto-082712-102340
[34]

Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451−1474

doi: 10.3390/ph6121451
[35]

Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, et al. 2016. Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chemistry 210:402−414

doi: 10.1016/j.foodchem.2016.04.111
[36]

Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils – a review. Food and Chemical Toxicology 46:446−475

doi: 10.1016/j.fct.2007.09.106
[37]

Cannon PF, Damm U, Johnston PR, Weir BS. 2012. Colletotrichum – Current status and future directions. Studies in Mycology 73:181−213

doi: 10.3114/sim0014
[38]

Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant−microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology 18(11):607−621

doi: 10.1038/s41579-020-0412-1
[39]

Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, et al. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology 3(4):470−480

doi: 10.1038/s41564-018-0129-3
[40]

Xiao X, Chen W, Zong L, Yang J, Jiao S, et al. 2017. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Molecular Ecology 26(6):1641−1651

doi: 10.1111/mec.14027
[41]

Yuan J, Zhao J, Wen T, Zhao M, Li R, et al. 2018. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6(1):156

doi: 10.1186/s40168-018-0537-x
[42]

Bardelli T, Fornasier F, Novarina E, Donniacuo A, Romano, E, et al. 2024. Changes in the rhizosphere biome depending on the variety of wheat, timing of its growing season, and agrochemical components in the soils of Italy. Agronomy 14(4):832

doi: 10.3390/agronomy14040832