| [1] |
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. |
| [2] |
Yan F, Arthur E. 2025. Cover crops alter soil physicochemical properties: a global meta-analysis. |
| [3] |
Shi DC, Yin SJ, Yang GH, Zhao KF. 2002. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. |
| [4] |
Yang JY, Zheng W, Tian Y, Wu Y, Zhou DW. 2011. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. |
| [5] |
Wang L, Fang C, Wang K. 2015. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses. |
| [6] |
Gong B, Wang X, Wei M, Yang F, Li Y, et al. 2016. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. |
| [7] |
Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. |
| [8] |
Bredu ES, Zhang Q. 2025. Differential growth responses of dry peas (Pisum sativum L.) to gradient sulfate salinity stress in a controlled greenhouse setting. |
| [9] |
Zhu JK. 2016. Abiotic stress signaling and responses in plants. |
| [10] |
Purty RS, Kumar G, Singla-Pareek SL, Pareek A. 2008. Towards salinity tolerance in Brassica: an overview. |
| [11] |
Wan H, Qian J, Zhang H, Lu H, Li O, et al. 2022. Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.). |
| [12] |
Yang T, Liu R, Luo Y, Hu S, Wang D, et al. 2022. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. |
| [13] |
Tayeh N, Aubert G, Pilet-Nayel ML, Lejeune-Hénaut I, Warkentin TD, et al. 2015. Genomic tools in pea breeding programs: status and perspectives. |
| [14] |
Fang S, Hou X, Liang X. 2021. Response mechanisms of plants under saline-alkali stress. |
| [15] |
Blanc L, Lampurlanés J, Simon-Miquel G, Jean-Marius L, Plaza-Bonilla D. 2024. Rapeseed-pea intercrop outperforms wheat-legume ones in land-use efficiency in Mediterranean conditions. |
| [16] |
Dai R, Zhan N, Geng R, Xu K, Zhou X, et al. 2024. Progress on Salt Tolerance in Brassica napus. |
| [17] |
Chen J, Zhang H, Tong J, Liu C, Ran J, et al. 2021. Genome-wide association analysis of root length traits in Brassica napus at germination stage under sodium carbonate stress. |
| [18] |
Sun J, He L, Li T. 2019. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. |
| [19] |
Lin J, Li X, Zhang Z, Yu X, Gao Z, et al. 2012. Salinity-alkalinity tolerance in wheat: seed germination, early seedling growth, ion relations and solute accumulation. |
| [20] |
Guo R, Yang Z, Li F, Yan C, Zhong X, et al. 2015. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. |
| [21] |
Wan H, Cao L, Wang P, Hu H, Guo R, et al. 2024. Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea (Pisum sativum L). |
| [22] |
Tulbek MC, Wang Y, Hounjet M. 2024. Chapter 7 - Pea: a sustainable vegetable protein crop. In Sustainable Protein Sources, eds. Nadathur SR, Wanasundara JPD, Scanlin L. 2nd Edition. San Diego: Academic Press. pp. 143–162 doi: 10.1016/B978-0-323-91652-3.00027-7 |
| [23] |
Duan XY, Surigaoge S, Du YH, Fu DH, Yang H, et al. 2026. Interspecific interactions increase soil aggregate stability through altered root traits in long-term legume/maize intercropping. |
| [24] |
Li XB, Li LJ, Ma NJ. 2020. The effects of mixed planting of oat and rapeseed on forage yield, quality and soil enzyme activities. |