[1]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−681

doi: 10.1146/annurev.arplant.59.032607.092911
[2]

Yan F, Arthur E. 2025. Cover crops alter soil physicochemical properties: a global meta-analysis. Geoderma 460:117436

doi: 10.1016/j.geoderma.2025.117436
[3]

Shi DC, Yin SJ, Yang GH, Zhao KF. 2002. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Journal of Integrative Plant Biology 44:537−540 (in Chinese)

doi: 10.3321/j.issn:1672-9072.2002.05.005
[4]

Yang JY, Zheng W, Tian Y, Wu Y, Zhou DW. 2011. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 49:275−284

doi: 10.1007/s11099-011-0037-8
[5]

Wang L, Fang C, Wang K. 2015. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses. Journal of Plant Nutrition 38:526−540

doi: 10.1080/01904167.2014.937874
[6]

Gong B, Wang X, Wei M, Yang F, Li Y, et al. 2016. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell, Tissue and Organ Culture (PCTOC) 124:377−391

doi: 10.1007/s11240-015-0901-5
[7]

Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22:123−131

doi: 10.1016/j.sjbs.2014.12.001
[8]

Bredu ES, Zhang Q. 2025. Differential growth responses of dry peas (Pisum sativum L.) to gradient sulfate salinity stress in a controlled greenhouse setting. Technology in Agronomy 5:e012

doi: 10.48130/tia-0025-0007
[9]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−324

doi: 10.1016/j.cell.2016.08.029
[10]

Purty RS, Kumar G, Singla-Pareek SL, Pareek A. 2008. Towards salinity tolerance in Brassica: an overview. Physiology and Molecular Biology of Plants 14:39−49

doi: 10.1007/s12298-008-0004-4
[11]

Wan H, Qian J, Zhang H, Lu H, Li O, et al. 2022. Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.). International Journal of Molecular Sciences 23:1279

doi: 10.3390/ijms23031279
[12]

Yang T, Liu R, Luo Y, Hu S, Wang D, et al. 2022. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics 54:1553−1563

doi: 10.1038/s41588-022-01172-2
[13]

Tayeh N, Aubert G, Pilet-Nayel ML, Lejeune-Hénaut I, Warkentin TD, et al. 2015. Genomic tools in pea breeding programs: status and perspectives. Frontiers in Plant Science 6:1037

doi: 10.3389/fpls.2015.01037
[14]

Fang S, Hou X, Liang X. 2021. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science 12:667458

doi: 10.3389/fpls.2021.667458
[15]

Blanc L, Lampurlanés J, Simon-Miquel G, Jean-Marius L, Plaza-Bonilla D. 2024. Rapeseed-pea intercrop outperforms wheat-legume ones in land-use efficiency in Mediterranean conditions. Field Crops Research 318:109612

doi: 10.1016/j.fcr.2024.109612
[16]

Dai R, Zhan N, Geng R, Xu K, Zhou X, et al. 2024. Progress on Salt Tolerance in Brassica napus. Plants 13:1990

doi: 10.3390/plants13141990
[17]

Chen J, Zhang H, Tong J, Liu C, Ran J, et al. 2021. Genome-wide association analysis of root length traits in Brassica napus at germination stage under sodium carbonate stress. Euphytica 217:197

doi: 10.1007/s10681-021-02928-3
[18]

Sun J, He L, Li T. 2019. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS One 14:e0220340

doi: 10.1371/journal.pone.0220340
[19]

Lin J, Li X, Zhang Z, Yu X, Gao Z, et al. 2012. Salinity-alkalinity tolerance in wheat: seed germination, early seedling growth, ion relations and solute accumulation. African Journal of Agricultural Research 7:467−474

doi: 10.5897/AJAR11.1417
[20]

Guo R, Yang Z, Li F, Yan C, Zhong X, et al. 2015. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology 15:170

doi: 10.1186/s12870-015-0546-x
[21]

Wan H, Cao L, Wang P, Hu H, Guo R, et al. 2024. Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea (Pisum sativum L). Horticulture Research 11:uhae259

doi: 10.1093/hr/uhae259
[22]

Tulbek MC, Wang Y, Hounjet M. 2024. Chapter 7 - Pea: a sustainable vegetable protein crop. In Sustainable Protein Sources, eds. Nadathur SR, Wanasundara JPD, Scanlin L. 2nd Edition. San Diego: Academic Press. pp. 143–162 doi: 10.1016/B978-0-323-91652-3.00027-7

[23]

Duan XY, Surigaoge S, Du YH, Fu DH, Yang H, et al. 2026. Interspecific interactions increase soil aggregate stability through altered root traits in long-term legume/maize intercropping. Soil and Tillage Research 255:106808

doi: 10.1016/j.still.2025.106808
[24]

Li XB, Li LJ, Ma NJ. 2020. The effects of mixed planting of oat and rapeseed on forage yield, quality and soil enzyme activities. Chinese Journal of Soil Science 51:897−904 (in Chinese)

doi: 10.19336/j.cnki.trtb.2020.04.19