[1]

Bounaceur R, Da Costa I, Fournet R, Billaud F, Battin-Leclerc F. 2005. Experimental and modeling study of the oxidation of toluene. International Journal of Chemical Kinetics 37:25−49

doi: 10.1002/kin.20047
[2]

Emdee JL, Brezinsky K, Glassman I. 1992. A kinetic model for the oxidation of toluene near 1200 K. The Journal of Physical Chemistry 96:2151−2161

doi: 10.1021/j100184a025
[3]

Yuan W, Li Y, Dagaut P, Yang J, Qi F. 2015. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combustion and Flame 162:3−21

doi: 10.1016/j.combustflame.2014.07.009
[4]

Meziane I, Delort N, Herbinet O, Bounaceur R, Battin-Leclerc F. 2023. A comparative study of the oxidation of toluene and the three isomers of xylene. Combustion and Flame 257:113046

doi: 10.1016/j.combustflame.2023.113046
[5]

Nowakowska M, Herbinet O, Dufour A, Glaude PA. 2014. Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification. Combustion and Flame 161:1474−1488

doi: 10.1016/j.combustflame.2013.11.024
[6]

Shu B, Herzler J, Peukert S, Fikri M, Schulz C. 2017. A shock tube and modeling study about anisole pyrolysis using time‐resolved CO absorption measurements. International Journal of Chemical Kinetics 49:656−667

doi: 10.1002/kin.21105
[7]

Büttgen RD, Tian M, Fenard Y, Minwegen H, Boot MD, et al. 2020. An experimental, theoretical and kinetic modelling study on the reactivity of a lignin model compound anisole under engine-relevant conditions. Fuel 269:117190

doi: 10.1016/j.fuel.2020.117190
[8]

Chen JT, Yu D, Li W, Chen WY, Song SB, et al. 2020. Oxidation study of benzaldehyde with synchrotron photoionization and molecular beam mass spectrometry. Combustion and Flame 220:455−467

doi: 10.1016/j.combustflame.2020.07.019
[9]

Zhang T, Bhattarai C, Son Y, Samburova V, Khlystov A, et al. 2021. Reaction mechanisms of anisole pyrolysis at different temperatures: experimental and theoretical studies. Energy & Fuels 35:9994−10008

doi: 10.1021/acs.energyfuels.1c00858
[10]

Yuan W, Zhao L, Gaïl S, Yang J, Li Y, et al. 2021. Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation. Combustion and Flame 228:351−363

doi: 10.1016/j.combustflame.2021.02.010
[11]

Breuer M, Heufer KA, Döntgen M. 2025. Ab initio investigation of primary fuel reactions of monoaromatic hydrocarbons under pyrolytic conditions: anisole, phenetole, and the 2-, 3-, 4-methylanisole isomers. The Journal of Physical Chemistry A 129:7700−7714

doi: 10.1021/acs.jpca.5c01633
[12]

Pratali Maffei L, Pelucchi M, Faravelli T, Cavallotti C. 2020. Theoretical study of sensitive reactions in phenol decomposition. Reaction Chemistry & Engineering 5:452−472

doi: 10.1039/C9RE00418A
[13]

Metcalfe WK, Dooley S, Dryer FL. 2011. Comprehensive detailed chemical kinetic modeling study of toluene oxidation. Energy & Fuels 25:4915−4936

doi: 10.1021/ef200900q
[14]

Yuan W, Li Y, Dagaut P, Yang J, Qi F. 2015. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. Combustion and Flame 162:22−40

doi: 10.1016/j.combustflame.2014.07.011
[15]

Battin-Leclerc F, Delort N, Meziane I, Herbinet O, Sang Y, et al. 2023. Possible use as biofuels of monoaromatic oxygenates produced by lignin catalytic conversion: a review. Catalysis Today 408:150−167

doi: 10.1016/j.cattod.2022.06.006
[16]

Sang Y, Li G, Li X, Gong H, Yang M, et al. 2024. A synergistic approach for lignin biofuel production: integrating non-catalytic solvolysis with catalytic product upgrading. Chemical Engineering Journal 495:153624

doi: 10.1016/j.cej.2024.153624
[17]

EHLCATHOL. 2020. http://ehlcathol.eu/ (Accessed on 12-09-2025)

[18]

Delort N, Meziane I, Herbinet O, Carstensen HH, Battin-Leclerc F. 2024. Experimental and modelling study of phenol combustion and oxidation. Proceedings of the Combustion Institute 40:105247

doi: 10.1016/j.proci.2024.105247
[19]

Delort N, Meziane I, Framinet M, Bounaceur R, Bourgalais J, et al. 2024. An experimental and modelling investigation of the combustion of anisole and guaiacol. Fuel 362:130832

doi: 10.1016/j.fuel.2023.130832
[20]

Delort N, Herbinet O, Bounaceur R, Battin-Leclerc F. 2025. Experimental and modeling study of the laminar burning velocity of C7−C9 aromatic hydrocarbons and C7−C8 aromatic oxygenates. Combustion and Flame 273:113915

doi: 10.1016/j.combustflame.2024.113915
[21]

Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. 1999. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. The Journal of Chemical Physics 110:2822−2827

doi: 10.1063/1.477924
[22]

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. 2016. Gaussian 16 Rev. C. 01. Wallingford, CT

[23]

Curtiss LA, Redfern PC, Raghavachari K. 2007. Gaussian-4 theory. The Journal of Chemical Physics 126:084108

doi: 10.1063/1.2436888
[24]

East ALL, Radom L. 1997. Ab initio statistical thermodynamical models for the computation of third-law entropies. The Journal of Chemical Physics 106:6655−6674

doi: 10.1063/1.473958
[25]

Stein SE, Mikaia A, Linstrom P, Mirokhin Y, Tchekhovskoi D, et al. 2008. NIST/EPA/NIH Mass Spectral Library (NIST 08) and NIST Mass Spectral Search Program (Version 2.0f). Gaithersburg, MD: National Institute of Standards and Technology (NIST).

[26]

Meziane I. 2023. Study in a jet-stirred reactor of the oxidation of biofuels from EHL lignin: characterization of reactivity and reaction intermediates. Thèse de doctorat. LRGP, Nancy. Université de Lorraine. www.theses.fr/s289358

[27]

Wang QD, Sun MM, Liang J. 2021. Theoretical study of the hydrogen abstraction reactions from substituted phenolic species. Computational and Theoretical Chemistry 1196:113120

doi: 10.1016/j.comptc.2020.113120
[28]

Carstensen HH, Dean AM. 2012. A quantitative kinetic analysis of CO elimination from phenoxy radicals. International Journal of Chemical Kinetics 44:75−89

doi: 10.1002/kin.20622
[29]

Dong S, Kukkadapu G, Liang J, Cheng X, Wagnon SW, et al. 2023. Understanding the low-temperature chemistry of 1, 2, 4-trimethylbenzene. Proceedings of the Combustion Institute 39:673−684

doi: 10.1016/j.proci.2022.08.106
[30]

Fang R, Sung CJ. 2021. A rapid compression machine study of 2-phenylethanol autoignition at low-to-intermediate temperatures. Energies 14:7708

doi: 10.3390/en14227708
[31]

Burke U, Somers KP, O’Toole P, Zinner CM, Marquet N, et al. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combustion and Flame 162:315−330

doi: 10.1016/j.combustflame.2014.08.014
[32]

Wang H, Frenklach M. 1994. Transport properties of polycyclic aromatic hydrocarbons for flame modeling. Combustion and Flame 96:163−170

doi: 10.1016/0010-2180(94)90167-8
[33]

ANSYS, Inc. 2022. Ansys Chemkin-Pro Theory Manual. www.ansys.com/fr-fr/products/fluids/ansys-chemkin

[34]

Yu JF, Yu R, Fan XQ, Christensen M, Konnov AA, et al. 2013. Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner. Combustion and Flame 160:1276−1286

doi: 10.1016/j.combustflame.2013.02.011
[35]

Dorrestijn E, Pugin R, Ciriano Nogales MV, Mulder P. 1997. Thermal decomposition of chroman. Reactivity of o-quinone methide. The Journal of Organic Chemistry 62:4804−4810

doi: 10.1021/jo9701694