| [1] |
Bounaceur R, Da Costa I, Fournet R, Billaud F, Battin-Leclerc F. 2005. Experimental and modeling study of the oxidation of toluene. |
| [2] |
Emdee JL, Brezinsky K, Glassman I. 1992. A kinetic model for the oxidation of toluene near 1200 K. |
| [3] |
Yuan W, Li Y, Dagaut P, Yang J, Qi F. 2015. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. |
| [4] |
Meziane I, Delort N, Herbinet O, Bounaceur R, Battin-Leclerc F. 2023. A comparative study of the oxidation of toluene and the three isomers of xylene. |
| [5] |
Nowakowska M, Herbinet O, Dufour A, Glaude PA. 2014. Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification. |
| [6] |
Shu B, Herzler J, Peukert S, Fikri M, Schulz C. 2017. A shock tube and modeling study about anisole pyrolysis using time‐resolved CO absorption measurements. |
| [7] |
Büttgen RD, Tian M, Fenard Y, Minwegen H, Boot MD, et al. 2020. An experimental, theoretical and kinetic modelling study on the reactivity of a lignin model compound anisole under engine-relevant conditions. |
| [8] |
Chen JT, Yu D, Li W, Chen WY, Song SB, et al. 2020. Oxidation study of benzaldehyde with synchrotron photoionization and molecular beam mass spectrometry. |
| [9] |
Zhang T, Bhattarai C, Son Y, Samburova V, Khlystov A, et al. 2021. Reaction mechanisms of anisole pyrolysis at different temperatures: experimental and theoretical studies. |
| [10] |
Yuan W, Zhao L, Gaïl S, Yang J, Li Y, et al. 2021. Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation. |
| [11] |
Breuer M, Heufer KA, Döntgen M. 2025. Ab initio investigation of primary fuel reactions of monoaromatic hydrocarbons under pyrolytic conditions: anisole, phenetole, and the 2-, 3-, 4-methylanisole isomers. |
| [12] |
Pratali Maffei L, Pelucchi M, Faravelli T, Cavallotti C. 2020. Theoretical study of sensitive reactions in phenol decomposition. |
| [13] |
Metcalfe WK, Dooley S, Dryer FL. 2011. Comprehensive detailed chemical kinetic modeling study of toluene oxidation. |
| [14] |
Yuan W, Li Y, Dagaut P, Yang J, Qi F. 2015. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. |
| [15] |
Battin-Leclerc F, Delort N, Meziane I, Herbinet O, Sang Y, et al. 2023. Possible use as biofuels of monoaromatic oxygenates produced by lignin catalytic conversion: a review. |
| [16] |
Sang Y, Li G, Li X, Gong H, Yang M, et al. 2024. A synergistic approach for lignin biofuel production: integrating non-catalytic solvolysis with catalytic product upgrading. |
| [17] |
EHLCATHOL. 2020. http://ehlcathol.eu/ (Accessed on 12-09-2025) |
| [18] |
Delort N, Meziane I, Herbinet O, Carstensen HH, Battin-Leclerc F. 2024. Experimental and modelling study of phenol combustion and oxidation. |
| [19] |
Delort N, Meziane I, Framinet M, Bounaceur R, Bourgalais J, et al. 2024. An experimental and modelling investigation of the combustion of anisole and guaiacol. |
| [20] |
Delort N, Herbinet O, Bounaceur R, Battin-Leclerc F. 2025. Experimental and modeling study of the laminar burning velocity of C7−C9 aromatic hydrocarbons and C7−C8 aromatic oxygenates. |
| [21] |
Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. 1999. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. |
| [22] |
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. 2016. Gaussian 16 Rev. C. 01. Wallingford, CT |
| [23] |
Curtiss LA, Redfern PC, Raghavachari K. 2007. Gaussian-4 theory. |
| [24] |
East ALL, Radom L. 1997. Ab initio statistical thermodynamical models for the computation of third-law entropies. |
| [25] |
Stein SE, Mikaia A, Linstrom P, Mirokhin Y, Tchekhovskoi D, et al. 2008. NIST/EPA/NIH Mass Spectral Library (NIST 08) and NIST Mass Spectral Search Program (Version 2.0f). Gaithersburg, MD: National Institute of Standards and Technology (NIST). |
| [26] |
Meziane I. 2023. Study in a jet-stirred reactor of the oxidation of biofuels from EHL lignin: characterization of reactivity and reaction intermediates. Thèse de doctorat. LRGP, Nancy. Université de Lorraine. www.theses.fr/s289358 |
| [27] |
Wang QD, Sun MM, Liang J. 2021. Theoretical study of the hydrogen abstraction reactions from substituted phenolic species. |
| [28] |
Carstensen HH, Dean AM. 2012. A quantitative kinetic analysis of CO elimination from phenoxy radicals. |
| [29] |
Dong S, Kukkadapu G, Liang J, Cheng X, Wagnon SW, et al. 2023. Understanding the low-temperature chemistry of 1, 2, 4-trimethylbenzene. |
| [30] |
Fang R, Sung CJ. 2021. A rapid compression machine study of 2-phenylethanol autoignition at low-to-intermediate temperatures. |
| [31] |
Burke U, Somers KP, O’Toole P, Zinner CM, Marquet N, et al. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. |
| [32] |
Wang H, Frenklach M. 1994. Transport properties of polycyclic aromatic hydrocarbons for flame modeling. |
| [33] |
ANSYS, Inc. 2022. Ansys Chemkin-Pro Theory Manual. www.ansys.com/fr-fr/products/fluids/ansys-chemkin |
| [34] |
Yu JF, Yu R, Fan XQ, Christensen M, Konnov AA, et al. 2013. Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner. |
| [35] |
Dorrestijn E, Pugin R, Ciriano Nogales MV, Mulder P. 1997. Thermal decomposition of chroman. Reactivity of o-quinone methide. |