[1]

Spalding M, Kainuma M, Collins L. 2010. World Atlas of Mangroves. Earthscan Publications. 1st Edition. London: Routledge. 336 pp. doi: 10.4324/9781849776608

[2]

Sandilyan S, Kathiresan K. 2012. Mangrove conservation: a global perspective. Biodiversity and Conservation 21:3523−3542

doi: 10.1007/s10531-012-0388-x
[3]

Long K, Chen Z, Zhang H, Zhang M. 2024. Spatiotemporal disturbances and attribution analysis of mangrove in southern China from 1986 to 2020 based on time-series Landsat imagery. Science of The Total Environment 912:169157

doi: 10.1016/j.scitotenv.2023.169157
[4]

Ward RD, Friess DA, Day RH, MacKenzie RA. 2016. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosystem Health and Sustainability 2:e01211

doi: 10.1002/ehs2.1211
[5]

Wang YS. 2019. Molecular Ecology of Mangroves. Beijing, China: The Science Publishing Company. https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B8FE3866A766F2EFDE053020B0A0A4DC3000

[6]

Lin P. 1997. Mangrove Ecosystem in China. Beijing, China: Science Press. https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B03552699D9EB47B19447B9E7839E336E000

[7]

He BY, Fan HQ, Wang M, Lai TH, Wang WQ. 2007. Species diversity in mangrove wetlands of China and its causation analyses. Acta Ecologica Sinica 27:4859−4870 (in Chinese)

doi: 10.3321/j.issn:1000-0933.2007.11.056
[8]

Hu W, Wang Y, Dong P, Zhang D, Yu W, et al. 2020. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: determining conservation and reforestation involvement. Forest Ecology and Management 478:118517

doi: 10.1016/j.foreco.2020.118517
[9]

Chaudhuri P, Chaudhuri S, Ghosh R. 2019. The role of mangroves in coastal and estuarine sedimentary accretion in Southeast Asia. In Sedimentary processes-examples from Asia, Turkey and Nigeria, ed. Ambrosino GA. London: IntechOpen. 124 pp. doi: 10.5772/intechopen.85591

[10]

Ahmed N, Thompson S, Glaser M. 2018. Integrated mangrove-shrimp cultivation: potential for blue carbon sequestration. Ambio 47:441−452

doi: 10.1007/s13280-017-0946-2
[11]

Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R, Magnan AK, et al. 2019. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, eds. Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, et al. Cambridge, UK and New York, NY, USA: Cambridge University Press. pp. 321−445 doi: 10.1017/9781009157964.006

[12]

Jia M, Wang Z, Zhang Y, Mao D, Wang C. 2018. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. International Journal of Applied Earth Observation and Geoinformation 73:535−545

doi: 10.1016/j.jag.2018.07.025
[13]

McLeod E, Salm RV. 2006. Managing mangroves for resilience to climate change. Gland: World Conservation Union (IUCN). 66 pp. https://reefresilience.org/pdf/Managing_Mangroves_for_Resilience_to_Climate_Change.pdf

[14]

Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, et al. 2018. Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of Environmental Management 217:56−70

doi: 10.1016/j.jenvman.2018.03.077
[15]

McKenzie T, Holloway C, Dulai H, Tucker JP, Sugimoto R, et al. 2020. Submarine groundwater discharge: a previously undocumented source of contaminants of emerging concern to the coastal ocean (Sydney, Australia). Marine Pollution Bulletin 160:111519

doi: 10.1016/j.marpolbul.2020.111519
[16]

Hayes MA, Jesse A, Hawke B, Baldock J, Tabet B, et al. 2017. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Global Change Biology 23:4222−4234

doi: 10.1111/gcb.13722
[17]

Gao D, Hou L, Liu M, Zheng Y, Yin G, et al. 2022. N2O emission dynamics along an intertidal elevation gradient in a subtropical estuary: importance of N2O consumption. Environmental Research 205:112432

doi: 10.1016/j.envres.2021.112432
[18]

Mei K, Liu J, Fan J, Guo X, Wu J, et al. 2021. Low-level arsenite boosts rhizospheric exudation of low-molecular-weight organic acids from mangrove seedlings (Avicennia marina): arsenic phytoextraction, removal, and detoxification. Science of the Total Environment 775:145685

doi: 10.1016/j.scitotenv.2021.145685
[19]

Marchand C, Lallier-Vergès E, Baltzer F, Albéric P, Cossa D, et al. 2006. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry 98:1−17

doi: 10.1016/j.marchem.2005.06.001
[20]

Usman ARA, Alkredaa RS, Al-Wabel MI. 2013. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicology and Environmental Safety 97:263−270

doi: 10.1016/j.ecoenv.2013.08.009
[21]

Guo H, Song Z, Wang S, Yan S, Wang Y, et al. 2025. Assessment of heavy metal contamination and ecological risk in mangrove marine sediments inside and outside Zhanjiang Bay: implications for Conservation. Journal of Marine Science and Engineering 13:708

doi: 10.3390/jmse13040708
[22]

Bibi M, Behlil F, Afzal S. 2023. Essential and non-essential heavy metals sources and impacts on human health and plants. Pure and Applied Biology 12:835−847

doi: 10.19045/bspab.2023.120083
[23]

Lešková A, Javot H, Giehl RFH. 2022. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. Journal of Experimental Botany 73:1751−1765

doi: 10.1093/jxb/erab483
[24]

Puthusseri RM, Nair HP, Johny TK, Bhat SG. 2021. Insights into the response of mangrove sediment microbiomes to heavy metal pollution: ecological risk assessment and metagenomics perspectives. Journal of Environmental Management 298:113492

doi: 10.1016/j.jenvman.2021.113492
[25]

Chris DI, Juliana NO, Wokeh OK, Mohamad Nor A, Lananan F, et al. 2024. Comparative ecotoxicological study on the current status of artisanal crude oil contaminated mangrove swamps in Rivers State, Southern Nigeria. Heliyon 10:14

doi: 10.1016/j.heliyon.2024.e34588
[26]

Krishna Prasad MB, Ramanathan AL. 2008. Sedimentary nutrient dynamics in a tropical estuarine mangrove ecosystem. Estuarine, Coastal and Shelf Science 80:60−66

doi: 10.1016/j.ecss.2008.07.004
[27]

Kulkarni R, Deobagkar D, Zinjarde S. 2018. Metals in mangrove ecosystems and associated biota: a global perspective. Ecotoxicology and Environmental Safety 153:215−228

doi: 10.1016/j.ecoenv.2018.02.021
[28]

Rezaei M, Kafaei R, Mahmoodi M, Sanati AM, Vakilabadi DR, et al. 2021. Heavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: Ecological and health risk assessment. Environmental Nanotechnology, Monitoring & Management 15:100456

doi: 10.1016/j.enmm.2021.100456
[29]

Mohd-Taib FS, Mohd-Saleh W, Asyikha R, Mansor MS, Ahmad-Mustapha M, et al. 2020. Effects of anthropogenic disturbance on the species assemblages of birds in the back mangrove forests. Wetlands Ecology and Management 28:479−494

doi: 10.1007/s11273-020-09726-z
[30]

Abubakar BS. 2022. Evaluating human pressure on mangrove vegetation in Nigeria: a case study of the Niger Delta. Dissertations. World Maritime University, Malmö, Sweden. 87 pp. https://commons.wmu.se/cgi/viewcontent.cgi?article=3113&context=all_dissertations

[31]

Zhang ZW, Xu XR, Sun YX, Yu S, Chen YS, et al. 2014. Heavy metal and organic contaminants in mangrove ecosystems of China: a review. Environmental Science and Pollution Research 21:11938−11950

doi: 10.1007/s11356-014-3100-8
[32]

Liao X, Zhang C, Sun G, Li Z, Shang L, et al. 2018. Assessment of metalloid and metal contamination in soils from Hainan, China. International Journal of Environmental Research and Public Health 15:454

doi: 10.3390/ijerph15030454
[33]

Wu J, Lu J, Zhang C, Zhang Y, Lin Y, et al. 2020. Pollution, sources, and risks of heavy metals in coastal waters of China. Human and Ecological Risk Assessment: An International Journal 26:2011−2026

doi: 10.1080/10807039.2019.1634466
[34]

de Oliveira Barbirato J, Ferreira NC, Dobbss LB. 2021. Effect of trace elements accumulation on mangrove ecosystem and their interaction with humic substances: the case of nickel and iron. In Humic Substances, ed. Makan, A. London: IntechOpen. 184 pp. doi: 10.5772/intechopen.96778

[35]

Ur Rahman S, Han JC, Zhou Y, Ahmad M, Li B, et al. 2024. Adaptation and remediation strategies of mangroves against heavy metal contamination in global coastal ecosystems: a review. Journal of Cleaner Production 441:140868

doi: 10.1016/j.jclepro.2024.140868
[36]

Yan Z, Sun X, Xu Y, Zhang Q, Li X. 2017. Accumulation and tolerance of mangroves to heavy metals: a review. Current Pollution Report 3:302−317

doi: 10.1007/s40726-017-0066-4
[37]

Liao J, Zhen J, Zhang L, Metternicht G. 2019. Understanding dynamics of mangrove forest on protected areas of Hainan Island, China: 30 years of evidence from remote sensing. Sustainability 11:5356

doi: 10.3390/su11195356
[38]

Li Y, Wen H, Wang F. 2022. Analysis of the evolution of mangrove landscape patterns and their drivers in Hainan Island from 2000 to 2020. Sustainability 15:759

doi: 10.3390/su15010759
[39]

Xin K, Zhou Q, Arndt SK, Yang X. 2013. Invasive capacity of the mangrove Sonneratia apetala in Hainan Island, China. Journal of Tropical Forest Science 25:70−78

[40]

Song S, Arnaud M, Rumpel C, Lin G. 2025. Mangrove above-and belowground traits co-vary but are not fully aligned with the economic spectrum during the development of Bruguiera sexangula trees in Hainan, China. Plant and Soil 515:1275−1289

doi: 10.1007/s11104-025-07653-7
[41]

Queiroz HM, Bragantini IOBF, Fandiño VA, Bernardino AF, Barcellos D, et al. 2022. Degraded mangroves as sources of trace elements to aquatic environments. Marine Pollution Bulletin 181:113834

doi: 10.1016/j.marpolbul.2022.113834
[42]

Ong B. 2009. Subcellular distribution of HMs in A. autumn and the response of sulfhydryl compounds to HMs. Thesis. Xiamen University, Xiamen. 87 pp

[43]

Hembrom S, Singh B, Gupta SK, Nema AK. 2019. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: a global perspective. In Contemporary Environmental Issues and Challenges in Era of Climate Change, eds. Singh P, Singh RP, Srivastava V. Singapore: Springer Singapore. pp. 33−63 doi: 10.1007/978-981-32-9595-7_2

[44]

Chowdhury FN, Rahman MM. 2024. Source and distribution of heavy metal and their effects on human health. In Heavy Metal Toxicity: Human Health Impact and Mitigation Strategies, ed. Kumar N. Cham: Springer Nature Switzerland. pp. 45–98 doi: 10.1007/978-3-031-56642-4_3

[45]

Silva MC, do Nascimento Monte C, de Souza JR, Selfe ACC, Ishihara JH. 2024. Mapping of metals contamination in coastal sediments around the world in the last decades: a bibliometric analysis and systematic review. Marine Pollution Bulletin 205:116572

doi: 10.1016/j.marpolbul.2024.116572
[46]

Joseph P, Bijoy Nandan S, Adarsh KJ, Anu PR, Varghese R, et al. 2019. Heavy metal contamination in representative surface sediments of mangrove habitats of Cochin, Southern India. Environmental Earth Sciences 15:490

doi: 10.1007/s12665-019-8499-2
[47]

Chen X, Huang S, Xie X, Zhu M, Li J, et al. 2020. Enrichment, source apportionment and health risk assessment of soil potentially harmful elements associated with different land use in coastal tidelands reclamation area, Eastern China. International Journal of Environmental Research and Public Health 17:2822

doi: 10.3390/ijerph17082822
[48]

Afonso F, Palma C, Brito AC, Chainho P, de Lima R, et al. 2023. Metal and semimetal loadings in sediments and water from mangrove ecosystems: a preliminary assessment of anthropogenic enrichment in São Tomé island (central Africa). Chemosphere 334:138973

doi: 10.1016/j.chemosphere.2023.138973
[49]

He B, Li R, Chai M, Qiu G. 2014. Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environmental Geochemistry and Health 36:467−476

doi: 10.1007/s10653-013-9574-3
[50]

Chatterjee M, Massolo S, Sarkar SK, Bhattacharya AK, Bhattacharya BD, et al. 2009. An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment 150:307−322

doi: 10.1007/s10661-008-0232-7
[51]

Chaudhuri P, Nath B, Birch G. 2014. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Marine Pollution Bulletin 79:284−292

doi: 10.1016/j.marpolbul.2013.11.024
[52]

Zhou X, Wang YP, Song Z. 2022. Heavy metal contamination and ecological risk assessments in urban mangrove sediments in Zhanjiang Bay, South China. ACS Omega 7:21306−21316

doi: 10.1021/acsomega.2c02516
[53]

Rahman MS, Rahman M, Jolly YN, Hossain MK, Semme SA, et al. 2024. Heavy metals in afforested mangrove sediment from the world’s largest delta: distributional mapping, contamination status, risk assessment and source tracing. Marine Pollution Bulletin 203:116429

doi: 10.1016/j.marpolbul.2024.116429
[54]

Chai M, Li R, Ding H, Zan Q. 2019. Occurrence and contamination of heavy metals in urban mangroves: a case study in Shenzhen, China. Chemosphere 219:165−173

doi: 10.1016/j.chemosphere.2018.11.160
[55]

Cabral L, Júnior GVL, Pereira de Sousa ST, Dias ACF, Lira Cadete L, et al. 2016. Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. Environmental Pollution 216:460−469

doi: 10.1016/j.envpol.2016.05.078
[56]

Ding Z, Zhuang M, Li L, Liu J, Lin H, et al. 2015. Concentrations of Cu, Pb, Zn, Cr and Cd in surficial sediments from mangrove wetlands of China. Journal of Environmental Science and Engineering 4:467−473

doi: 10.17265/2162-5298/2015.09.003
[57]

Ahmed K, Mehedi Y, Haque R, Mondol P. 2011. Heavy metal concentrations in some macrobenthic fauna of the Sundarbans mangrove forest, south west coast of Bangladesh. Environmental Monitoring and Assessment 177:505−514

doi: 10.1007/s10661-010-1651-9
[58]

Chaiyara R, Ngoendee M, Kruatrachue M. 2013. Accumulation of Cd, Cu, Pb, and Zn in water, sediments, and mangrove crabs (Sesarma mederi) in the upper Gulf of Thailand. Science Asia 39:376−383

doi: 10.2306/scienceasia1513-1874.2013.39.376
[59]

Nguyen Van T, Ozaki A, Nguyen Tho H, Nguyen Duc A, Tran Thi Y, et al. 2016. Arsenic and heavy metal contamination in soils under different land use in an estuary in northern Vietnam. International Journal of Environmental Research and Public Health 13:1091

doi: 10.1007/s00709-015-0810-9
[60]

Minu A, Routh J, Dario M, Bilosnic M, Kalén R, et al. 2018. Temporal and spatial distribution of trace metals in the Rufiji delta mangrove, Tanzania. Environmental Monitoring and Assessment 190:336

doi: 10.1007/s10661-018-6707-2
[61]

Guo Y, Ke X, Zhang J, He X, Li Q, et al. 2023. Distribution, risk assessment and source of heavy metals in mangrove wetland sediments of Dongzhai Harbor, South China. International Journal of Environmental Research and Public Health 20:1090

doi: 10.3390/ijerph20021090
[62]

Hossain MB, Sultana J, Jolly YN, Nur AU, Sultana S, et al. 2023. Seasonal variation, contamination and ecological risk assessment of heavy metals in sediments of coastal wetlands along the Bay of Bengal. Marine Pollution Bulletin 194:115337

doi: 10.1016/j.marpolbul.2023.115337
[63]

Sojka M, Jaskuła J, Barabach J, Ptak M, Zhu S. 2022. Heavy metals in lake surface sediments in protected areas in Poland: concentration, pollution, ecological risk, sources and spatial distribution. Scientific Reports 12:15006

doi: 10.1038/s41598-022-19298-y
[64]

Zhang Y, Mao W, Li R, Liu Y, Wang P, et al. 2022. Distribution characteristics, risk assessment, and quantitative source apportionment of typical contaminants (HMs, N, P, and TOC) in river sediment under rapid urbanization: a study case of Shenzhen river, Pearl River Delta, China. Process Safety and Environmental Protection 162:155−168

doi: 10.1016/j.psep.2022.03.032
[65]

Liu Y, Not C, Jiao JJ, Liang W, Lu M. 2019. Tidal induced dynamics and geochemical reactions of trace metals (Fe, Mn, and Sr) in the salinity transition zone of an intertidal aquifer. Science of the Total Environment 664:1133−1149

doi: 10.1016/j.scitotenv.2019.01.374
[66]

Geng N, Xia Y, Li D, Bai F, Xu C. 2024. Migration and transformation of heavy metal and its fate in intertidal sediments: a review. Processes 12:311

doi: 10.3390/pr12020311
[67]

Schippers A. 2004. Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. In Sulfur Biogeochemistry-Past and Present, eds. Amend JP, Edwards KJ; Lyons TW. Boulder, CO, USA: Geological Society of America. pp. 49–62 doi: 10.1130/0-8137-2379-5.49

[68]

Middelburg JJ, Levin LA. 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273−1293

doi: 10.5194/bg-6-1273-2009
[69]

Wu G, Pan L, Wei Q, Guo L. 2015. Decreased mobility of heavy metals in Haihe River sediments: the possible role of tide gate. Journal of Geochemical Exploration 157:92−99

doi: 10.1016/j.gexplo.2015.06.002
[70]

Gantayat RR, Elumalai V. 2024. Salinity-induced changes in heavy metal behavior and mobility in semi-arid coastal aquifers: a comprehensive review. Water 16:1052

doi: 10.3390/w16071052
[71]

Cheng H, Jiang ZY, Liu Y, Ye ZH, Wu ML, et al. 2014. Metal (Pb, Zn and Cu) uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization. Tree Physiology 34:646−656

doi: 10.1093/treephys/tpu042
[72]

Frémont A, Sas E, Sarrazin M, Brisson J, Pitre FE, et al. 2024. Arsenic stress triggers active exudation of arsenic–phytochelatin complexes from Lupinus albus roots. Journal of Experimental Botany 75:5897−5908

doi: 10.1093/jxb/erae272
[73]

Khan A, Kanwal F, Shahzad M, Naz S, Jalil S, et al. 2025. Interactions of arsenic and phosphorus in their uptake and transportation in plants: advances and prospective research on the mechanisms and approaches for alleviating arsenic stress. Journal of Integrative Agriculture 24:1631−1645

doi: 10.1016/j.jia.2024.07.022
[74]

Akbar SA, Jalil Z, Octavina C, Setiawan I, Ulfah M, et al. 2026. Harnessing mangrove phytoremediation for coastal heavy metal pollution: a chemical environmental perspective. Maritime Technology and Research 8:281734

doi: 10.33175/mtr.2026.281734
[75]

MacFarlane GR, Burchett MD. 2002. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research 5:65−84

doi: 10.1016/s0141-1136(02)00095-8
[76]

MacFarlane GR, Pulkownik A, Burchett MD. 2003. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environmental Pollution 123:139−151

doi: 10.1016/S0269-7491(02)00342-1
[77]

Naidoo G, Hiralal T, Naidoo Y. 2014. Ecophysiological responses of the mangrove Avicennia marina to trace metal contamination. Flora - Morphology, Distribution, Functional Ecology of Plants 20:63−72

doi: 10.1016/j.flora.2013.10.003
[78]

Huang GY, Wang YS, Ying GG, Dang AC. 2012. Analysis of type 2 metallothionein gene from mangrove species (Kandelia candel). Trees 26:1537−1544

doi: 10.1007/s00468-012-0727-2
[79]

Rahman MM, Yan C, Rahman MM, Islam KS. 2012. Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 146:47−57

doi: 10.1080/11263504.2011.579189
[80]

Cheng H, Wang YS, Li CD, Ye ZH, Muhammad S, et al. 2020. Mixture of Pb, Zn and Cu on root permeability and radial oxygen loss in the mangrove Bruguiera gymnorrhiza. Ecotoxicology 29:691−697

doi: 10.1007/s10646-020-02234-z
[81]

Cheng H, Tam NF, Wang Y, Li S, Chen G, et al. 2012. Effects of copper on growth, radial oxygen loss and root permeability of seedlings of the mangroves Bruguiera gymnorrhiza and Rhizophora stylosa. Plant and Soil 359:255−266

doi: 10.1007/s11104-012-1171-1
[82]

Selanno DAJ, Tuahatu JW, Tuhumury NC, Hatulesila GI. 2014. Analysis of lead (Pb) content in the mangrove forest area in Waiheru District, Ambon. Aquatic Science and Technology 3:59−69

doi: 10.5296/ast.v3i1.6545
[83]

Wu GR, Hong HL, Yan CL. 2015. Arsenic accumulation and translocation in mangrove (Aegiceras corniculatum L.) grown in arsenic contaminated soils. International Journal of Environmental Research and Public Health 12:7244−7253

doi: 10.3390/ijerph120707244
[84]

Sari I, Din ZB. 2012. Effects of salinity on the uptake of lead and cadmium by two mangrove species Rhizophora apiculata Bl. and Avicennia alba Bl. Chemistry and Ecology 28:365−374

doi: 10.1080/02757540.2012.666526
[85]

Qiu YW, Qiu HL. 2017. Comparison of metals levels in two mangrove species (Rhizophora stylosa and Sonneratia hainanensis) from Hainan Island, South China. In IOP Conference Series: Earth and Environmental Science 52:012050

doi: 10.1088/1742-6596/52/1/012050
[86]

Hamza M, Alam S, Rizwan M, Naz A. 2022. Health risks associated with arsenic contamination and its biotransformation mechanisms in environment: a review. In Hazardous Environmental Micro-pollutants, Health Impacts and Allied Treatment Technologies, eds. Ahmed T, Ahmed MZ. Cham: Springer International Publishing. pp. 241−288 doi: 10.1007/978-3-030-96523-5_11

[87]

Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. 2022. Arsenic: a review on a great health issue worldwide. Applied Sciences 12:6184

doi: 10.3390/app12126184
[88]

Deng S, Luo S, Lin Q, Shen L, Gao L, et al. 2024. Analysis of heavy metal and arsenic sources in mangrove surface sediments at Wulishan Port on Leizhou Peninsula, China, using the APCS-MLR model. Ecotoxicology and Environmental Safety 283:116788

doi: 10.1016/j.ecoenv.2024.116788
[89]

Mirlean N, Medeanic S, Garcia FA, Travassos MP, Baisch P. 2012. Arsenic enrichment in shelf and coastal sediment of the Brazilian subtropics. Continental Shelf Research 35:129−136

doi: 10.1016/j.csr.2012.01.006
[90]

Xia F, Zhang C, Qu L, Song Q, Ji X, et al. 2020. A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. Journal of Hazardous Materials 381:121230

doi: 10.1016/j.jhazmat.2019.121230
[91]

Gao Yu. 2019. Distribution characteristics and controlling factors of carbon pool in typical mangrove wetlands in China. Doctoral Dissertation. Tsinghua University, Beijing. 142 pp. https://newetds.lib.tsinghua.edu.cn/qh/paper/summary?dbCode=ETDQH&sysId=255712

[92]

Smith SE, Christophersen HM, Pope S, Smith FA. 2010. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant and Soil 327:1−21

doi: 10.1007/s11104-009-0089-8
[93]

Pigna M, Cozzolino V, Violante A, Meharg AA. 2009. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water, Air, and Soil Pollution 197:371−380

doi: 10.1007/s11270-008-9818-5
[94]

Gunes A, Pilbeam DJ, Inal A. 2009. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant and Soil 314:211−220

doi: 10.1007/s11104-008-9719-9
[95]

Parveen R, Zahir E, Siddiqui AF. 2013. Arsenic enrichment in mangroves, and sediments along Karachi coast. Journal of Coastal Life Medicine 1:60−65

doi: 10.12980/JCLM.1.2013C89
[96]

Nair SG, Puthur JT. 2020. Physio-chemical changes in Acanthus ilicifolius L. associated with arsenic stress. In Plant Functional Biology, eds. Abdussalam AK, Shackira AM. Taliparamba, Kannur, Kerala, India: Publication Division, Sir Syed College. 253 pp. https://sirsyedcollege.ac.in/crm/public/uploads/publication_division/0etzti4nh37qkmOkmMeoFuBrf3U8Lw.pdf#page=119

[97]

Naja GM, Volesky B. 2017. Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In Handbook of advanced industrial and hazardous wastes management, eds. Wang LK, Wang MS, Hung YT, Shammas NK, Chen JP. 1st Edition. Boca Raton: CRC Press. 1190 pp. doi: 10.1201/9781315117423

[98]

Adnan M, Xiao B, Xiao P, Zhao P, Li R, et al. 2022. Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics 10:231

doi: 10.3390/toxics10050231
[99]

Shanker Mishra G, James A, Paliwal HB, Kumar H. 2017. Physico-chemical, biological properties and biodiversity of aquatic plant species in Macferson Lake Allahabad, U.P. India. Current World Environment 12:630−640

doi: 10.12944/cwe.12.3.14
[100]

Patra M, Bhowmik N, Bandopadhyay B, Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany 52:199−223

doi: 10.1016/j.envexpbot.2004.02.009
[101]

Sharma P, Dubey RS. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology 17:35−52

doi: 10.1590/S1677-04202005000100004
[102]

Yan ZZ, Ke L, Tam NFY. 2010. Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquatic Botany 92:112−118

doi: 10.1016/j.aquabot.2009.10.014
[103]

Yan Z, Tam NFY. 2013. Effects of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn. Plant and Soil 367:327−338

doi: 10.1007/s11104-012-1467-1
[104]

del Refugio Cabañas-Mendoza M, Santamaría JM, Sauri-Duch E, Escobedo-GraciaMedrano RM, Andrade JL. 2020. Salinity affects pH and lead availability in two mangrove plant species. Environmental Research Communications 2:061004

doi: 10.1088/2515-7620/ab9992
[105]

Mir AR, Pichtel J, Hayat S. 2021. Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. BioMetals 34:737−759

doi: 10.1007/s10534-021-00306-z
[106]

Fagnano M, Agrelli D, Pascale A, Adamo P, Fiorentino N, et al. 2020. Copper accumulation in agricultural soils: risks for the food chain and soil microbial populations. Science of the Total Environment 734:139434

doi: 10.1016/j.scitotenv.2020.139434
[107]

Xu E, Liu Y, Gu D, Zhan X, Li J, et al. 2024. Molecular mechanisms of plant responses to copper: from deficiency to excess. International Journal of Molecular Sciences 25:6993

doi: 10.3390/ijms25136993
[108]

Wodala B, Eitel G, Gyula TN, Ördög A, Horváth F. 2012. Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in pea leaves. Photosynthetica 50:380−386

doi: 10.1007/s11099-012-0045-3
[109]

de Freitas TA, França MGC, de Almeida AF, de Oliveira SJR, de Jesus RM, et al. 2015. Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) T.D. Penn. Environmental Science and Pollution Research 22:15479−15494

doi: 10.1007/s11356-015-4610-8
[110]

Küpper H, Andresen E. 2016. Mechanisms of metal toxicity in plants. Metallomics 8:269−285

doi: 10.1039/C5MT00244C
[111]

Ahmad Ansari MK, Oztetik E, Ahmad A, Umar S, Iqbal M, et al. 2013. Identification of the phytoremediation potential of Indian mustard genotypes for copper, evaluated from a hydroponic experiment. CLEAN – Soil, Air, Water 41:789−796

doi: 10.1002/clen.201200262
[112]

Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, et al. 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research 22:8148−8162

doi: 10.1007/s11356-015-4496-5
[113]

Abou Seeda MA, Abou El-Nour EAA, Abdallah MMS, El-Bassiouny HMS. 2022. Impacts of metal, metalloid and their effects in plant physiology: a review. Middle East Journal of Agriculture Research 11:838−931

doi: 10.36632/mejar/2022.11.3.56
[114]

Rekha K, Usha B, Keeran NS. 2021. Role of ABC transporters and other vacuolar transporters during heavy metal stress in plants. In Metal and Nutrient Transporters in Abiotic Stress, eds. Roychoudhury A, Tripathi DK, Deshmukh R. San Diego, USA: Academic Press. pp. 55−76 doi: 10.1016/B978-0-12-817955-0.00003-X

[115]

Jogawat A, Yadav B, Chhaya, Narayan OP. 2021. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiologia Plantarum 173:259−275

doi: 10.1111/ppl.13370
[116]

Geng N, Bai Y, Pan S. 2022. Research on heavy metal release with suspended sediment in Taihu Lake under hydrodynamic condition. Environmental Science and Pollution Research 29:28588−28597

doi: 10.1007/s11356-021-17666-1
[117]

Botté SE, Freije RH, Marcovecchio JE. 2010. Distribution of several heavy metals in tidal flats sediments within Bahía Blanca Estuary (Argentina). Water, Air, & Soil Pollution 210:371−388

doi: 10.1007/s11270-009-0260-0
[118]

Sun Z, Mou X, Tong C, Wang C, Xie Z, et al. 2015. Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary, China. CATENA 126:43−52

doi: 10.1016/j.catena.2014.10.037
[119]

Kalnejais LH, Martin WR, Signell RP, Bothner MH. 2007. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environmental Science & Technology 41:2282−2288

doi: 10.1021/es061770z
[120]

Roberts DA. 2012. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environment International 40:230−243

doi: 10.1016/j.envint.2011.11.013
[121]

Liu Q, Sheng Y, Wang W, Li C, Zhao G. 2020. Remediation and its biological responses of Cd contaminated sediments using biochar and minerals with nanoscale zero-valent iron loading. Science of the Total Environment 713:136650

doi: 10.1016/j.scitotenv.2020.136650
[122]

Harmesa, Wahyudi AJ, Lestari, Taufiqurrahman E. 2022. Variability of trace metals in coastal and estuary: distribution, profile, and drivers. Marine Pollution Bulletin 174:113173

doi: 10.1016/j.marpolbul.2021.113173
[123]

Niu L, Wang Y, Zhou Y, Fei J, Sun C, et al. 2024. The inputs of autochthonous organic carbon driven by mangroves reduce metal mobility and bioavailability in intertidal regions. Science of The Total Environment 931:172964

doi: 10.1016/j.scitotenv.2024.172964
[124]

Marchand C, Baltzer F, Lallier-Vergès E, Albéric P. 2004. Pore water chemistry in mangrove sediments: relationship with species composition and developmental stages (French Guiana). Marine Geology 208:361−381

doi: 10.1016/j.margeo.2004.04.015
[125]

Reckhardt A, Beck M, Seidel M, Riedel T, Wehrmann A, et al. 2015. Carbon, nutrient and trace metal cycling in sandy sediments: a comparison of high-energy beaches and backbarrier tidal flats. Estuarine, Coastal and Shelf Science 159:1−14

doi: 10.1016/j.ecss.2015.03.025
[126]

Silrat K, Yottiam A, Leelakun P, Vibhatabandhu P, Srithongouthai S. 2024. Effects of tidal current on pollution load index and potential risk of heavy metals in water column of the Chao Phraya River estuary. Proc. 2024 6th International Conference on Resources and Environment Sciences (ICRES 2024), Bangkok, Thailand, 7−9 June, 2024. Les Ulis, France: EDP Sciences. 12 pp. doi: 10.1051/e3sconf/202455701002

[127]

Xia J, Fan X, Lu Y, Li Y, Wang Z, et al. 2025. Geochemical behavior of iron-sulfur coupling in coastal wetland sediments and its impact on heavy metal speciation and migration. Marine Environmental Research 5:107065

doi: 10.1016/j.marenvres.2025.107065
[128]

Hiemstra T, van Riemsdijk WH. 2007. Adsorption and surface oxidation of Fe(II) on metal (hydr)oxides. Geochimica et Cosmochimica Acta 71:5913−5933

doi: 10.1016/j.gca.2007.09.030
[129]

Nasrabadi T, Soodarjani AE, Karbassi A, Baghdadi M. 2022. Role of salinity and aeration on flocculation and remobilization of metals during estuarine mixing. Environmental Earth Sciences 81:277

doi: 10.1007/s12665-022-10413-w
[130]

Chai M, Li R, Gong Y, Shen X, Yu L. 2021. Bioaccessibility-corrected health risk of heavy metal exposure via shellfish consumption in coastal region of China. Environmental Pollution 273:116529

doi: 10.1016/j.envpol.2021.116529
[131]

Vinothkannan A, Charles PE, Rajaram R. 2022. Consumption of metal-contaminated shellfish from the Cuddalore coast in Southeastern India poses a hazard to public health. Marine Pollution Bulletin 181:113827

doi: 10.1016/j.marpolbul.2022.113827
[132]

Pandion K, Mohamed Khalith SB, Ravindran B, Chandrasekaran M, Rajagopal R, et al. 2022. Potential health risk caused by heavy metal associated with seafood consumption around coastal area. Environmental Pollution 294:118553

doi: 10.1016/j.envpol.2021.118553
[133]

Puspitasari R, Takarina ND, Soesilo TEB, Agustina H. 2023. Potential risks of heavy metals in green mussels (Perna Viridis) harvested from Cilincing and Kamal Muara, Jakarta Bay, Indonesia to human health. Marine Pollution Bulletin 189:114754

doi: 10.1016/j.marpolbul.2023.114754
[134]

Hu B, Liao J, Zhang Q, Ding S, He M, et al. 2022. Diversity and vertical distribution of sedimentary bacterial communities and its association with metal bioavailability in three distinct mangrove reserves of South China. Water 14:971

doi: 10.3390/w14060971
[135]

Lu Y, Gao X, Song J, Chen CA, Chu J. 2020. Colloidal toxic trace metals in urban riverine and estuarine waters of Yantai City, southern coast of North Yellow Sea. Science of the Total Environment 717:135265

doi: 10.1016/j.scitotenv.2019.135265
[136]

Dring MJ, Brown FA. 1982. Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Marine Ecology Progress Series 8:301−308

doi: 10.3354/meps008301
[137]

Howes BL, Howarth RW, Teal JM, Valiela I. 1981. Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnology and Oceanography 26:350−360

doi: 10.4319/lo.1981.26.2.0350
[138]

Bertness MD. 1991. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72:138−148

doi: 10.2307/1938909
[139]

Liu JJ, Diao ZH, Xu XR, Xie Q. 2019. Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Science of the Total Environment 666:894−901

doi: 10.1016/j.scitotenv.2019.02.288
[140]

Lin J, Zhang S, Liu D, Yu Z, Zhang L, et al. 2018. Mobility and potential risk of sediment-associated heavy metal fractions under continuous drought-rewetting cycles. Science of the Total Environment 625:79−86

doi: 10.1016/j.scitotenv.2017.12.167
[141]

Chai XP, Wei N, Ren SJ, Mu QL, Hu XP, et al. 2019. Analysis of surface sediments environment division and heavy metal pollution character in Hangzhou Bay and its adjacent areas. Marine Science 8:29−35

doi: 10.11759/hykx20190212004
[142]

Lacerda LD, Abraão JJ. 1984. Heavy metal accumulation by mangrove and saltmarsh intertidal sediments. Review of Brazilian Botany 7:49−52

[143]

Liu Y, Zhang J. 2022. Lanthanum promotes bahiagrass (Paspalum notatum) root growth by improving roots activity, photosynthesis and respiration. Plants 11:382

doi: 10.3390/plants11030382
[144]

Saeedi M, Li LY, Karbassi AR, Zanjani AJ. 2013. Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environmental Monitoring and Assessment 185:1737−1754

doi: 10.1007/s10661-012-2664-3
[145]

Bao T, Wang P, Hu B, Wang X, Qian J. 2023. Mobilization of colloids during sediment resuspension and its effect on the release of heavy metals and dissolved organic matter. Science of The Total Environment 861:160678

doi: 10.1016/j.scitotenv.2022.160678
[146]

Kida M, Fujitake N. 2020. Organic carbon stabilization mechanisms in mangrove soils: a review. Forests 11:981

doi: 10.3390/f11090981
[147]

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11:789−799

doi: 10.1038/nrmicro3109
[148]

Li JY, Chen P, Li ZG, Li LY, Zhang RQ, et al. 2023. Soil aggregate-associated organic carbon mineralization and its driving factors in rhizosphere soil. Soil Biology and Biochemistry 186:109182

doi: 10.1016/j.soilbio.2023.109182
[149]

Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478−486

doi: 10.1016/j.tplants.2012.04.001
[150]

Harms H, Schlosser D, Wick LY. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology 9:177−192

doi: 10.1038/nrmicro2519
[151]

Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. 2018. Diversity and niche of Archaea in bioremediation. Journal of Bioremediation & Biodegradation 9:1−12

doi: 10.1155/2018/3194108
[152]

Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. 2023. Bioremediation of heavy metals by rhizobacteria. Applied Biochemistry and Biotechnology 195:4689−4711

doi: 10.1007/s12010-022-04177-z
[153]

Seshadri B, Bolan NS, Naidu R. 2015. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. Journal of Soil science and Plant Nutrition 15:524−548

doi: 10.4067/s0718-95162015005000043
[154]

Cipullo S, Snapir B, Tardif S, Campo P, Prpich G, et al. 2018. Insights into mixed contaminants interactions and its implication for heavy metals and metalloids mobility, bioavailability and risk assessment. Science of the Total Environment 645:662−673

doi: 10.1016/j.scitotenv.2018.07.179
[155]

Lewis DB, Brown JA, Jimenez KL. 2014. Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes. Estuarine, Coastal and Shelf Science 139:11−19

doi: 10.1016/j.ecss.2013.12.032
[156]

Okello JA, Kairo JG, Dahdouh-Guebas F, Beeckman H, Koedam N. 2020. Mangrove trees survive partial sediment burial by developing new roots and adapting their root, branch and stem anatomy. Trees 34:37−49

doi: 10.1007/s00468-019-01895-6
[157]

Mei XQ, Yang Y, Tam NF, Wang YW, Li L. 2014. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Research 50:147−159

doi: 10.1016/j.watres.2013.12.004
[158]

Sarker S, Masud-Ul-Alam M, Hossain MS, Rahman Chowdhury S, Sharifuzzaman SM. 2021. A review of bioturbation and sediment organic geochemistry in mangroves. Geological Journal 56:2439−2450

doi: 10.1002/gj.3808
[159]

Mallick I, Ghosh A, Ghosh A. 2019. Microbe-mediated removal of heavy metals for sustainable agricultural practices. In Biofertilizers for Sustainable Agriculture and Environment, eds. Giri B, Prasad R, Wu QS, Varma A. Cham: Springer Nature. pp. 521−544 doi: 10.1007/978-3-030-18933-4_24

[160]

Singh I, Patel PB, Sharma N, Mishra RK, Tomar RS, et al. 2021. Microbial linkages in the heavy metal remediation. In Microbiomes and Plant Health, eds. Solanki MK, Kashyap PL, Ansari, RA, Kumari B. San Diego, USA: Academic Press. pp. 367−395 doi: 10.1016/B978-0-12-819715-8.00013-6

[161]

Filote C, Roșca M, Hlihor RM, Cozma P, Simion IM, et al. 2021. Sustainable application of biosorption and bioaccumulation of persistent pollutants in wastewater treatment: current practice. Processes 9:1696

doi: 10.3390/pr9101696
[162]

Liu X, Yang C, Yu X, Yu H, Zhuang W, et al. 2020. Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa. Science of the Total Environment 721:137807

doi: 10.1016/j.scitotenv.2020.137807
[163]

Sajjad N, Sultan A, Muhammad G, Azam A, Raza MA, et al. 2024. Application of genetically modified microorganisms for remediation of petrol discharges and related polluted sites. In Genetically Engineered Organisms in Bioremediation, eds. Inamuddin, Adetunji CO, Ahamed MI, Altalhi T. 1st Edition. Boca Raton: CRC Press. 236 pp. doi: 10.1201/9781003188568

[164]

Luo L, Wu R, Gu JD, Zhang J, Deng S, et al. 2018. Influence of mangrove roots on microbial abundance and ecoenzyme activity in sediments of a subtropical coastal mangrove ecosystem. International Biodeterioration & Biodegradation 132:10−17

doi: 10.1016/j.ibiod.2018.05.002
[165]

Panda SK, Das S. 2024. Potential of plant growth-promoting microbes for improving plant and soil health for biotic and abiotic stress management in mangrove vegetation. Reviews in Environmental Science and Bio/Technology 23:801−837

doi: 10.1007/s11157-024-09702-6
[166]

Palit K, Rath S, Chatterjee S, Das S. 2022. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: threats, vulnerability, and adaptations. Environmental Science and Pollution Research 29:32467−32512

doi: 10.1007/s11356-022-19048-7
[167]

Adame MF, Neil D, Wright SF, Lovelock CE. 2010. Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science 86:21−30

doi: 10.1016/j.ecss.2009.10.013
[168]

Balke T, Webb EL, van den Elzen E, Galli D, Herman PMJ, et al. 2013. Seedling establishment in a dynamic sedimentary environment: a conceptual framework using mangroves. Journal of Applied Ecology 50:740−747

doi: 10.1111/1365-2664.12067
[169]

Woodroffe CD, Rogers K, McKee KL, Lovelock CE, Mendelssohn IA, et al. 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8:243−266

doi: 10.1146/annurev-marine-122414-034025
[170]

Li P, Liu C, Zhang L, Liu Z, Fu Z, et al. 2025. Interactions between riverine sediment organic matter molecular structure and microbial community as regulated by heavy metals. Journal of Hazardous Materials 486:136998

doi: 10.1016/j.jhazmat.2024.136998
[171]

Li Q, Wang L, Fu Y, Lin D, Hou M, et al. 2023. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: a review. Journal of Soils and Sediments 23:1485−1500

doi: 10.1007/s11368-022-03381-y
[172]

Alongi DM. 2021. Macro- and micronutrient cycling and crucial linkages to geochemical processes in mangrove ecosystems. Journal of Marine Science and Engineering 9:456

doi: 10.3390/jmse9050456
[173]

de Lacerda LD, Ward RD, Borges R, Ferreira AC. 2022. Mangrove trace metal biogeochemistry response to global climate change. Frontiers in Forests and Global Change 5:817992

doi: 10.3389/ffgc.2022.817992
[174]

Kathiresan K. 2003. How do mangrove forests induce sedimentation? Revista De Biologia Tropical 51:355−360

[175]

Furukawa K, Wolanski E. 1996. Sedimentation in mangrove forests. Mangroves and Salt Marshes 1:3−10

doi: 10.1023/A:1025973426404
[176]

Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, et al. 2014. How mangrove forests adjust to rising sea level. New Phytologist 2020:19−34

doi: 10.1111/nph.12605
[177]

Qin Y, Tian X, Zhang J, Tu Y, Chen C. 2025. Combined toxicity and ecological impacts of soil microplastics and heavy metals in rhizosphere microenvironments: a comprehensive review. Journal of Soils and Sediments 25:2551−2570

doi: 10.1007/s11368-025-04102-x
[178]

Li Z, Zu C, Wang C, Yang J, Yu H, et al. 2016. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture. Scientific Reports 6:35825

doi: 10.1038/srep35825
[179]

Uddin S, Khanom S, Islam MR, Hossain M. 2024. Toxicity of rhizospheric cadmium-contaminated soil and its remediation. In Cadmium Toxicity, ed. Kumar N. Cham, Switzerland: Springer Nature. pp. 321−377 doi: 10.1007/978-3-031-65611-8_14

[180]

Lu HL. 2007. Study on low molecular weight organic acids in mangrove wetlands and their effects on the bioavailability of HMs. Doctoral Dissertation. Xiamen University, Xiamen. 110 pp (in Chinese). doi: 10.7666/d.y1345329

[181]

Guo B, Liu C, Ding N, Fu Q, Lin Y, et al. 2016. Silicon alleviates cadmium toxicity in two cypress varieties by strengthening the exodermis tissues and stimulating phenolic exudation of roots. Journal of Plant Growth Regulation 35:420−429

doi: 10.1007/s00344-015-9549-y
[182]

Yu Y, Zhou Y, Janssens IA, Deng Y, He X, et al. 2024. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. Global Change Biology 30:e17111

doi: 10.1111/gcb.17111
[183]

Bai S, Chen J, Guo M, Ren N, Zhao X. 2023. Vertical-scale spatial influence of radial oxygen loss on rhizosphere microbial community in constructed wetland. Environment International 171:107690

doi: 10.1016/j.envint.2022.107690
[184]

Cui Y, Wang X, Wang X, Zhang X, Fang L. 2021. Evaluation methods of heavy metal pollution in soils based on enzyme activities: a review. Soil Ecology Letters 3:169−177

doi: 10.1007/s42832-021-0096-0
[185]

Yin K, Wang Q, Lv M, Chen L. 2019. Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal 360:1553−1563

doi: 10.1016/j.cej.2018.10.226
[186]

Abo-Alkasem MI, Hassan NH, Abo Elsoud MM. 2023. Microbial bioremediation as a tool for the removal of heavy metals. Bulletin of the National Research Centre 47:31

doi: 10.1186/s42269-023-01006-z
[187]

Beni C, Neri U, Papetti P, Altimari A. 2021. Natural horticultural systems in organic farming as a tool for resilience: improvement of economic performance and prevention of soil erosion. Agroecology and Sustainable Food Systems 45:1375−1398

doi: 10.1080/21683565.2021.1929657
[188]

Tam NFY, Wong YS. 1993. Retention of nutrients and heavy metals in mangrove sediment receiving wastewater of different strengths. Environmental Technology 14:719−729

doi: 10.1080/09593339309385343
[189]

Robin SL, Marchand C, Mathian M, Baudin F, Alfaro AC. 2022. Distribution and bioaccumulation of trace metals in urban semi-arid mangrove ecosystems. Frontiers in Environmental Science 10:1054554

doi: 10.3389/fenvs.2022.1054554
[190]

Hong YS, Kinney KA, Reible DD. 2011. Effects of cyclic changes in pH and salinity on metals release from sediments. Environmental Toxicology and Chemistry 30:1775−1784

doi: 10.1002/etc.584
[191]

Majumdar J, Biswas JK, Santra SC, Ramanathan AL, Tack FMG. 2023. Sedimentation of metals in Sundarban mangrove ecosystem: dominant drivers and environmental risks. Environmental Geochemistry and Health 45:1555−1572

doi: 10.1007/s10653-022-01277-x
[192]

Nizam A, Meera SP, Kumar A. 2022. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 25:103547

doi: 10.1016/j.isci.2021.103547
[193]

Madhavan C, Meera SP, Kumar A. 2025. Anatomical adaptations of mangroves to the intertidal environment and their dynamic responses to various stresses. Biological Reviews 100:1019−1046

doi: 10.1111/brv.13172
[194]

Nguyen KL, Nguyen HA, Richter O, Pham MT, Nguyen VP. 2017. Ecophysiological responses of young mangrove species Rhizophora apiculata (Blume) to different chromium contaminated environments. Science of the Total Environment 574:369−380

doi: 10.1016/j.scitotenv.2016.09.063
[195]

MacFarlane GR, Burchett MD. 2001. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin 42:233−240

doi: 10.1016/S0025-326X(00)00147-8
[196]

Yan Z, Li X, Chen J, Tam NF. 2015. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid. Ecotoxicology and Environmental Safety 113:124−132

doi: 10.1016/j.ecoenv.2014.11.031
[197]

Huang GY, Wang YS. 2010. Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. Journal of Hazardous Materials 182:848−854

doi: 10.1016/j.jhazmat.2010.06.121
[198]

Yadav A, Ram A, Majithiya D, Salvi S, Sonavane S, et al. 2015. Effect of heavy metals on the carbon and nitrogen ratio in Avicennia marina from polluted and unpolluted regions. Marine Pollution Bulletin 101:359−365

doi: 10.1016/j.marpolbul.2015.10.020
[199]

Vovides AG, Wimmler MC, Schrewe F, Balke T, Zwanzig M, et al. 2021. Cooperative root graft networks benefit mangrove trees under stress. Communications Biology 4:513

doi: 10.1038/s42003-021-02044-x
[200]

Sobrado MA. 2005. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43:217−221

doi: 10.1007/s11099-005-0036-8
[201]

Lechthaler S, Robert EMR, Tonné N, Prusova A, Gerkema E, et al. 2016. Rhizophoraceae mangrove saplings use hypocotyl and leaf water storage capacity to cope with soil water salinity changes. Frontiers in Plant Science 7:895

doi: 10.3389/fpls.2016.00895
[202]

Peng HW, Li Z, Li RL, Zheng SF, Zhu HW. 2013. Study on the Mangrove Adsorption Ability of Heavy Metain Qi'ao Island Zhuhai. Practical Forestry Technology 9:15−19 (in Chinese)

doi: 10.13456/j.cnki.lykt.2013.09.030
[203]

Li C, Hu JL, Fu QM, Fang Y, Li ZM, et al. 2013. A study on the accumulation characteristics of Cu, Zn, Pb of five mangrove plants. Transactions of Oceanology and Limnology 1:105−112 (in Chinese)

doi: 10.13984/j.cnki.cn37-1141.2013.01.012
[204]

Zan Q, Wang YJ, Wang BS. 2002. Accumulation and cycle of heavy metal in Sonneratia apetala and S. caseolaris mangrove community at Futian of Shenzhen, China. Environmental Science 23:81−88 (in Chinese)

doi: 10.13227/j.hjkx.2002.04.017
[205]

Han W, Zhao Y, Lu C, Lin P. 2004. Seven metal elements' biological accumulation and circulation of Sonneratia apetala plantation in Leizhou, Guangdong. Chinese Journal of Applied and Environmental Biology 10:27−34 (in Chinese)

doi: 10.3321/j.issn:1006-687x.2004.01.006
[206]

Song P, Xu D, Yue J, Ma Y, Dong S, et al. 2022. Recent advances in soil remediation technology for heavy metal contaminated sites: a critical review. Science of The Total Environment 838:156417

doi: 10.1016/j.scitotenv.2022.156417
[207]

Ma L, Yang S. 2022. Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress. Environmental Science and Pollution Research 29:43251−43266

doi: 10.1007/s11356-021-17926-0
[208]

Gupta S, Chakrabarti SK. 2013. Effect of heavy metals on different anatomical structures of Bruguiera sexangula. International journal of Bio-resource and Stress Management 4:605−609

[209]

Zeng LS, Liao M, Chen CL, Huang CY. 2007. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety 67:67−74

doi: 10.1016/j.ecoenv.2006.05.001
[210]

Shen XX, Li RL, Chai MW, Qiu GY. 2018. Characteristics of iron plaque and its heavy metal enrichment in typical mangrove plants in Shenzhen Bay, China. Environmental Science 39:1851−1860 (in Chinese)

doi: 10.13227/j.hjkx.201708088
[211]

Huang GY, Wang YS. 2009. Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77:1026−1029

doi: 10.1016/j.chemosphere.2009.07.073
[212]

Rauser WE, Ackerley CA. 1987. Localization of cadmium in granules within differentiating and mature root cells. Canadian Journal of Botany 65:643−646

doi: 10.1139/b87-084
[213]

Li Y, Zhou C, Huang M, Luo J, Hou X, et al. 2016. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. Journal of Plant Research 129:251−262

doi: 10.1007/s10265-015-0776-x
[214]

Wei MY, Li H, Zhang LD, Guo ZJ, Liu JY, et al. 2022. Exogenous hydrogen sulfide mediates Na+ and K+ fluxes of salt gland in salt-secreting mangrove plant Avicennia marina. Tree Physiology 42:1812−1826

doi: 10.1093/treephys/tpac042
[215]

Srikanth S, Lum SKY, Chen Z. 2016. Mangrove root: adaptations and ecological importance. Trees 30:451−465

doi: 10.1007/s00468-015-1233-0
[216]

Wang WQ, Ke L, Tam N, Wong YS. 2002. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology 141:1029−1034

doi: 10.1007/s00227-002-0951-1
[217]

Kathiresan K, Bingham BL. 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40:81−251

doi: 10.1016/s0065-2881(01)40003-4
[218]

Medina E, Fernandez W, Barboza F. 2015. Element uptake, accumulation, and resorption in leaves of mangrove species with different mechanisms of salt regulation. Web Ecology 15:3−13

doi: 10.5194/we-15-3-2015
[219]

Tomlinson PB. 2016. The Botany of Mangroves 2nd Edition. Cambridge, UK: Cambridge University Press. 418 pp. doi: 10.1017/CBO9781139946575

[220]

Feng X, Li G, Xu S, Wu W, Chen Q, et al. 2021. Genomic insights into molecular adaptation to intertidal environments in the mangrove Aegiceras corniculatum. New Phytologist 231:2346−2358

doi: 10.1111/nph.17551
[221]

Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK. 2005. Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk.) Vierh. Theoretical and Applied Genetics 110:416−424

doi: 10.1007/s00122-004-1801-y
[222]

Miyama M, Tada Y. 2008. Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress. Plant Molecular Biology 68:119−129

doi: 10.1007/s11103-008-9356-y
[223]

Kumar S, Trivedi PK. 2018. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Sciences 9:751

doi: 10.3389/fpls.2018.00751
[224]

Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, et al. 2001. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Molecular Biology 45:353−363

doi: 10.1023/A:1006497113323
[225]

Feng X, Xu S, Li J, Yang Y, Chen Q, et al. 2020. Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC Plant Biology 20:178

doi: 10.1186/s12870-020-02395-3
[226]

Hong L, Su W, Zhang Y, Ye C, Shen Y, et al. 2018. Transcriptome profiling during mangrove viviparity in response to abscisic acid. Scientific Reports 8:770

doi: 10.1038/s41598-018-19236-x
[227]

Singh A, Roychoudhury A. 2023. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Reports 42:961−974

doi: 10.1007/s00299-023-03013-w
[228]

Lyu H, He Z, Wu CI, Shi S. 2018. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytologist 217:428−438

doi: 10.1111/nph.14784