[1]

Song X, Zhang Z, Huang H, Guan X, Jin L, et al. 2025. Leaf functional metabolic traits reveal the adaptation strategies of larch trees along the R/B ratio gradient at the stand level. Scientific Reports 15:19185

doi: 10.1038/s41598-025-04113-1
[2]

Singh R, Rawat M, Pandey R. 2023. Quantifying leaf-trait co-variation and strategies for ecosystem functioning of Quercus leucotrichophora (Ban Oak) forest in Himalaya. Ecological Indicators 150:110212

doi: 10.1016/j.ecolind.2023.110212
[3]

Liu Z, Zhao M, Zhang H, Ren T, Liu C, et al. 2023. Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Change Biology 29:1144−1159

doi: 10.1111/gcb.16518
[4]

Kuppler J, Albert CH, Ames GM, Armbruster WS, Boenisch G, et al. 2020. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Global Ecology and Biogeography 29:992−1007

doi: 10.1111/geb.13077
[5]

Li Y, Zhang C, Cheng Y, Zeng S, Yang S, et al. 2024. Mixed-species stands improve the coordination between leaf and fine root traits in a common garden experiment. Forests 15(5):744

doi: 10.3390/f15050744
[6]

He N, Yan P, Liu C, Xu L, Li M, et al. 2023. Predicting ecosystem productivity based on plant community traits. Trends in Plant Science 28:43−53

doi: 10.1016/j.tplants.2022.08.015
[7]

De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, et al. 2013. Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology 101:784−795

doi: 10.1111/1365-2745.12074
[8]

Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, et al. 2022. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology & Evolution 6:36−50

doi: 10.1038/s41559-021-01616-8
[9]

Thakur D, Rathore N, Jandová V, Münzbergová Z, Doležal J. 2026. Shift from acquisitive to conservative plant strategies with increasing drought and temperature extremes in an alpine shrub. Annals of Botany 137(1):125−139

doi: 10.1093/aob/mcaf211
[10]

Cui G, Wang Y, Pugnaire FI, Zhang L. 2025. Non-linear responses of plants enhance their resistance to drought in drylands. The Innovation Geoscience 3:100136

doi: 10.59717/j.xinn-geo.2025.100136
[11]

Zhou X, Weng E, Luo Y. 2008. Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecological Applications 18:453−466

doi: 10.1890/07-0626.1
[12]

Becklin KM, Anderson JT, Gerhart LM, Wadgymar SM, Wessinger CA, et al. 2016. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology 172:635−649

doi: 10.1104/pp.16.00793
[13]

Proctor J, Zeppetello LV, Chan D, Huybers P. 2025. Climate change increases the interannual variance of summer crop yields globally through changes in temperature and water supply. Science Advances 11:eady3575

doi: 10.1126/sciadv.ady3575
[14]

In 't Zandt D, Florianová A, Šurinová M, In 't Zandt MH, Klanderud K, et al. 2025. Temperature and precipitation jointly shape the plant microbiome by regulating the start of the growing season. Global Change Biology 31(8):e70431

doi: 10.1111/gcb.70431
[15]

Visakorpi K, Manzanedo RD, Görlich AS, Schiendorfer K, Altermatt Bieger A, et al. 2024. Leaf-level resistance to frost, drought and heat covaries across European temperate tree seedlings. Journal of Ecology 112:559−574

doi: 10.1111/1365-2745.14254
[16]

Ågren GI, Wetterstedt JÅM, Billberger MFK. 2012. Nutrient limitation on terrestrial plant growth – modeling the interaction between nitrogen and phosphorus. New Phytologist 194:953−960

doi: 10.1111/j.1469-8137.2012.04116.x
[17]

Batool F, Bahadur S, Long W. 2024. Soil nutrients determine leaf traits and above-ground biomass in the tropical cloud forest of Hainan Island. Frontiers in Forests and Global Change 7:1342135

doi: 10.3389/ffgc.2024.1342135
[18]

Neina D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science 2019:5794869

doi: 10.1155/2019/5794869
[19]

Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, et al. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience 13:221−226

doi: 10.1038/s41561-019-0530-4
[20]

Fay PA, Gherardi LA, Yahdjian L, Adler PB, Bakker JD, et al. 2025. Interactions among nutrients govern the global grassland biomass–precipitation relationship. Proceedings of the National Academy of Sciences of the United States of America 122:e2410748122

doi: 10.1073/pnas.2410748122
[21]

Joshi RK, Mishra A, Gupta R, Garkoti SC. 2024. Leaf and tree age-related changes in leaf ecophysiological traits, nutrient, and adaptive strategies of Alnus nepalensis in the central Himalaya. Journal of Biosciences 49:24

doi: 10.1007/s12038-023-00385-9
[22]

Burgess AJ, Cardoso AA. 2023. Throwing shade: limitations to photosynthesis at high planting densities and how to overcome them. Plant Physiology 191:825−827

doi: 10.1093/plphys/kiac567
[23]

Zhai B, Sun M, Shen X, Zhu Y, Li G, et al. 2024. Effects of stand density on growth, soil water content and nutrients in black locust plantations in the semiarid Loess Hilly Region. Sustainability 16(1):376

doi: 10.3390/su16010376
[24]

Sun C, Yao J, Huang J, Willemen L, Wang T, et al. 2025. Forest structural attributes as indicators and mediators of aboveground carbon storage and woody plant species richness in natural forests. Ecological Indicators 181:114398

doi: 10.1016/j.ecolind.2025.114398
[25]

Lee YJ, Lee MK, Lee CB. 2025. Combined effects of environmental conditions and stand age–induced tree size variation on temperate forest carbon pools among stand types in South Korea. Forest Ecology and Management 581:122553

doi: 10.1016/j.foreco.2025.122553
[26]

Chelli S, Simonetti E, Wellstein C, Campetella G, Carnicelli S, et al. 2019. Effects of climate, soil, forest structure and land use on the functional composition of the understorey in Italian forests. Journal of Vegetation Science 30:1110−1121

doi: 10.1111/jvs.12792
[27]

Feng T, Zheng H, Wei W, Wang P, Bi H, et al. 2025. Natural forests accelerate soil hydrological processes and enhance water-holding capacities compared to planted forests after long-term restoration. Water Resources Research 61(9):e2025WR040857

doi: 10.1029/2025wr040857
[28]

Zhang X, Duan J, Ji Y, Liu W, Gao J. 2024. Leaf nutrient traits exhibit greater environmental plasticity compared to resource utilization traits along an elevational gradient. Frontiers in Plant Science 15:1484744

doi: 10.3389/fpls.2024.1484744
[29]

Carnus JM, Parrotta J, Brockerhoff E, Arbez M, Jactel H, et al. 2006. Planted forests and biodiversity. Journal of Forestry 104(2):65−77

doi: 10.1093/jof/104.2.65
[30]

Wang L, Wei F, Tagesson T, Fang Z, Svenning JC. 2025. Transforming forest management through rewilding: Enhancing biodiversity, resilience, and biosphere sustainability under global change. One Earth 8:101195

doi: 10.1016/j.oneear.2025.101195
[31]

Meng TT, Wang H, Harrison SP, Prentice IC, Ni J, et al. 2015. Responses of leaf traits to climatic gradients: Adaptive variation versus compositional shifts. Biogeosciences 12(18):5339−5352

doi: 10.5194/bg-12-5339-2015
[32]

Wang X, Wang J, Zhang L, Lv C, Liu L, et al. 2022. Climatic factors determine the distribution patterns of leaf nutrient traits at large scales. Plants 11:2171

doi: 10.3390/plants11162171
[33]

Bohman K. 2004. Functional and morphological diversity of trees in different land use types-along a rainforest margin in Sulawesi, Indonesia. PhD. Thesis. Georg-August-Universität Göttingen, Germany. doi: 10.53846/goediss-3435

[34]

Rawat M, Arunachalam K, Arunachalam A, Alatalo JM, Pandey R. 2021. Assessment of leaf morphological, physiological, chemical and stoichiometry functional traits for understanding the functioning of Himalayan temperate forest ecosystem. Scientific Reports 11:23807

doi: 10.1038/s41598-021-03235-6
[35]

Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4):335−380

doi: 10.1071/bt02124
[36]

Ma JG, Yu JF, Wang XB, Hou FJ. 2025. Plant and microbial communities follow fast-to-slow strategies in response to grazing in an arid rangeland. Agriculture, Ecosystems & Environment 384:109550

doi: 10.1016/j.agee.2025.109550
[37]

Zheng L, Barry KE, Guerrero-Ramírez NR, Craven D, Reich PB, et al. 2024. Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding. Nature Communications 15:2078

doi: 10.1038/s41467-024-46355-z
[38]

Swann ALS, Fung IY, Chiang JCH. 2012. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences 109:712−716

doi: 10.1073/pnas.1116706108
[39]

Sun K, Sun R, Li Y, Ji H, Jia B, et al. 2023. Plant economic strategies in two contrasting forests. BMC Plant Biology 23:366

doi: 10.1186/s12870-023-04375-9
[40]

Coelho MTP, Barreto E, Rangel TF, Diniz-Filho JAF, Wüest RO, et al. 2023. The geography of climate and the global patterns of species diversity. Nature 622:537−544

doi: 10.1038/s41586-023-06577-5
[41]

Huang S, Li R, Li Y, Xue S, Fang P, et al. 2025. Forest greenness stability in response to climate change along forest edge–core gradients. Agricultural and Forest Meteorology 375:110850

doi: 10.1016/j.agrformet.2025.110850
[42]

Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó. 2019. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications 10:2555

doi: 10.1038/s41467-019-10453-0
[43]

Wang H, Prentice IC, Wright IJ, Warton DI, Qiao S, et al. 2023. Leaf economics fundamentals explained by optimality principles. Science Advances 9(3):eadd5667

doi: 10.1126/sciadv.add5667
[44]

Li R, Cheng X, Dai P, Zhang M, Li M, et al. 2025. Plant architectural structure and leaf trait responses to environmental change: a meta-analysis. Plants 14(11):1717

doi: 10.3390/plants14111717
[45]

Song Y, Sterck F, Zhou X, Liu Q, Kruijt B, et al. 2022. Drought resilience of conifer species is driven by leaf lifespan but not by hydraulic traits. New Phytologist 235:978−992

doi: 10.1111/nph.18177
[46]

Luo W, Griffin-Nolan RJ, Song L, Te N, Chen J, et al. 2023. Interspecific and intraspecific trait variability differentially affect community-weighted trait responses to and recovery from long-term drought. Functional Ecology 37:504−512

doi: 10.1111/1365-2435.14239
[47]

Shi K, Naz M, Zhang C, Shao H. 2025. Aridity and grazing are associated with reduced trait complementarity and higher invasion intensity of Solanum rostratum in native plant communities. Functional Ecology 39:3255−3268

doi: 10.1111/1365-2435.70177
[48]

Oishy MN, Shemonty NA, Fatema SI, Mahbub S, Mim EL, et al. 2025. Unravelling the effects of climate change on the soil-plant-atmosphere interactions: a critical review. Soil & Environmental Health 3:100130

doi: 10.1016/j.seh.2025.100130
[49]

Thepbandit W, Athinuwat D. 2024. Rhizosphere microorganisms supply availability of soil nutrients and induce plant defense. Microorganisms 12:558

doi: 10.3390/microorganisms12030558
[50]

Beugnon R, Nolwenn, Milcu A, Lenoir J, Puissant J, et al. 2024. Microclimate modulation: An overlooked mechanism influencing the impact of plant diversity on ecosystem functioning. Global Change Biology 30(3):e17214

doi: 10.1111/gcb.17214
[51]

Augusto L, Borelle R, Boča A, Bon L, Orazio C, et al. 2025. Widespread slow growth of acquisitive tree species. Nature 640:395−401

doi: 10.1038/s41586-025-08692-x
[52]

Kramp RE, Liancourt P, Herberich MM, Saul L, Weides S, et al. 2022. Functional traits and their plasticity shift from tolerant to avoidant under extreme drought. Ecology 103(12):e3826

doi: 10.1002/ecy.3826
[53]

Waring EF, Perkowski EA, Smith NG. 2023. Soil nitrogen fertilization reduces relative leaf nitrogen allocation to photosynthesis. Journal of Experimental Botany 74:5166−5180

doi: 10.1093/jxb/erad195
[54]

Han Y, White PJ, Cheng L. 2022. Mechanisms for improving phosphorus utilization efficiency in plants. Annals of Botany 129:247−258

doi: 10.1093/aob/mcab145
[55]

Khan F, Siddique AB, Shabala S, Zhou M, Zhao C. 2023. Phosphorus plays key roles in regulating plants' physiological responses to abiotic stresses. Plants 12:2861

doi: 10.3390/plants12152861
[56]

Fan Z, Xie T, Shan L, Wang H, Ma J, et al. 2025. Soil-driven coupling of plant community functional traits and diversity in desert–oasis transition zone. Plants 14:1997

doi: 10.3390/plants14131997
[57]

Zhang X, Chen X, Ji Y, Wang R, Gao J. 2024. Forest age drives the resource utilization indicators of trees in planted and natural forests in China. Plants 13:806

doi: 10.3390/plants13060806
[58]

Cachinero-Vivar AM, Navarro-Cerrillo RM, Cabrera-Puerto RJ, Pérez-Priego O. 2024. Impact of thinning on leaf economics, plant hydraulics, and growth dynamics. Forest Ecology and Management 562:121914

doi: 10.1016/j.foreco.2024.121914
[59]

Gabira MM, Girona MM, DesRochers A, Kratz D, da Silva RBG, et al. 2023. The impact of planting density on forest monospecific plantations: an overview. Forest Ecology and Management 534:120882

doi: 10.1016/j.foreco.2023.120882
[60]

Malizia A, Blundo C, Carilla J, Osinaga Acosta O, Cuesta F, et al. 2020. Elevation and latitude drives structure and tree species composition in Andean forests: Results from a large-scale plot network. PLoS One 15:e0231553

doi: 10.1371/journal.pone.0231553
[61]

Garfield D, Brukas V. 2025. Fast-growing broadleaf trees in niche configurations: a business model approach to economization and socio-technical transitions. Journal of Forest Business Research 4(1):96−127

doi: 10.2139/ssrn.5025374
[62]

Silvestro R, Mura C, Alano Bonacini DA, de Lafontaine G, Faubert P, et al. 2023. Local adaptation shapes functional traits and resource allocation in black spruce. Scientific Reports 13:21257

doi: 10.1038/s41598-023-48530-6
[63]

Zhang X, He X, Gao J, Wang L. 2019. Latitudinal and climate effects on key plant traits in Chinese forest ecosystems. Global Ecology and Conservation 17:e00527

doi: 10.1016/j.gecco.2019.e00527