[1]

Yamada SI, Tomioka K, Koga K. 1976. A biogenetic-type asymmetric synthesis of natural (+)-maritidine from L-tyrosine. Tetrahedron Letters 17:57−60

doi: 10.1016/S0040-4039(00)71322-0
[2]

Rockwood K, Fay S, Song X, MacKnight C, Gorman M, et al. 2006. Attainment of treatment goals by people with Alzheimer's disease receiving galantamine: a randomized controlled trial. Canadian Medical Association Journal 174:1099−1105

doi: 10.1503/cmaj.051432
[3]

Shen S, Tong Y, Luo Y, Huang L, Gao W. 2022. Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Natural Product Reports 39:1856−1875

doi: 10.1039/D2NP00028H
[4]

Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528−532

doi: 10.1038/nature12051
[5]

Shafiey SI, Ahmed KA, Abo-Saif AA, Abo-Youssef AM, Mohamed WR. 2024. Galantamine mitigates testicular injury and disturbed spermatogenesis in adjuvant arthritic rats via modulating apoptosis, inflammatory signals, and IL-6/JAK/STAT3/SOCS3 signaling. Inflammopharmacology 32:405−418

doi: 10.1007/s10787-023-01268-z
[6]

Mehta N, Meng Y, Zare R, Kamenetsky-Goldstein R, Sattely E. 2024. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes. Cell 187:5620−5637.e10

doi: 10.1016/j.cell.2024.08.027
[7]

Karimzadegan V, Koirala M, Sobhanverdi S, Merindol N, Majhi BB, et al. 2024. Characterization of cinnamate 4-hydroxylase (CYP73A) and p-coumaroyl 3'-hydroxylase (CYP98A) from Leucojum aestivum, a source of Amaryllidaceae alkaloids. Plant Physiology and Biochemistry 210:108612

doi: 10.1016/j.plaphy.2024.108612
[8]

Wu Y, Zhang Y, Fan H, Gao J, Shen S, et al. 2024. Multiple NADPH-cytochrome P450 reductases from Lycoris radiata involved in Amaryllidaceae alkaloids biosynthesis. Plant Molecular Biology 114:120

doi: 10.1007/s11103-024-01516-y
[9]

Wang R, Han X, Xu S, Xia B, Jiang Y, et al. 2019. Cloning and characterization of a tyrosine decarboxylase involved in the biosynthesis of galanthamine in Lycoris aurea. PeerJ 7:e6729

doi: 10.7717/peerj.6729
[10]

Fan SP, Chen W, Wei JC, Gao XX, Yang YC, et al. 2022. Molecular cloning and characterization of three phenylalanine ammonia-lyase genes from Schisandra chinensis. Chinese Journal of Natural Medicines 20:527−536

doi: 10.1016/S1875-5364(22)60173-0
[11]

Li W, Yang Y, Qiao C, Zhang G, Luo Y. 2018. Functional characterization of phenylalanine ammonia-lyase- and cinnamate 4-hydroxylase-encoding genes from Lycoris radiata, a galanthamine-producing plant. International Journal of Biological Macromolecules 117:1264−1279

doi: 10.1016/j.ijbiomac.2018.06.046
[12]

Erdelmeier CA, Wright AD, Orjala J, Baumgartner B, Rali T, et al. 1991. New indole alkaloid glycosides from Nauclea orientalis. Planta Medica 57:149−152

doi: 10.1055/s-2006-960052
[13]

Ma J, Xie Y, Tian F, Chen M, Zhou X, et al. 2025. Plant tannase: evolutionary and functional divergence features. Journal of Agricultural and Food Chemistry 73:8543−8554

doi: 10.1021/acs.jafc.4c12975
[14]

Utomo JC, Barrell HB, Kumar R, Smith J, Brant MS, et al. 2024. Reconstructing curcumin biosynthesis in yeast reveals the implication of caffeoyl-shikimate esterase in phenylpropanoid metabolic flux. Metabolic Engineering 82:286−296

doi: 10.1016/j.ymben.2024.02.011
[15]

Li Q, Xu J, Zheng Y, Zhang Y, Cai Y. 2021. Transcriptomic and metabolomic analyses reveals that exogenous methyl jasmonate regulates galanthamine biosynthesis in Lycoris longituba seedlings. Frontiers in Plant Science 12:713795

doi: 10.3389/fpls.2021.713795
[16]

Singh A, Massicotte MA, Garand A, Tousignant L, Ouellette V, et al. 2018. Cloning and characterization of norbelladine synthase catalyzing the first committed reaction in Amaryllidaceae alkaloid biosynthesis. BMC Plant Biology 18:338

doi: 10.1186/s12870-018-1570-4
[17]

Tousignant L, Diaz-Garza AM, Majhi BB, Gélinas SE, Singh A, et al. 2022. Transcriptome analysis of Leucojum aestivum and identification of genes involved in norbelladine biosynthesis. Planta 255:30

doi: 10.1007/s00425-021-03741-x
[18]

Majhi BB, Gélinas SE, Mérindol N, Ricard S, Desgagné-Penix I. 2023. Characterization of norbelladine synthase and noroxomaritidine/norcraugsodine reductase reveals a novel catalytic route for the biosynthesis of Amaryllidaceae alkaloids including the Alzheimer's drug galanthamine. Frontiers in Plant Science 14:1231809

doi: 10.3389/fpls.2023.1231809
[19]

Li W, Qiao C, Pang J, Zhang G, Luo Y. 2019. The versatile O-methyltransferase LrOMT catalyzes multiple O-methylation reactions in amaryllidaceae alkaloids biosynthesis. International Journal of Biological Macromolecules 141:680−692

doi: 10.1016/j.ijbiomac.2019.09.011
[20]

Liu Z, Sun B, Li J, Xiang Y, Wang R, et al. 2024. Functional characterization of CYP96T1-like cytochrome P450 from Lycoris aurea catalyzing para-para' and para-ortho' oxidative coupling in Amaryllidaceae alkaloids biosynthesis. Frontiers in Plant Science 15:1438102

doi: 10.3389/fpls.2024.1438102
[21]

Kilgore MB, Augustin MM, Starks CM, O'Neil-Johnson M, May GD, et al. 2014. Cloning and characterization of a norbelladine 4'-O-methyltransferase involved in the biosynthesis of the Alzheimer's drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS One 9:e103223

doi: 10.1371/journal.pone.0103223
[22]

Cheng Y, Luo L, Tang H, Wang J, Ren L, et al. 2024. Engineering the microenvironment of P450s to enhance the production of diterpenoids in Saccharomyces cerevisiae. Acta Pharmaceutica Sinica B 14:4608−4618

doi: 10.1016/j.apsb.2024.05.019
[23]

Kilgore MB, Augustin MM, May GD, Crow JA, Kutchan TM. 2016. CYP96T1 of Narcissus sp aff. pseudonarcissus catalyzes formation of the Para-Para' C-C phenol couple in the amaryllidaceae alkaloids. Frontiers in Plant Science 7:225

doi: 10.3389/fpls.2016.00225
[24]

Liyanage NS, Lamichhane B, Fantino E, Mérindol N, Gélinas SE, et al. 2025. Coclaurine N-methyltransferase-like enzymes drive the final biosynthetic reaction of the anti-Alzheimer's drug galanthamine in Amaryllidaceae. Plant Physiology and Biochemistry 226:110067

doi: 10.1016/j.plaphy.2025.110067
[25]

Lamichhane B, Gélinas SE, Merindol N, Koirala M, Dos Santos KCG, et al. 2025. Elucidating the enzyme network driving Amaryllidaceae alkaloids biosynthesis in Leucojum aestivum. Plant Biotechnology Journal 23:1988−2005

doi: 10.1111/pbi.70026
[26]

Le NTH, Janssen K, Kirchmair J, Pieters L, Tuenter E. 2024. A mini-review of the anti-SARS-CoV-2 potency of Amaryllidaceae alkaloids. Phytomedicine 129:155576

doi: 10.1016/j.phymed.2024.155576
[27]

Heinrich M. 2010. Galanthamine from Galanthus and other Amaryllidaceae – chemistry and biology based on traditional use. The Alkaloids: Chemistry and Biology 68:157−165

doi: 10.1016/s1099-4831(10)06804-5
[28]

Ka S, Masi M, Merindol N, Di Lecce R, Plourde MB, et al. 2020. Gigantelline, gigantellinine and gigancrinine, cherylline- and crinine-type alkaloids isolated from Crinum jagus with anti-acetylcholinesterase activity. Phytochemistry 175:112390

doi: 10.1016/j.phytochem.2020.112390
[29]

Jayawardena TU, Merindol N, Liyanage NS, Desgagné-Penix I. 2024. Unveiling Amaryllidaceae alkaloids: from biosynthesis to antiviral potential – a review. Natural Product Reports 41:721−747

doi: 10.1039/D3NP00044C
[30]

Jin Z. 2009. Amaryllidaceae and Sceletium alkaloids. Natural Product Reports 26:363−381

doi: 10.1039/B718044F
[31]

Georgiev V, Ivanov I, Berkov S, Pavlov A. 2011. Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiologiae Plantarum 33:927−933

doi: 10.1007/s11738-010-0622-7
[32]

Zetzsche LE, Yazarians JA, Chakrabarty S, Hinze ME, Murray LAM, et al. 2022. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603:79−85

doi: 10.1038/s41586-021-04365-7
[33]

Heinrich M, Lee Teoh H. 2004. Galanthamine from snowdrop − the development of a modern drug against Alzheimer's disease from local Caucasian knowledge. Journal of Ethnopharmacology 92:147−162

doi: 10.1016/j.jep.2004.02.012
[34]

Kirby GW, Tiwari HP. 1966. Phenol oxidation and biosynthesis. Part IX. The biosynthesis of norpluviine and galanthine. Journal of the Chemical Society C: Organic 1966:676−691

doi: 10.1039/J39660000676
[35]

Koutová D, Maafi N, Havelek R, Opletal L, Blunden G, et al. 2020. Chemical and biological aspects of montanine-type alkaloids isolated from plants of the Amaryllidaceae family. Molecules 25:2337

doi: 10.3390/molecules25102337
[36]

Le NTH, De Jonghe S, Erven K, Neyts J, Pannecouque C, et al. 2023. A new alkaloid from Pancratium maritimum − structure elucidation using computer-assisted structure elucidation (CASE) and evaluation of cytotoxicity and anti-SARS-CoV-2 activity. Phytochemistry Letters 58:1−7

doi: 10.1016/j.phytol.2023.09.006
[37]

Luo X, Lin C, Liang H, Hong X, Huang K. 2004. Study of chemical compositions of hymenocallis littoralis. In Frontiers on Separation Science and Technology, eds. Tong Z, Kin SH. Singapore: World Scientific. pp. 708−711 doi: 10.1142/9789812702623_0137

[38]

Renard-Nozaki J, Kim T, Imakura Y, Kihara M, Kobayashi S. 1989. Effect of alkaloids isolated from Amaryllidaceae on herpes simplex virus. Research in Virology 140:115−128

doi: 10.1016/S0923-2516(89)80089-5
[39]

Zhang Q, Zhang FM, Zhang CS, Liu SZ, Tian JM, et al. 2019. Catalytic asymmetric total syntheses of (−)-galanthamine and (−)-lycoramine. The Journal of Organic Chemistry 84:12664−12671

doi: 10.1021/acs.joc.9b01971
[40]

Feinstein AI, Wildman WC. 1976. Biosynthetic oxidation and rearrangement of vittatine and its derivatives. The Journal of Organic Chemistry 41:2447−2450

doi: 10.1021/jo00876a020
[41]

Manu P, Mensah JO, Gasu EN, Borquaye LS. 2024. The Amaryllidaceae alkaloid, montanine, is a potential inhibitor of the Trypanosoma cruzi trans-sialidase enzyme. Journal of Biomolecular Structure and Dynamics 42:8920−8936

doi: 10.1080/07391102.2023.2272750
[42]

Zhang Q, Zhang FM, Zhang CS, Liu SZ, Tian JM, et al. 2019. Enantioselective synthesis of cis-hydrobenzofurans bearing all-carbon quaternary stereocenters and application to total synthesis of (‒)-morphine. Nature Communications 10:2507

doi: 10.1038/s41467-019-10398-4
[43]

Menéndez-Perdomo IM, Facchini PJ. 2023. Elucidation of the (R)-enantiospecific benzylisoquinoline alkaloid biosynthetic pathways in sacred lotus (Nelumbo nucifera). Scientific Reports 13:2955

doi: 10.1038/s41598-023-29415-0
[44]

Kametani T, Yamaki K, Yagi H, Fukumoto K. 1969. Studies on the synthesis of heterocyclic compounds. Part CCCXV. Modified total synthesis of (±)-galanthamine through phenol oxidation. Journal of the Chemical Society C: Organic 18:2602−2605

doi: 10.1039/j39690002602
[45]

Arisawa M, Tohma H, Kita Y. 2000. 超原子価ヨウ素試薬を用いるフェノール類の酸化的カップリング反応の開発と Amaryllidaceae alkaloids 合成への応用 [Development of intramolecular oxidative phenolic coupling reactions using hypervalent iodine (III) reagents and their application to the synthesis of Amaryllidaceae alkaloids]. Yakugaku Zasshi 120:1061−1073 (in Japanese)

doi: 10.1248/yakushi1947.120.10_1061
[46]

Krikorian D, Tarpanov V, Parushev S, Mechkarova P. 2000. New achievements in the field of intramolecular phenolic coupling reactions, using hypervalent (III) iodine reagent: synthesis of galanthamine. Synthetic Communications 30:2833−2846

doi: 10.1080/00397910008087434
[47]

Node M, Kodama S, Hamashima Y, Baba T, Hamamichi N, et al. 2001. An efficient synthesis of (±)-narwedine and (±)-galanthamine by an improved phenolic oxidative coupling. Angewandte Chemie International Edition 40:3060−3062

[48]

Xiong Z, Weidlich F, Sanchez C, Wirth T. 2022. Biomimetic total synthesis of (−)-galanthamine via intramolecular anodic aryl–phenol coupling. Organic & Biomolecular Chemistry 20:4123−4127

doi: 10.1039/D2OB00669C
[49]

Trost BM, Tang W, Toste FD. 2005. Divergent enantioselective synthesis of (-)-galanthamine and (-)-morphine. Journal of the American Chemical Society 127:14785−14803

doi: 10.1021/ja054449+
[50]

Majumder S, Yadav A, Pal S, Khatua A, Bisai A. 2022. Asymmetric total syntheses of (−)-lycoramine, (−)-lycoraminone, (−)-narwedine, and (−)-galanthamine. The Journal of Organic Chemistry 87:7786−7797

doi: 10.1021/acs.joc.2c00420
[51]

Guillou C, Beunard JL, Gras E, Thal C. 2001. An efficient total synthesis of (±)-galanthamine. Angewandte Chemie International Edition 40(24):4745−4746

doi: 10.1002/1521-3773(20011217)40:24<4745::AID-ANIE4745>3.0.CO;2-5
[52]

Satcharoen V, McLean NJ, Kemp SC, Camp NP, Brown RCD. 2007. Stereocontrolled synthesis of (-)-galanthamine. Organic Letters 9:1867−1869

doi: 10.1021/ol070255i
[53]

Park WS, Koo KA, Bae JY, Kim HJ, Kang DM, et al. 2021. Dibenzocyclooctadiene lignans in plant parts and fermented beverages of Schisandra chinensis. Plants 10:361

doi: 10.3390/plants10020361
[54]

Chen JQ, Xie JH, Bao DH, Liu S, Zhou QL. 2012. Total synthesis of (-)-galanthamine and (-)-lycoramine via catalytic asymmetric hydrogenation and intramolecular reductive Heck cyclization. Organic Letters 14:2714−2717

doi: 10.1021/ol300913g
[55]

Nugent J, Matoušová E, Banwell MG. 2015. A total synthesis of galanthamine involving de novo construction of the aromatic C-ring. European Journal of Organic Chemistry 2015:3771−3778

doi: 10.1002/ejoc.201500365
[56]

Buckler JN, Taher ES, Fraser NJ, Willis AC, Carr PD, et al. 2017. The synthesis of certain derivatives and analogues of (−)- and (+)-galanthamine and an assessment of their capacities to inhibit acetylcholine esterase. The Journal of Organic Chemistry 82:7869−7886

doi: 10.1021/acs.joc.7b01062
[57]

Endoma-Arias MAA, Hudlicky T. 2016. Chemoenzymatic total synthesis of (+)-galanthamine and (+)-narwedine from phenethyl acetate. Chemistry 22:14540−14543

doi: 10.1002/chem.201603735
[58]

Xue Y, Dong G. 2022. Deconstructive synthesis of bridged and fused rings via transition-metal-catalyzed 'cut-and-sew' reactions of benzocyclobutenones and cyclobutanones. Accounts of Chemical Research 55:2341−2354

doi: 10.1021/acs.accounts.2c00400
[59]

Chen P, Bao X, Zhang LF, Ding M, Han XJ, et al. 2011. Asymmetric synthesis of bioactive hydrodibenzofuran alkaloids: (−)-lycoramine, (−)-galanthamine, and (+)-lunarine. Angewandte Chemie International Edition 50(35):8161−8166

doi: 10.1002/anie.201103198
[60]

Chang YP, Ma X, Shao H, Zhao YM. 2021. Total syntheses of galanthamine and lycoramine via a palladium-catalyzed cascade cyclization and late-stage reorganization of the cyclized skeleton. Organic Letters 23:9659−9663

doi: 10.1021/acs.orglett.1c03943
[61]

Ishikawa T, Kudo K, Kuroyabu K, Uchida S, Kudoh T, et al. 2008. Domino double Michael-claisen cyclizations: a powerful general tool for introducing quaternary stereocenters at C4 of cyclohexane-1,3-diones and total synthesis of diverse families of sterically congested alkaloids. The Journal of Organic Chemistry 73:7498−7508

doi: 10.1021/jo801316s
[62]

Hu X, Tu YQ, Zhang E, Gao S, Wang S, et al. 2006. Total synthesis of (±)-galanthamine. Organic Letters 8:1823−1825

doi: 10.1021/ol060339b
[63]

Magnus P, Sane N, Fauber BP, Lynch V. 2009. Concise syntheses of (−)-galanthamine and (±)-codeine via intramolecular alkylation of a phenol derivative. Journal of the American Chemical Society 131:16045−16047

doi: 10.1021/ja9085534
[64]

Jiang B, Gao L, Wang H, Sun Y, Zhang X, et al. 2024. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science 383:622−629

doi: 10.1126/science.adj3484
[65]

Atri A, Frölich L, Ballard C, Tariot PN, Molinuevo JL, et al. 2018. Effect of idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with Alzheimer disease: three randomized clinical trials. JAMA 319:130−142

doi: 10.1001/jama.2017.20373
[66]

Georgiev B, Sidjimova B, Berkov S. 2024. Phytochemical and cytotoxic aspects of Amaryllidaceae alkaloids in Galanthus species: a review. Plants 13:3577

doi: 10.3390/plants13243577
[67]

Gowayed MA, Rothe K, Rossol M, Attia AS, Wagner U, et al. 2019. The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochem Pharmacol 170:113665

doi: 10.1016/j.bcp.2019.113665
[68]

Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, et al. 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269−276

doi: 10.1038/35077011
[69]

Zhang Y, Chen H, Li R, Sterling K, Song W. 2023. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduction and Targeted Therapy 8:248

doi: 10.1038/s41392-023-01484-7
[70]

Moschonas EH, Capeci HE, Annas EM, Domyslawski VB, Steber JA, et al. 2024. Evaluating the efficacy of chronic galantamine on sustained attention and cholinergic neurotransmission in a pre-clinical model of traumatic brain injury. Journal of Neurotrauma 41:2428−2441

doi: 10.1089/neu.2024.0173
[71]

Nozaki S, Hijioka M, Wen X, Iwashita N, Namba J, et al. 2024. Galantamine suppresses α-synuclein aggregation by inducing autophagy via the activation of α7 nicotinic acetylcholine receptors. Journal of Pharmacological Sciences 156:102−114

doi: 10.1016/j.jphs.2024.07.008
[72]

Hopkins TJ, Rupprecht LE, Hayes MR, Blendy JA, Schmidt HD. 2012. Galantamine, an acetylcholinesterase inhibitor and positive allosteric modulator of nicotinic acetylcholine receptors, attenuates nicotine taking and seeking in rats. Neuropsychopharmacology 37:2310−2321

doi: 10.1038/npp.2012.83
[73]

Kowal NM, Ahring PK, Liao VWY, Indurti DC, Harvey BS, et al. 2018. Galantamine is not a positive allosteric modulator of human α4β2 or α7 nicotinic acetylcholine receptors. British Journal of Pharmacology 175:2911−2925

doi: 10.1111/bph.14329
[74]

Lin MW, Chen YH, Yang HB, Lin CC, Hung SY. 2020. Galantamine inhibits Aβ1−42-induced neurotoxicity by enhancing α7nAChR expression as a cargo carrier for LC3 binding and Aβ1−42 engulfment during autophagic degradation. Neurotherapeutics 17:676−689

doi: 10.1007/s13311-019-00803-7
[75]

Liu EYL, Xia Y, Kong X, Guo MSS, Yu AXD, et al. 2020. Interacting with α 7 nAChR is a new mechanism for AChE to enhance the inflammatory response in macrophages. Acta Pharmaceutica Sinica B 10:1926−1942

doi: 10.1016/j.apsb.2020.05.005
[76]

Adnan M, DasGupta D, Anwar S, Shamsi A, Siddiqui AJ, et al. 2023. Mechanistic insights into MARK4 inhibition by galantamine toward therapeutic targeting of Alzheimer's disease. Frontiers in Pharmacology 14:1276179

doi: 10.3389/fphar.2023.1276179
[77]

Jin YH, Min JS, Jeon S, Lee J, Kim S, et al. 2021. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine 86:153440

doi: 10.1016/j.phymed.2020.153440
[78]

Nair JJ, van Staden J. 2025. Cytotoxic lycorine alkaloids of the plant family Amaryllidaceae. Bioorganic Chemistry 163:108619

doi: 10.1016/j.bioorg.2025.108619
[79]

Li C, Deng C, Pan G, Wang X, Zhang K, et al. 2020. Lycorine hydrochloride inhibits cell proliferation and induces apoptosis through promoting FBXW7-MCL1 axis in gastric cancer. Journal of Experimental & Clinical Cancer Research 39:230

doi: 10.1186/s13046-020-01743-3
[80]

Trujillo L, Bedoya J, Cortés N, Osorio EH, Gallego JC, et al. 2023. Cytotoxic activity of Amaryllidaceae plants against cancer cells: biotechnological, in vitro, and in silico approaches. Molecules 28:2601

doi: 10.3390/molecules28062601
[81]

Sancha SAR, Dobiasová S, Nejedlý T, Strnad O, Viktorová J, et al. 2024. Lycorine and homolycorine derivatives for chemo-sensitizing resistant human ovarian adenocarcinoma cells. Phytomedicine 126:155460

doi: 10.1016/j.phymed.2024.155460
[82]

Paiva MJM, Nascimento GNL, Damasceno IAM, Santos TT, Silveira D. 2023. Pharmacological and toxicological effects of Amaryllidaceae. Brazilian Journal of Biology 83:e277092

doi: 10.1590/1519-6984.277092
[83]

He J, Qi WB, Wang L, Tian J, Jiao PR, et al. 2013. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza and Other Respiratory Viruses 7:922−931

doi: 10.1111/irv.12035
[84]

Bessa CDPB, Feu AE, de Menezes RPB, Scotti MT, Lima JMG, et al. 2024. Multitarget anti-parasitic activities of isoquinoline alkaloids isolated from Hippeastrum aulicum (Amaryllidaceae). Phytomedicine 128:155414

doi: 10.1016/j.phymed.2024.155414
[85]

Sancha SAR, Szemerédi N, Spengler G, Ferreira MU. 2023. Lycorine carbamate derivatives for reversing P-glycoprotein-mediated multidrug resistance in human colon adenocarcinoma cells. International Journal of Molecular Sciences 24:2061

doi: 10.3390/ijms24032061
[86]

Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ, et al. 2017. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21:274-283.e5

doi: 10.1016/j.stem.2017.06.017
[87]

Koutova D, Maafi N, Muthna D, Kralovec K, Kroustkova J, et al. 2023. Antiproliferative activity and apoptosis-inducing mechanism of Amaryllidaceae alkaloid montanine on A549 and MOLT-4 human cancer cells. Biomedicine & Pharmacotherapy 166:115295

doi: 10.1016/j.biopha.2023.115295
[88]

Elgorashi EE, Drewes SE, van Staden J. 2001. Alkaloids from Crinum moorei. Phytochemistry 56:637−640

doi: 10.1016/S0031-9422(00)00433-7
[89]

Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M. 2004. New crinine-type alkaloids with inhibitory effect on induction of inducible nitric oxide synthase from Crinum yemense. Journal of Natural Products 67:1119−1124

doi: 10.1021/np030529k
[90]

Luchetti G, Johnston R, Mathieu V, Lefranc F, Hayden K, et al. 2012. Bulbispermine: a crinine-type Amaryllidaceae alkaloid exhibiting cytostatic activity toward apoptosis-resistant glioma cells. ChemMedChem 7:815−822

doi: 10.1002/cmdc.201100608
[91]

Giordani RB, de Andrade JP, Verli H, Dutilh JH, Henriques AT, et al. 2011. Alkaloids from Hippeastrum morelianum lem. (Amaryllidaceae). Magnetic Resonance in Chemistry 49:668−672

doi: 10.1002/mrc.2794
[92]

Huang SD, Zhang Y, He HP, Li SF, Tang GH, et al. 2013. A new Amaryllidaceae alkaloid from the bulbs of Lycoris radiata. Chinese Journal of Natural Medicines 11:406−410

doi: 10.1016/S1875-5364(13)60060-6
[93]

Masi M, Frolova LV, Yu X, Mathieu V, Cimmino A, et al. 2015. Jonquailine, a new pretazettine-type alkaloid isolated from Narcissus jonquilla quail, with activity against drug-resistant cancer. Fitoterapia 102:41−48

doi: 10.1016/j.fitote.2015.01.009
[94]

Xiao A, Chen X, Ma J, Chen X, Long T, et al. 2025. Gene signature-guided drug screening identified narciclasine as a potential therapeutic for interstitial fibrosis of the kidney. Kidney International 108:74−89

doi: 10.1016/j.kint.2025.03.021
[95]

Trujillo Chacón LM, Leiva H, Rojas JM, Zapata Vahos IC, Castro D, et al. 2024. Histochemical localization and cytotoxic potential of alkaloids in Phaedranassa lehmannii. Plants 13:3251

doi: 10.3390/plants13223251
[96]

Gomes KS, Costa-Silva TA, Borges WS, Andrade BA, Ferreira DA, et al. 2025. Antiparasitic activity of narciclasine and evaluation of its effects on plasma membrane and mitochondria of Trypanosoma cruzi. ACS Omega 10:3025−3032

doi: 10.1021/acsomega.4c09867
[97]

Tang R, Jiang M, Tang X, Chen S, Xu H, et al. 2025. Narciclasine mitigates sepsis-induced cardiac dysfunction by enhancing BNIP3-mediated mitophagy and suppressing ferroptosis. Free Radical Biology and Medicine 238:220−234

doi: 10.1016/j.freeradbiomed.2025.06.051