| [1] |
Lev-Yadun S, Ne'eman G. 2006. Color changes in old aposematic thorns, spines, and prickles. |
| [2] |
Zhong MC, Jiang XD, Yang GQ, Cui WH, Suo ZQ, et al. 2021. Rose without prickle: genomic insights linked to moisture adaptation. |
| [3] |
Zhou N, Simonneau F, Thouroude T, Hibrand-Saint Oyant L, Foucher F. 2021. Morphological studies of rose prickles provide new insights. |
| [4] |
Zhao Z, Chai M, Sun L, Cong L, Jiang Q, et al. 2021. Identification of a gene responsible for seedpod spine formation and other phenotypic alterations using whole-genome sequencing analysis in Medicago truncatula. |
| [5] |
Yang S, Cai Y, Liu X, Dong M, Zhang Y, et al. 2018. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. |
| [6] |
Liu Y, Wang X, Li Z, Tu J, Lu YN, et al. 2023. Regulation of capsule spine formation in castor. |
| [7] |
Charles-Dominique T, Davies TJ, Hempson GP, Bezeng BS, Daru BH, et al. 2016. Spiny plants, mammal browsers, and the origin of African savannas. |
| [8] |
Zhang F, Rossignol P, Huang T, Wang Y, May A, et al. 2020. Reprogramming of stem cell activity to convert thorns into branches. |
| [9] |
Armani M, Charles-Dominique T, Barton KE, Tomlinson KW. 2019. Developmental constraints and resource environment shape early emergence and investment in spines in saplings. |
| [10] |
Ren J, Duan Y, Li R, Zhang X, Shi Y, et al. 2025. Transcriptional regulation of thorn tip sclerification in plants. |
| [11] |
Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, et al. 2009. Robinia pseudoacacia L.: a lesser known tree species for biomass production |
| [12] |
Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, et al. 2013. Biological flora of the British Isles: Robinia pseudoacacia. |
| [13] |
Guo Q, Wang JX, Su LZ, Lv W, Sun YH, et al. 2017. Development and evaluation of a novel set of EST-SSR markers based on transcriptome sequences of black locust (Robinia pseudoacacia L.). |
| [14] |
Liang H, Xue Y, Li Z, Wang S, Wu X, et al. 2018. Soil moisture decline following the plantation of Robinia pseudoacacia forests: evidence from the Loess Plateau. |
| [15] |
Yuan Y, Zhao Z, Niu S, Li X, Wang Y, et al. 2018. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: a case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. |
| [16] |
Wang X, Zhong Z, Li W, Liu W, Zhang X, et al. 2020. Effects of Robinia pseudoacacia afforestation on aggregate size distribution and organic C dynamics in the central Loess Plateau of China: a chronosequence approach. |
| [17] |
Liu H, Wu S, Li A, Ruan J. 2021. SMARTdenovo: a de novo assembler using long noisy reads. |
| [18] |
Jung Y, Han D. 2022. BWA-MEME: BWA-MEM emulated with a machine learning approach. |
| [19] |
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. |
| [20] |
Pryszcz LP, Gabaldón T. 2016. Redundans: an assembly pipeline for highly heterozygous genomes. |
| [21] |
Deamer D, Akeson M, Branton D. 2016. Three decades of nanopore sequencing. |
| [22] |
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. |
| [23] |
Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. |
| [24] |
Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. 2006. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. |
| [25] |
Eddy SR. 1998. Profile hidden Markov models. |
| [26] |
Schiavinato M, Marcet‐Houben M, Dohm JC, Gabaldón T, Himmelbauer H. 2020. Parental origin of the allotetraploid tobacco Nicotiana benthamiana. |
| [27] |
Puttick MN. 2019. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. |
| [28] |
De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of gene family evolution. |
| [29] |
Zhao Y, Liu R, Xu Y, Wang M, Zhang J, et al. 2019. AGLF provides C-function in floral organ identity through transcriptional regulation of AGAMOUS in Medicago truncatula. |
| [30] |
Huang X, Wang W, Gong T, Wickell D, Kuo LY, et al. 2022. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. |
| [31] |
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. |
| [32] |
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. |
| [33] |
Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. |
| [34] |
Jordon‐Thaden IE, Chanderbali AS, Gitzendanner MA, Soltis DE. 2015. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta. |
| [35] |
Zhu FY, Chen MX, Ye NH, Qiao WM, Gao B, et al. 2018. Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing platforms for transcriptome analysis in plants. |
| [36] |
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. |
| [37] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. |
| [38] |
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. |
| [39] |
Wang J, Zhang P, Lu Y, Li Y, Zheng Y, et al. 2019. piRBase: a comprehensive database of piRNA sequences. |
| [40] |
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, et al. 2008. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Technical Report. National Renewable Energy Laboratory (NREL). Golden, Colorado, USA. https://docs.nrel.gov/docs/gen/fy13/42618.pdf |
| [41] |
Kim H, Ralph J. 2010. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. |
| [42] |
Mansfield SD, Kim H, Lu F, Ralph J. 2012. Whole plant cell wall characterization using solution-state 2D NMR. |
| [43] |
Chang YM, Lin HH, Liu WY, Yu CP, Chen HJ, et al. 2019. Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. |
| [44] |
Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. |
| [45] |
Fukuda H, Ohashi-Ito K. 2019. Vascular tissue development in plants. |
| [46] |
Ohtani M, Akiyoshi N, Takenaka Y, Sano R, Demura T. 2017. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation. |
| [47] |
Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, et al. 2005. Transcription switches for protoxylem and metaxylem vessel formation. |
| [48] |
Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, et al. 2010. Vascular-related nac-domain6 and vascular-related nac-domain7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. |
| [49] |
Tan TT, Endo H, Sano R, Kurata T, Yamaguchi M, et al. 2018. Transcription factors VND1-VND3 contribute to cotyledon xylem vessel formation. |
| [50] |
Zhong R, Demura T, Ye ZH. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. |
| [51] |
Han X, Zhao Y, Chen Y, Xu J, Jiang C, et al. 2022. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. |
| [52] |
Luo L, Li L. 2022. Molecular understanding of wood formation in trees. |
| [53] |
Xiang X, Zhou X, Zi H, Wei H, Cao D, et al. 2023. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. |
| [54] |
Hu H, Wang J, Nie S, Zhao J, Batley J, et al. 2024. Plant pangenomics, current practice and future direction. |
| [55] |
Yatsu LY, Espelie KE, Kolattukudy PE. 1983. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. |
| [56] |
Legay S, Guerriero G, André C, Guignard C, Cocco E, et al. 2016. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. |
| [57] |
Wu Z, Wang N, Hisano H, Cao Y, Wu F, et al. 2019. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. |
| [58] |
Yang W, Duan H, Yu K, Hou S, Kang Y, et al. 2024. Integrative dissection of lignin composition in Tartary buckwheat seed hulls for enhanced dehulling efficiency. |
| [59] |
Zhong R, Ye ZH. 2015. The Arabidopsis NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. |
| [60] |
Zhang Q, Luo F, Zhong Y, He J, Li L. 2020. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis. |
| [61] |
Zhou J, Zhong R, Ye ZH. 2014. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. |
| [62] |
Ramachandran P, Augstein F, Mazumdar S, Van Nguyen T, Minina EA, et al. 2021. Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. |
| [63] |
Wang H, Wang ZX, Tian HY, Zeng YL, Xue H, et al. 2025. The miR172a–SNB module orchestrates both induced and adult-plant resistance to multiple diseases via MYB30-mediated lignin accumulation in rice. |