[1]

Wang H, Zhang S, Fu Q, Wang Z, Liu X, et al. 2023. Transcriptomic and metabolomic analysis reveals a protein module involved in preharvest apple peel browning. Plant Physiology 192:2102−2122

doi: 10.1093/plphys/kiad064
[2]

Musacchi S, Serra S. 2018. Apple fruit quality: overview on pre-harvest factors. Scientia Horticulturae 234:409−430

doi: 10.1016/j.scienta.2017.12.057
[3]

Chen YH, Straube J, Khanal BP, Zeisler-Diehl V, Suresh K, et al. 2022. Apple fruit periderms (russeting) induced by wounding or by moisture have the same histologies, chemistries and gene expressions. PLoS One 17:e0274733

doi: 10.1371/journal.pone.0274733
[4]

Straube J, Suvarna S, Chen YH, Khanal BP, Knoche M, et al. 2023. Time course of changes in the transcriptome during russet induction in apple fruit. BMC Plant Biology 23:457

doi: 10.1186/s12870-023-04483-6
[5]

Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, et al. 2013. A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.). PLoS One 8:e78004

doi: 10.1371/journal.pone.0078004
[6]

Khanal BP, Imoro Y, Chen YH, Straube J, Knoche M. 2021. Surface moisture increases microcracking and water vapour permeance of apple fruit skin. Plant Biology 23:74−82

doi: 10.1111/plb.13178
[7]

Chen YH, Straube J, Khanal BP, Knoche M, Debener T. 2020. Russeting in apple is initiated after exposure to moisture Ends − I. histological evidence. Plants 9:1293

doi: 10.3390/plants9101293
[8]

Knoche M, Lang A. 2017. Ongoing growth challenges fruit skin integrity. Critical Reviews in Plant Sciences 36:190−215

doi: 10.1080/07352689.2017.1369333
[9]

De Ross Marchioretto L, De Rossi A, do Amaral LO, de Souza Ribeiro AMA. 2019. Efficacy and mode of action of blossom thinners on 'Fuji More' apple trees. Scientia Horticulturae 246:634−642

doi: 10.1016/j.scienta.2018.11.039
[10]

Wójcik P, Filipczak J, Wójcik M. 2019. Effects of prebloom sprays of tryptophan and zinc on calcium nutrition, yielding and fruit quality of 'Elstar'apple trees. Scientia Horticulturae 246:212−216

doi: 10.1016/j.scienta.2018.10.071
[11]

Stopar M, Hladnik J. 2020. Polysorbates 20, 60 and 80 are apple thinning agents. Acta Horticulturae 1295:57−62

doi: 10.17660/actahortic.2020.1295.7
[12]

Duso C, Castagnoli M, Simoni S, Angeli G. 2010. The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Experimental & Applied Acarology 51:151−168

doi: 10.1007/s10493-009-9300-0
[13]

Li C, Yaegashi H, Kishigami R, Kawakubo A, Yamagishi N, et al. 2020. Apple russet ring and apple green crinkle diseases: fulfillment of Koch's postulates by virome analysis, amplification of full-length cDNA of viral genomes, in vitro transcription of infectious viral RNAs, and reproduction of symptoms on fruits of apple trees inoculated with viral RNAs. Frontiers in Microbiology 11:1627

doi: 10.3389/fmicb.2020.01627
[14]

Khanal BP, Shrestha R, Hückstädt L, Knoche M. 2013. Russeting in apple seems unrelated to the mechanical properties of the cuticle at maturity. HortScience 48:1135−1138

doi: 10.21273/HORTSCI.48.9.1135
[15]

Alston F, Watkins R. 1973. Apple breeding at east malling. Proceedings of Eucarpia Fruit Section Symposium V Top Fruit Breeding Canterbury, Canterbury, UK, September 11−14, 1973. pp. 14−29

[16]

Falginella L, Cipriani G, Monte C, Gregori R, Testolin R, et al. 2015. A major QTL controlling apple skin russeting maps on the linkage group 12 of 'Renetta Grigia di Torriana'. BMC Plant Biology 15:150

doi: 10.1186/s12870-015-0507-4
[17]

Lashbrooke J, Aharoni A, Costa F. 2015. Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development. Journal of Experimental Botany 66:6579−6589

doi: 10.1093/jxb/erv366
[18]

Powell AA, Kostick SA, Howard NP, Luby JJ. 2022. Elucidation and characterization of QTLs for Russet formation on apple fruit in 'Honeycrisp'-derived breeding germplasm. Tree Genetics & Genomes 19:5

doi: 10.1007/s11295-022-01582-7
[19]

Powell AA, Kostick SA, Bernardo R, Luby JJ. 2024. Genomewide prediction to target russet formation in apple. Fruit Research 4:e023

doi: 10.48130/frures-0024-0016
[20]

Heng W, Liu L, Wang MD, Jia B, Liu P, et al. 2014. Differentially expressed genes related to the formation of russet fruit skin in a mutant of 'Dangshansuli' pear (Pyrus bretchnederi Rehd.) determined by suppression subtractive hybridization. Euphytica 196:285−297

doi: 10.1007/s10681-013-1032-x
[21]

Legay S, Guerriero G, André C, Guignard C, Cocco E, et al. 2016. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytologist 212:977−991

doi: 10.1111/nph.14170
[22]

Gou M, Hou G, Yang H, Zhang X, Cai Y, et al. 2017. The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiology 173:1045−1058

doi: 10.1104/pp.16.01614
[23]

Lashbrooke J, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, et al. 2016. MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. The Plant Cell 28:2097−2116

doi: 10.1105/tpc.16.00490
[24]

Miao Y, Duan W, Li A, Yuan M, Meng J, et al. 2024. The MYB transcription factor PpMYB5 regulates Pp4CL1/Pp4CL2 expression to promote lignin biosynthesis of fruit russeting in the flat nectarine. Plant Cell Reports 43:231

doi: 10.1007/s00299-024-03321-9
[25]

Xu J, Xiong L, Yao JL, Zhao P, Jiang S, et al. 2024. Hypermethylation in the promoter regions of flavonoid pathway genes is associated with skin color fading during 'Daihong' apple fruit development. Horticulture Research 11:uhae031

doi: 10.1093/hr/uhae031
[26]

Busatto N, Matsumoto D, Tadiello A, Vrhovsek U, Costa F. 2019. Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PLoS One 14:e0219354

doi: 10.1371/journal.pone.0219354
[27]

Shi CH, Qi B, Wang XQ, Shen LY, Luo J, et al. 2019. Proteomic analysis of the key mechanism of exocarp russet pigmentation of semi-russet pear under rainwater condition. Scientia Horticulturae 254:178−186

doi: 10.1016/j.scienta.2019.04.086
[28]

Heng W, Wang Z, Jiang X, Jia B, Liu P, et al. 2016. The role of polyamines during exocarp formation in a russet mutant of 'Dangshansuli' pear (Pyrus bretschneideri Rehd.). Plant Cell Reports 35:1841−1852

doi: 10.1007/s00299-016-1998-7
[29]

Yuan G, Bian S, Han X, He S, Liu K, et al. 2019. An integrated transcriptome and proteome analysis reveals new insights into russeting of bagging and non-bagging "Golden Delicious" Apple. International Journal of Molecular Sciences 20:4462

doi: 10.3390/ijms20184462
[30]

Drogoudi P, Pantelidis GE. 2022. Comparative effects of gibberellin A3, glycine betaine, and Si, Ca, and K fertilizers on physiological disorders and yield of pomegranate cv. Wonderful. Journal of the Science of Food and Agriculture 102:259−267

doi: 10.1002/jsfa.11354
[31]

Curry E. 2012. Increase in epidermal planar cell density accompanies decreased russeting of 'Golden Delicious' apples treated with gibberellin A4+7. HortScience 47:232−237

doi: 10.21273/HORTSCI.47.2.232
[32]

Li F, Zhang X, Yao Y, Sun X, Liu L. 2011. Whole fruit staining with aniline blue at harvest is associated with superficial pathogenesis of "Fuji" apples after storage. Biotechnic & Histochemistry 86:394−403

doi: 10.3109/10520295.2010.516685
[33]

Yang Y, Zhou B, Wang C, Lv Y, Liu C, et al. 2017. Analysis of the inhibitory effect of 1-Methylcyclopropene on skin greasiness in postharvest apples by revealing the changes of wax constituents and gene expression. Postharvest Biology and Technology 134:87−97

doi: 10.1016/j.postharvbio.2017.08.013
[34]

Wang YX, Wang XJ, Cao Y, Zhong MS, Zhang J, et al. 2022. Chemical composition and morphology of apple cuticular wax during fruit growth and development. Fruit Research 2:1−11

doi: 10.48130/frures-2022-0005
[35]

Wang Y, Zhang J, Wang D, Wang X, Zhang F, et al. 2023. Effects of cellulose nanofibrils treatment on antioxidant properties and aroma of fresh-cut apples. Food Chemistry 415:135797

doi: 10.1016/j.foodchem.2023.135797
[36]

Torres CA, Azocar C, Ramos P, Pérez-Díaz R, Sepulveda G, et al. 2020. Photooxidative stress activates a complex multigenic response integrating the phenylpropanoid pathway and ethylene, leading to lignin accumulation in apple (Malus domestica Bor.) fruit. Horticulture Research 7:22

doi: 10.1038/s41438-020-0244-1
[37]

Rui L, Wang X, Liu G, Li H, Yang Y, et al. 2025. ABF1-MdNRTs/NIAs module mediates ABA-regulated nitrate utilization in apple. Fruit Research 5:e035

doi: 10.48130/frures-0025-0026
[38]

Jiang S, Chen M, Wang Z, Ren Y, Wang B, et al. 2022. Advances in understanding the causes, molecular mechanism, and perspectives of russeting on tree fruit. Frontiers in Plant Science 13:834109

doi: 10.3389/fpls.2022.834109
[39]

Sharma NC, Verma P, Verma P, Kumar P, Sharma CL, et al. 2025. Apple russeting-causes, physiology and control measures: a review. Planta 261:41

doi: 10.1007/s00425-025-04614-3
[40]

Heredia A, Benítez JJ, González Moreno A, Domínguez E. 2024. Revisiting plant cuticle biophysics. New Phytologist 244:65−73

doi: 10.1111/nph.20009
[41]

Falginella L, Andre CM, Legay S, Kui LW, Dare AP, et al. 2021. Differential regulation of triterpene biosynthesis induced by an early failure in cuticle formation in apple. Horticulture Research 8:75

doi: 10.1038/s41438-021-00511-4
[42]

Zhang YL, You CX, Li YY, Hao YJ. 2020. Advances in biosynthesis, regulation, and function of apple cuticular wax. Frontiers in Plant Science 11:1165

doi: 10.3389/fpls.2020.01165
[43]

Li K, Zhong W, Li P, Ren J, Jiang K, et al. 2023. Recent advances in lignin antioxidant: antioxidant mechanism, evaluation methods, influence factors and various applications. International Journal of Biological Macromolecules 251:125992

doi: 10.1016/j.ijbiomac.2023.125992
[44]

Wang Z, Hua J, Yin Y, Gu C, Yu C, et al. 2019. An integrated transcriptome and proteome analysis reveals putative regulators of adventitious root formation in Taxodium 'Zhongshanshan'. International Journal of Molecular Sciences 20:1225

doi: 10.3390/ijms20051225
[45]

Liu Q, Luo L, Zheng L. 2018. Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19:335

doi: 10.3390/ijms19020335