[1]
|
Rockström J, Edenhofer O, Gaertner J, DeClerck F. 2020. Planet-proofing the global food system. Nature Food 1:3−5 doi: 10.1038/s43016-019-0010-4
CrossRef Google Scholar
|
[2]
|
Webb P, Benton TG, Beddington J, Flynn D, Kelly NM, et al. 2020. The urgency of food system transformation is now irrefutable. Nature Food 1:584−85 doi: 10.1038/s43016-020-00161-0
CrossRef Google Scholar
|
[3]
|
Willett W, Rockström J, Loken B, Springmann M, Lang T, et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393:447−92 doi: 10.1016/s0140-6736(18)31788-4
CrossRef Google Scholar
|
[4]
|
IPES-Food. 2016. From Uniformity to Diversity: A Paradigm Shift From Industrial Agriculture to Diversified Agroecological Systems. Available from: http://www.ipes-food.org/_img/upload/files/UniformityToDiversity_ExecSummary.pdf
|
[5]
|
Transforming food systems for affordable healthy diets (FAO I, UNICEF, WFP and WHO). 2020. The State of Food Security and Nutrition in the World 2020. Available from: http://www. fao.org/3/ca9692en/online/ca9692en.html
|
[6]
|
World Food Program. 2020. Global Report on Food Crisis. Available from: https://www.wfp.org/publications/2020-global-report-food-crises
|
[7]
|
Diaz S, Settele J, Brondizio ES, Ngo HT, Agard J, et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:aax3100 doi: 10.1126/science.aax3100
CrossRef Google Scholar
|
[8]
|
FAO. 1996. The State of Food and Agriculture 1996. Food Security: Some Macroeconomic Dimensions [1996]. Available from: http://www.fao.org/3/w1358e/w1358e.pdf
|
[9]
|
HLPE. 2020. Food Security and Nutrition: Building a Global Narrative Towards 2030. Available from: http://www.fao.org/right-to-food/resources/resources-detail/en/c/1295540/.
|
[10]
|
Oteros-Rozas E, Ruiz-Almeida A, Aguado M, González JA, Rivera-Ferre MG. 2019. A social–ecological analysis of the global agrifood system. Proceedings of the National Academy of Sciences 116:26465 doi: 10.1073/pnas.1912710116
CrossRef Google Scholar
|
[11]
|
IPCC. 2019. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC. https://www.ipcc.ch/srccl/
|
[12]
|
Poore J, Nemecek T. 2018. Reducing food's environmental impacts through producers and consumers. Science 360:987−92 doi: 10.1126/science.aaq0216
CrossRef Google Scholar
|
[13]
|
Tian H, Xu R, Canadell J, Thompson R, Winiwarter W, et al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586:248−56 doi: 10.1038/s41586-020-2780-0
CrossRef Google Scholar
|
[14]
|
Withers PJA. 2019. Closing the phosphorus cycle. Nature Sustainability 2:1001−2 doi: 10.1038/s41893-019-0428-6
CrossRef Google Scholar
|
[15]
|
Huang Y, Wang L, Wang W, Li T, He Z, et al. 2018. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Science of The Total Environment 651:3034−42 doi: 10.1016/j.scitotenv.2018.10.185
CrossRef Google Scholar
|
[16]
|
Boeckel T, Brower C, Gilbert M, Grenfell B, Levin S, et al. 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences 112:5649−54 doi: 10.1073/pnas.1503141112
CrossRef Google Scholar
|
[17]
|
Sun D, Li H, Wang E, He W, Hao W, et al. 2020. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. National Science Review 7:1523−26 doi: 10.1093/nsr/nwaa146
CrossRef Google Scholar
|
[18]
|
Clark M, Domingo N, Colgan K, Thakrar S, Tilman D, et al. 2020. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370:705−8 doi: 10.1126/science.aba7357
CrossRef Google Scholar
|
[19]
|
FAO. 2020. Tracking Program on Food and Agriculture-related SDG Indicators. Available from: http://www.fao.org/sdg-progress-report/en/.
|
[20]
|
FAO, WFP. 2020. FAO-WFP Early Warning Analysis of Acute Food Insecurity Hotspots: October 2020. Available from: http:// www.fao.org/emergencies/resources/documents/resources-detail/en/c/1327384/
|
[21]
|
Blay-Palmer A, Carey R, Valette E, Sanderson M. 2020. Post COVID 19 and food pathways to sustainable transformation. Agriculture and Human Values 37:517−19 doi: 10.1007/s10460-020-10051-7
CrossRef Google Scholar
|
[22]
|
Workie E, Mackolil J, Nyika J, Ramadas S. 2020. Deciphering the impact of COVID-19 pandemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Current Research in Environmental Sustainability 2:100014 doi: 10.1016/j.crsust.2020.100014
CrossRef Google Scholar
|
[23]
|
OECD, FAO. Accessed 15 October 2020. OECD-FAO Agricultural Outlook 2020-2029. Available from: https:// doi.org/10.1787/1112c23b-en
|
[24]
|
SEI, IISD, ODI, E3G, UNEP. Accessed 10 December 2020. The Production Gap Report: 2020 Special Report. Available from: http://productiongap.org/2020report
|
[25]
|
UN Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights. Available from: https://population.un.org/wpp/
|
[26]
|
Clark M, Tilman D. 2017. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters 12:064016 doi: 10.1088/1748-9326/aa6cd5
CrossRef Google Scholar
|
[27]
|
Hunter M, Smith R, Schipanski M, Atwood L, Mortensen D. 2017. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 67:386−91 doi: 10.1093/biosci/bix010
CrossRef Google Scholar
|
[28]
|
Laborde D, Murphy S, Parent M, Porciello J, Smaller C. 2020. Ceres2030: Sustainable Solutions to End Hunger - Summary Report. Cornell University, IFPRI and IISD. Available from: https://ceres2030.org/wp-content/uploads/2020/10/ceres2030-summary-report.pdf
|
[29]
|
Xu Z, Chen X, Liu J, Zhang Y, Chau S, et al. 2020. Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems. Nat. Commun. 11:5837 doi: 10.1038/s41467-020-19520-3
CrossRef Google Scholar
|
[30]
|
Smith P, Calvin K, Nkem J, Campbell D, Cherubini F, et al. 2020. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Chang. Biol. 26:1532−75 doi: 10.1111/gcb.14878
CrossRef Google Scholar
|
[31]
|
McElwee P, Calvin K, Campbell D, Cherubini F, Grassi G, et al. 2020. The impact of interventions in the global land and agri-food sectors on Nature's Contributions to People and the UN Sustainable Development Goals. Glob. Chang. Biol. 26:4691−721 doi: 10.1111/gcb.15219
CrossRef Google Scholar
|
[32]
|
Gerten D, Heck V, Jägermeyr J, Bodirsky BL, Fetzer I, et al. 2020. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability 3:200−8 doi: 10.1038/s41893-019-0465-1
CrossRef Google Scholar
|
[33]
|
Boulding KE. 1966. The Economics of the Coming Spaceship Earth, in H Jarrett, ed. Environmental Quality in a Growing Economy, Resources for the Future. Baltimore: Johns Hopkins University Press. pp. 3−14.
|
[34]
|
King FH, 2004. Farmers of Forty Centuries: Organic Farming in China, Korea, and Japan. New York: Dover Publications.
|
[35]
|
Cucurachi S, Scherer L, Guinée J, Tukker A. 2019. Life Cycle Assessment of Food Systems. One Earth 1:292−7 doi: 10.1016/j.oneear.2019.10.014
CrossRef Google Scholar
|
[36]
|
Halpern BS, Cottrell RS, Blanchard JL, Bouwman L, Froehlich HE, et al. 2019. Opinion: Putting all foods on the same table: Achieving sustainable food systems requires full accounting. Proc. Natl. Acad. Sci. U. S. A. 116:18152−56 doi: 10.1073/pnas.1913308116
CrossRef Google Scholar
|
[37]
|
Mier y Terán Giménez Cacho M, Giraldo OF, Aldasoro M, Morales H, Ferguson BG, et al. 2018. Bringing agroecology to scale: key drivers and emblematic cases. Agroecology and Sustainable Food Systems 42:637−65 doi: 10.1080/21683565.2018.1443313
CrossRef Google Scholar
|
[38]
|
Gosnell H, Gill N, Voyer M. 2019. Transformational adaptation on the farm: Processes of change and persistence in transitions to ‘climate-smart’ regenerative agriculture. Global Environmental Change 59:101965 doi: 10.1016/j.gloenvcha.2019.101965
CrossRef Google Scholar
|
[39]
|
Muscio A, Sisto R. 2020. Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy. Sustainability 12:5554 doi: 10.3390/su12145554
CrossRef Google Scholar
|
[40]
|
Adenle AA, Wedig K, Azadi H. 2019. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technology in Society 58:101143 doi: 10.1016/j.techsoc.2019.05.007
CrossRef Google Scholar
|
[41]
|
Priyadarshini P, Abhilash PC. 2020. Policy recommendations for enabling transition towards sustainable agriculture in India. Land Use Policy 96:104718 doi: 10.1016/j.landusepol.2020.104718
CrossRef Google Scholar
|
[42]
|
Kremen C. 2020. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerging Topics in Life Sciences 4:229−40 doi: 10.1042/ETLS20190205
CrossRef Google Scholar
|
[43]
|
Pagotto M, Halog A. 2016. Towards a Circular Economy in Australian Agri-food Industry: An Application of Input-Output Oriented Approaches for Analyzing Resource Efficiency and Competitiveness Potential. Journal of Industrial Ecology 20:1176−86 doi: 10.1111/jiec.12373
CrossRef Google Scholar
|
[44]
|
Ferreira J, Pardini R, Metzger JP, Fonseca CR, Pompeu PS, et al. 2012. Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. Journal of Applied Ecology 49:535−41 doi: 10.1111/j.1365-2664.2012.02145.x
CrossRef Google Scholar
|
[45]
|
Mathews J and Tan H. 2016. Circular economy: Lessons from China. Nature 531:440−2 doi: 10.1038/531440a
CrossRef Google Scholar
|
[46]
|
Schebesta H, Candel JJL. 2020. Game-changing potential of the EU’s Farm to Fork Strategy. Nature Food 1:586−8 doi: 10.1038/s43016-020-00166-9
CrossRef Google Scholar
|
[47]
|
Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, et al. 2018. Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability 1:441−6 doi: 10.1038/s41893-018-0114-0
CrossRef Google Scholar
|
[48]
|
Korhonen J, Honkasalo A, Seppälä J. 2018. Circular Economy: The Concept and its Limitations. Ecological Economics 143:37−46 doi: 10.1016/j.ecolecon.2017.06.041
CrossRef Google Scholar
|
[49]
|
Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, et al. 2014. Importance of food-demand management for climate mitigation. Nature Climate Change 4:924−9 doi: 10.1038/nclimate2353
CrossRef Google Scholar
|
[50]
|
Godfray C, Beddington J, Crute I, Haddad L, Lawrence D, et al. 2010. Food Security: The Challenge of Feeding 9 Billion People. Science 327:812−8 doi: 10.1126/science.1185383
CrossRef Google Scholar
|
[51]
|
Leach M, Nisbett N, Cabral L, Harris J, Hossain N, et al. 2020. Food politics and development. World Development 134:105024 doi: 10.1016/j.worlddev.2020.105024
CrossRef Google Scholar
|
[52]
|
Kremen C, Merenlender AM. 2018. Landscapes that work for biodiversity and people. Science 362:eaau6020 doi: 10.1126/science.aau6020
CrossRef Google Scholar
|
[53]
|
Garibaldi L A, Gemmill-Herren B, D'Annolfo R, Graeub B E, Cunningham S A, et al. 2017. Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security. Trends in Ecology & Evolution 32:68−80 doi: 10.1016/j.tree.2016.10.001
CrossRef Google Scholar
|
[54]
|
Kremen C and Miles A. 2012. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecology and Society 17:40 doi: 10.5751/es-05035-170440
CrossRef Google Scholar
|
[55]
|
Tamburini G, Bommarco R, Wanger T, Kremen C, Heijden M, et al. 2020. Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances 6:eaba1715 doi: 10.1126/sciadv.aba1715
CrossRef Google Scholar
|
[56]
|
Asbjornsen H, Hernandez-Santana V, Liebman M, Bayala J, Chen J, et al. 2013. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renewable Agriculture and Food Systems 29:101−125 doi: 10.1017/s1742170512000385
CrossRef Google Scholar
|
[57]
|
Garibaldi LA, Oddi FJ, Miguez FE, Bartomeus I, Orr MC, et al. 2020. Working landscapes need at least 20% native habitat. Conservation Letters e12773 doi: 10.1111/conl.12773
CrossRef Google Scholar
|
[58]
|
Grass I, Loos J, Baensch S, Batáry P, Librán-Embid F, et al. 2019. Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature 1:262−72 doi: 10.1002/pan3.21
CrossRef Google Scholar
|
[59]
|
Grumbine RE, Xu J. Mountain futures: Pursuing innovative adaptations in coupled social-ecological systems. Frontiers in Ecology and the Environment. In press
|
[60]
|
Priyadarshini P, Abhilash PC. 2020. Fostering sustainable land restoration through circular economy-governed transitions. Restoration Ecology 28:719−23 doi: 10.1111/rec.13181
CrossRef Google Scholar
|
[61]
|
Gao J, Wang Y, Zou C, Xu D, Lin N, et al. 2020. China's ecological conservation redline: A solution for future nature conservation. Ambio 49:1519−29 doi: 10.1007/s13280-019-01307-6
CrossRef Google Scholar
|
[62]
|
Gassner A, Dobie P, Harrison R, Vidal A, Somarriba E, et al. 2020. Making the post-2020 global biodiversity framework a successful tool for building biodiverse, inclusive, resilient and safe food systems for all. Environmental Research Letters 15:101001 doi: 10.1088/1748-9326/abae2b
CrossRef Google Scholar
|
[63]
|
Bawa KS, Nawn N, Chellam R, Krishnaswamy J, Mathur V, et al. 2020. Opinion: Envisioning a biodiversity science for sustaining human well-being. Proc. Natl. Acad. Sci. U. S. A. 117:25951−5 doi: 10.1073/pnas.2018436117
CrossRef Google Scholar
|
[64]
|
Leclère D, Obersteiner M, Barrett M, Butchart SHM, Chaudhary A, et al. 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585:551−6 doi: 10.1038/s41586-020-2705-y
CrossRef Google Scholar
|
[65]
|
Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communication 5:3858 doi: 10.1038/ncomms4858
CrossRef Google Scholar
|
[66]
|
Mueller ND, Lassaletta L. 2020. Nitrogen challenges in global livestock systems. Nature Food 1:400−1 doi: 10.1038/s43016-020-0117-7
CrossRef Google Scholar
|
[67]
|
Stokstad E. 2014. Air pollution. Ammonia pollution from farming may exact hefty health costs. Science 343:238 doi: 10.1126/science.343.6168.238
CrossRef Google Scholar
|
[68]
|
Uwizeye A, de Boer IJM, Opio CI, Schulte RPO, Falcucci A, et al. 2020. Nitrogen emissions along global livestock supply chains. Nature Food 1:437−46 doi: 10.1038/s43016-020-0113-y
CrossRef Google Scholar
|
[69]
|
Cui X, Guo L, Li C, Liu M, Wu G, et al. 2021. The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China. Renewable and Sustainable Energy Reviews 135:110215 doi: 10.1016/j.rser.2020.110215
CrossRef Google Scholar
|
[70]
|
FAO. 2020. The State of Agricultural Commodity Markets 2020. Agricultural markets and sustainable development: Global value chains, smallholder farmers and digital innovations. Available from: http://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1309575/
|
[71]
|
Fraser EDG, Campbell M. 2019. Agriculture 5.0: Reconciling Production with Planetary Health. One Earth 1:278−80 doi: 10.1016/j.oneear.2019.10.022
CrossRef Google Scholar
|
[72]
|
Fan W, Zhang P, Xu Z, Wei H, Lu N, et al. 2018. Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China. Sustainability 10:1810 doi: 10.3390/su10061810
CrossRef Google Scholar
|
[73]
|
Zhang XX, Ma F, Wang L. 2012. Application of Life Cycle Assessment in Agricultural Circular Economy. Applied Mechanics and Materials 260-261:1086−91 doi: 10.4028/www.scientific.net/AMM.260-261.1086
CrossRef Google Scholar
|
[74]
|
Bai Z, Ma W, Ma L, Velthof G, Wei Z, et al. 2018. China’s livestock transition: Driving forces, impacts, and consequences. Science Advances 4:eaar8534 doi: 10.1126/sciadv.aar8534
CrossRef Google Scholar
|
[75]
|
Ma L, Bai Z, Ma W, Guo M, Jiang R, et al. 2019. Exploring Future Food Provision Scenarios for China. Environmental Science and Technology 53:1385−93 doi: 10.1021/acs.est.8b04375
CrossRef Google Scholar
|
[76]
|
Zhang X, Fang Q, Zhang T, Ma W, Velthof G L, et al. 2020. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology 26:888−900 doi: 10.1111/gcb.14826
CrossRef Google Scholar
|
[77]
|
Adegbeye MJ, Ravi Kanth Reddy P, Obaisi AI, Elghandour MMMY, Oyebamiji KJ, et al. 2020. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations - An overview. Journal of Cleaner Production 242:118319 doi: 10.1016/j.jclepro.2019.118319
CrossRef Google Scholar
|
[78]
|
Chia SY, Tanga CM, van Loon JJA, and Dicke M. 2019. Insects for sustainable animal feed: inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability 41:23−30 doi: 10.1016/j.cosust.2019.09.003
CrossRef Google Scholar
|
[79]
|
Georganas A, Giamouri E, Pappas A C, Papadomichelakis G, Galliou F, et al. 2020. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 9:291 doi: 10.3390/foods9030291
CrossRef Google Scholar
|
[80]
|
Macura B, Piniewski M, Księżniak M, Osuch P, Haddaway NR, et al. 2019. Effectiveness of ecotechnologies in agriculture for the recovery and reuse of carbon and nutrients in the Baltic and boreo-temperate regions: a systematic map. Environmental Evidence 8:39 doi: 10.1186/s13750-019-0183-1
CrossRef Google Scholar
|
[81]
|
Morales-Polo C, del Mar Cledera-Castro M, Moratilla Soria BY. 2018. Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives. Applied Sciences 8:1804 doi: 10.3390/app8101804
CrossRef Google Scholar
|
[82]
|
Rosemarin A, Macura B, Carolus J, Barquet K, Ek F, et al. 2020. Circular nutrient solutions for agriculture and wastewater – a review of technologies and practices. Current Opinion in Environmental Sustainability 45:78−91 doi: 10.1016/j.cosust.2020.09.007
CrossRef Google Scholar
|
[83]
|
Zhang C, Liu S, Wu S, Jin S, Reis S, et al. 2019. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resources, Conservation and Recycling 144:65−73 doi: 10.1016/j.resconrec.2019.01.011
CrossRef Google Scholar
|
[84]
|
Donner M, Gohier R, de Vries H. 2020. A new circular business model typology for creating value from agro-waste. Sci. Total Environ. 716:137065 doi: 10.1016/j.scitotenv.2020.137065
CrossRef Google Scholar
|
[85]
|
Zhang Q, Chu Y, Xue Y, Ying H, Chen X, et al. 2020. Outlook of China's agriculture transforming from smallholder operation to sustainable production. Global Food Security 26:100444 doi: 10.1016/j.gfs.2020.100444
CrossRef Google Scholar
|
[86]
|
Kanter DR, Bartolini F, Kugelberg S, Leip A, Oenema O, et al. 2019. Nitrogen pollution policy beyond the farm. Nature Food 1:27−32 doi: 10.1038/s43016-019-0001-5
CrossRef Google Scholar
|
[87]
|
Dalin C, Wada Y, Kastner T, Puma MJ. 2017. Groundwater depletion embedded in international food trade. Nature 543:700−4 doi: 10.1038/nature21403
CrossRef Google Scholar
|
[88]
|
Chaudhary A, Kastner T. 2016. Land use biodiversity impacts embodied in international food trade. Global Environmental Change 38:195−204 doi: 10.1016/j.gloenvcha.2016.03.013
CrossRef Google Scholar
|
[89]
|
Kander A, Jiborn M, Moran DD, Wiedmann TO. 2015. National greenhouse-gas accounting for effective climate policy on international trade. Nature Climate Change 5:431−5 doi: 10.1038/nclimate2555
CrossRef Google Scholar
|
[90]
|
Garrett RD, Ryschawy J, Bell LW, Cortner O, Ferreira J, et al. 2020. Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecology and Society 25:24 doi: 10.5751/es-11412-250124
CrossRef Google Scholar
|
[91]
|
Thomson AM, Ellis EC, Grau HR, Kuemmerle T, Meyfroidt P, et al. 2019. Sustainable intensification in land systems: trade-offs, scales, and contexts. Current Opinion in Environmental Sustainability 38:37−43 doi: 10.1016/j.cosust.2019.04.011
CrossRef Google Scholar
|
[92]
|
Mehrabi Z, Gill M, van Wijk M, Herrero M, Ramankutty N. 2020. Livestock policy for sustainable development. Nature Food 1:160−5 doi: 10.1038/s43016-020-0042-9
CrossRef Google Scholar
|
[93]
|
Herrero M, Thornton PK, Mason-D’Croz D, Palmer J, Benton TG, et al. 2020. Innovation can accelerate the transition towards a sustainable food system. Nature Food 1:266−72 doi: 10.1038/s43016-020-0074-1
CrossRef Google Scholar
|
[94]
|
World Bank Group. 2019. Future of Food: Harnessing Digital Technologies to Improve Food System Outcomes. Available from: https://openknowledge.worldbank.org/handle/10986/31565
|
[95]
|
Mehrabi Z, McDowell MJ, Ricciardi V, Levers C, Martinez JD, et al. 2020. The global divide in data-driven farming. Nature Sustainability 4:154−60 doi: 10.1038/s41893-020-00631-0
CrossRef Google Scholar
|
[96]
|
Fabregas R, Kremer M, Schilbach F. 2019. Realizing the potential of digital development: The case of agricultural advice. Science 366:eaay3038 doi: 10.1126/science.aay3038
CrossRef Google Scholar
|
[97]
|
Herrero M, Thornton PK, Mason-D'Croz D, Palmer J, Bodirsky BL, et al. 2020. Articulating the effect of food systems innovation on the Sustainable Development Goals. The Lancet Planetary Health 5:E50−E62 doi: 10.1016/s2542-5196(20)30277-1
CrossRef Google Scholar
|
[98]
|
Schimmelpfennig D. 2016. Farm Profits and Adoption of Precision Agriculture. Report. 217. US Department of Agriculture, Economic Research Service. U.S.A. Available from: https://www.ers.usda.gov/webdocs/publications/80326/err-217.pdf?v=4266
|
[99]
|
Lowder SK, Skoet J, Raney T. 2016. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Development 87:16−29 doi: 10.1016/j.worlddev.2015.10.041
CrossRef Google Scholar
|
[100]
|
Samberg LH, Gerber JS, Ramankutty N, Herrero M, West PC. 2016. Subnational distribution of average farm size and smallholder contributions to global food production. Environmental Research Letters 11:124010 doi: 10.1088/1748-9326/11/12/124010
CrossRef Google Scholar
|
[101]
|
Acevedo M, Pixley K, Zinyengere N, Meng S, Tufan H, et al. 2020. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat. Plants 6:1231−41 doi: 10.1038/s41477-020-00783-z
CrossRef Google Scholar
|
[102]
|
Xu J, Grumbine RE. 2014. Integrating local hybrid knowledge and state support for climate change adaptation in the Asian Highlands. Climatic Change 124:93−104 doi: 10.1007/s10584-014-1090-7
CrossRef Google Scholar
|
[103]
|
Bijman J, Wijers G. 2019. Exploring the inclusiveness of producer cooperatives. Current Opinion in Environmental Sustainability 41:74−9 doi: 10.1016/j.cosust.2019.11.005
CrossRef Google Scholar
|
[104]
|
Bizikova L, Nkonya E, Minah M, Hanisch M, Turaga RMR, et al. 2020. A scoping review of the contributions of farmers’ organizations to smallholder agriculture. Nature Food 1:620−30 doi: 10.1038/s43016-020-00164-x
CrossRef Google Scholar
|
[105]
|
Chanana-Nag N, Aggarwal PK. 2018. Woman in agriculture, and climate risks: hotspots for development. Climatic Change 158:13−27 doi: 10.1007/s10584-018-2233-z
CrossRef Google Scholar
|
[106]
|
Huyer S. 2016. Closing the Gender Gap in Agriculture. Gender, Technology and Development 20:105−16 doi: 10.1177/0971852416643872
CrossRef Google Scholar
|
[107]
|
Liverpool-Tasie LSO, Wineman A, Young S, Tambo J, Vargas C, et al. 2020. A scoping review of market links between value chain actors and small-scale producers in developing regions. Nature Sustainability 3:799−808 doi: 10.1038/s41893-020-00621-2
CrossRef Google Scholar
|
[108]
|
Rajão R, Soares-Filho B, Nunes F, Börner J, Machado L, et al., 2020. The rotten apples of Brazil's agribusiness. Science 369:246−8. Available from: https://science.sciencemag.org/content/369/6501/246.full
|
[109]
|
El Bilali H. 2019. Research on agro-food sustainability transitions: A systematic review of research themes and an analysis of research gaps. Journal of Cleaner Production 221:353−64 doi: 10.1016/j.jclepro.2019.02.232
CrossRef Google Scholar
|
[110]
|
Zu Ermgassen EKHJ, Ayre B, Godar J, Bastos Lima MG, Bauch S, et al. 2020. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environmental Research Letters 15:035003 doi: 10.1088/1748-9326/ab6497
CrossRef Google Scholar
|
[111]
|
Kinnunen P, Guillaume JHA, Taka M, D’Odorico P, Siebert S, et al. 2020. Local food crop production can fulfil demand for less than one-third of the population. Nature Food 1:229−37 doi: 10.1038/s43016-020-0060-7
CrossRef Google Scholar
|
[112]
|
Farooque M, Zhang A, Liu Y. 2019. Barriers to circular food supply chains in China. Supply Chain Management 24:677−96 doi: 10.1108/scm-10-2018-0345
CrossRef Google Scholar
|
[113]
|
Ricciardi V, Wane A, Sidhu BS, Godde C, Solomon D, et al. 2020. A scoping review of research funding for small-scale farmers in water scarce regions. Nature Sustainability 3:836−44 doi: 10.1038/s41893-020-00623-0
CrossRef Google Scholar
|
[114]
|
Klerkx L, Rose D. 2020. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security 24:100347 doi: 10.1016/j.gfs.2019.100347
CrossRef Google Scholar
|
[115]
|
Lambin EF, Meyfroidt P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. U. S. A. 108:3465−72 doi: 10.1073/pnas.1100480108
CrossRef Google Scholar
|
[116]
|
Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL, et al. 2018. Options for keeping the food system within environmental limits. Nature 562:519−25 doi: 10.1038/s41586-018-0594-0
CrossRef Google Scholar
|
[117]
|
USDA. 2020. China: Evolving Demand in the World’s Largest Agricultural Import Market. Available from: https://www. fas.usda.gov/sites/default/files/2020-09/china-iatr-2020-final.pdf
|
[118]
|
Eker S, Reese G, Obersteiner M. 2019. Modelling the drivers of a widespread shift to sustainable diets. Nature Sustainability 2:725−35 doi: 10.1038/s41893-019-0331-1
CrossRef Google Scholar
|
[119]
|
Leiserowitz A, Ballew M, Rosenthal S, Semaan J, 2020. Climate Change and the American Diet. Report. Yale University and Earth Day Network. New Haven, CT, U.S.A. Available from: https://climatecommunication.yale.edu/wp-content/uploads/2020/02/climate-change-american-diet.pdf
|
[120]
|
DeFries RS, Fanzo J, Mondal P, Remans R, Wood SA. 2017. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence. Environmental Research Letters 12:033001 doi: 10.1088/1748-9326/aa625e
CrossRef Google Scholar
|
[121]
|
IFPRI. 2016. Food Systems Transformation: Brazil, Rawanda, and Vietnam. Available from: https://ebrary.ifpri.org/digital/collection/p15738coll2/id/131070/
|
[122]
|
Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, et al. 2019. A Global Review of Food-Based Dietary Guidelines. Advances in Nutrition 10:590−605 doi: 10.1093/advances/nmy130
CrossRef Google Scholar
|
[123]
|
Hirvonen K, Bai Y, Headey D, Masters WA. 2020. Affordability of the EAT–Lancet reference diet: a global analysis. The Lancet Global Health 8:e59−e66 doi: 10.1016/s2214-109x(19)30447-4
CrossRef Google Scholar
|
[124]
|
Cassman KG, Grassini P. 2020. A global perspective on sustainable intensification research. Nature Sustainability 3:262−68 doi: 10.1038/s41893-020-0507-8
CrossRef Google Scholar
|
[125]
|
Hu Y, Su M, Wang Y, Cui S, Meng F, et al. 2020. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nature Food 1:572−82 doi: 10.1038/s43016-020-00143-2
CrossRef Google Scholar
|
[126]
|
Elzen B, Barbier M, Cerf M, and Grin J. 2012. Stimulating transitions towards sustainable farming systems, in I Darnhofer, et al., eds. Farming Systems Research into the 21st Century: The New Dynamic. Dordrecht: Springer Netherlands. pp. 431−55.
|
[127]
|
Otto IM, Donges JF, Cremades R, Bhowmik A, Hewitt RJ, et al. 2020. Social tipping dynamics for stabilizing Earth's climate by 2050. Proc. Natl. Acad. Sci. U. S. A. 117:2354−65 doi: 10.1073/pnas.1900577117
CrossRef Google Scholar
|
[128]
|
Loorbach D, Frantzeskaki N, Avelino F. 2017. Sustainability Transitions Research: Transforming Science and Practice for Societal Change. Annual Review of Environment and Resources 42:599−626 doi: 10.1146/annurev-environ-102014-021340
CrossRef Google Scholar
|
[129]
|
Scoones I, Stirling A, Abrol D, Atela J, Charli-Joseph L, et al. 2020. Transformations to sustainability: combining structural, systemic and enabling approaches. Current Opinion in Environmental Sustainability 42:65−75 doi: 10.1016/j.cosust.2019.12.004
CrossRef Google Scholar
|
[130]
|
Lavorel S, Locatelli B, Colloff MJ, and Bruley E. 2020. Co-producing ecosystem services for adapting to climate change. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375:20190119 doi: 10.1098/rstb.2019.0119
CrossRef Google Scholar
|
[131]
|
Norström AV, Cvitanovic C, Löf MF, West S, Wyborn C, et al. 2020. Principles for knowledge co-production in sustainability research. Nature Sustainability 3:182−90 doi: 10.1038/s41893-019-0448-2
CrossRef Google Scholar
|
[132]
|
Heikkila T, Gerlak AK. 2018. Working on learning: how the institutional rules of environmental governance matter. Journal of Environmental Planning and Management 62:106−23 doi: 10.1080/09640568.2018.1473244
CrossRef Google Scholar
|
[133]
|
Kern F, Rogge KS. 2018. Harnessing theories of the policy process for analysing the politics of sustainability transitions: A critical survey. Environmental Innovation and Societal Transitions 27:102−17 doi: 10.1016/j.eist.2017.11.001
CrossRef Google Scholar
|
[134]
|
Tengö M, Hill R, Malmer P, Raymond CM, Spierenburg M, et al. 2017. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Current Opinion in Environmental Sustainability 26-27:17−25 doi: 10.1016/j.cosust.2016.12.005
CrossRef Google Scholar
|
[135]
|
Abson DJ, Fischer J, Leventon J, Newig J, Schomerus T, et al. 2017. Leverage points for sustainability transformation. Ambio 46:30−39 doi: 10.1007/s13280-016-0800-y
CrossRef Google Scholar
|
[136]
|
ZEF, FAO. 2020. Investment Costs and Policy Action Opportunities for Reaching a World Without Hunger (SDG2). Available from: https://doi.org/10.4060/cb1497en
|
[137]
|
Schmidt-Traub G, Obersteiner M, Mosnier A. 2019. Fix the broken food system in three steps. Nature 569:181−183 doi: 10.1038/d41586-019-01420-2
CrossRef Google Scholar
|
[138]
|
Weber H, Poeggel K, Eakin H, Fischer D, Lang DJ, et al. 2020. What are the ingredients for food systems change towards sustainability?—Insights from the literature. Environmental Research Letters 15:113001 doi: 10.1088/1748-9326/ab99fd
CrossRef Google Scholar
|
[139]
|
Cohen MJ. 2019. Let them Eat Promises: Global Policy Incoherence, Unmet Pledges, and Misplaced Priorities Undercut Progress on SDG 2. Food Ethics 4:175−87 doi: 10.1007/s41055-019-00048-2
CrossRef Google Scholar
|
[140]
|
Termeer CJAM and Metze TAP. 2019. More than peanuts: Transformation towards a circular economy through a small-wins governance framework. Journal of Cleaner Production 240:118272 doi: 10.1016/j.jclepro.2019.118272
CrossRef Google Scholar
|
[141]
|
Hobson K. 2019. ‘Small stories of closing loops’: social circularity and the everyday circular economy. Climatic Change 163:99−116 doi: 10.1007/s10584-019-02480-z
CrossRef Google Scholar
|
[142]
|
Bennett EM, Solan M, Biggs R, McPhearson T, Norström AV, et al. 2016. Bright spots: seeds of a good Anthropocene. Frontiers in Ecology and the Environment 14:441−48 doi: 10.1002/fee.1309
CrossRef Google Scholar
|