[1]
|
Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, et al. 2017. A global inventory of mountains for bio-geographical applications. Alpine Botany 127:1−15 doi: 10.1007/s00035-016-0182-6
CrossRef Google Scholar
|
[2]
|
Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, et al. 2019. Humboldt's enigma: What causes global patterns of mountain biodiversity? Science 365:1108−13 doi: 10.1126/science.aax0149
CrossRef Google Scholar
|
[3]
|
Payne D, Spehn EM, Prescott GW, Geschke J, Snethlage MA, et al. 2020. Mountain biodiversity is central to sustainable development in mountains and beyond. One Earth 3:530−33 doi: 10.1016/j.oneear.2020.10.013
CrossRef Google Scholar
|
[4]
|
Viviroli D, Kummu M, Meybeck M, Kallio M, Wada Y. 2020. Increasing dependence of lowland populations on mountain water resources. Nature Sustainability 3:917−28 doi: 10.1038/s41893-020-0559-9
CrossRef Google Scholar
|
[5]
|
World Food Programme. 2022. Annual Review 2021. World Food Programme, Rome. https://docs.wfp.org/api/documents/WFP-0000140424/download/?_ga=2.216439263.853035276.1675910294-1283878362.1675910294
|
[6]
|
Martín-López B, Leister I, Lorenzo Cruz P, Palomo I, Grêt-Regamey A, et al. 2019. Nature's contributions to people in mountains: a review. PLoS One 14:e0217847 doi: 10.1371/journal.pone.0217847
CrossRef Google Scholar
|
[7]
|
Schmeller DS, Urbach D, Bates K, Catalan J, Cogălniceanu D, et al. 2022. Scientists' warning of threats to mountains. Science of the Total Environment 853:158611 doi: 10.1016/j.scitotenv.2022.158611
CrossRef Google Scholar
|
[8]
|
UNDESA. 2022. The Sustainable Development Goals Report 2022. Report. UNDESA, New York. https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf
|
[9]
|
Secretariat of the Convention on Biological Diversity. 2022. Kunming-Montreal Global Biodiversity Framework. Conference of the Parties to the Convention on Biological Diversity. Fifteenth Meeting – Part II. CBD/COP/15/L.25. Montreal, Canada, 7−19 December 2022. CBD, Montreal. www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf
|
[10]
|
Grumbine, RE, Xu J. 2021. Five steps to inject transformative change into the Post 2020 Global Biodiversity Framework. BioScience 71:637−46 doi: 10.1093/biosci/biab013
CrossRef Google Scholar
|
[11]
|
Grumbine RE, Xu J. 2021. Mountain futures: Pursuing innovative adaptations in coupled social-ecological systems. Frontiers in Ecology and the Environment 19:342−48 doi: 10.1002/fee.2345
CrossRef Google Scholar
|
[12]
|
Persson E. 2016. What are the core ideas behind the precautionary principle? Science of the Total Environment 557−558:134−41 doi: 10.1016/j.scitotenv.2016.03.034
CrossRef Google Scholar
|
[13]
|
Gómez-Baggethun E, Corbera E, Reyes-García V. 2013. Traditional ecological knowledge and global environmental change: research findings and policy implications. Ecology and Society 18:72 doi: 10.5751/ES-06288-180472
CrossRef Google Scholar
|
[14]
|
Wheeler HC, Root-Bernstein M. 2020. Informing decision-making with Indigenous and local knowledge and science. Journal of Applied Ecology 57:1634−1643 doi: 10.1111/1365-2664.13734
CrossRef Google Scholar
|
[15]
|
Jessen TD, Ban NC, Claxton NX, Darimont CT. 2022. Contributions of Indigenous knowledge to ecological and evolutionary understanding. Frontiers in Ecology and the Environment 20:93−101 doi: 10.1002/fee.2435
CrossRef Google Scholar
|
[16]
|
Alden Wily L. 2018. Collective land ownership in the 21st century: Overview of global trends. Land 7:68 doi: 10.3390/land7020068
CrossRef Google Scholar
|
[17]
|
Asia Indigenous Peoples Pact, Badan Registrasi Wilayah Adat, Cambodian Indigenous Peoples Alliance, Cambodia Indigenous Peoples Organization, Centre for Orang Asli Concerns, et al. 2022. Reconciling Conservation and Global Biodiversity Goals with Community Land Rights in Asia. Rights and Resources Institute, Washington, DC. https://rightsandresources.org/wp-content/uploads/Asia-Conservation-Report.pdf
|
[18]
|
Xu J, Grumbine RE. 2014. Integrating local hybrid knowledge and state support for climate change adaptation in the Asian Highlands. Climatic Change 124:93−104 doi: 10.1007/s10584-014-1090-7
CrossRef Google Scholar
|
[19]
|
Liverpool-Tasie LSO, Wineman A, Young S, Tambo J, Vargas C, et al. 2020. A scoping review of market links between value chain actors and small-scale producers in developing regions. Nature Sustainability 3:799−808 doi: 10.1038/s41893-020-00621-2
CrossRef Google Scholar
|
[20]
|
Song Y, Zhang Y, Song X, Swiderska K. 2016. Smallholder farming systems in southwest China: Exploring key trends and innovations for resilience. Country Report. IIED, London. www.iied.org/sites/default/files/pdfs/migrate/14664IIED.pdf
|
[21]
|
Kimura S, Chen K, Gong B. 2022. Circular Agriculture for Sustainable and Low-Carbon Development in the People's Republic of China. ADB No. 232. Asian Development Bank, Manila. www.adb.org/sites/default/files/publication/843106/adb-brief-232-circular-agriculture-peoples-republic-china.pdf
|
[22]
|
He X, Weisser W, Zou Y, Fan S, Crowther TW, et al. 2022. Integrating agricultural diversification in China’s major policies. Trends in Ecology and Evolution 37:819−22 doi: 10.1016/j.tree.2022.07.002
CrossRef Google Scholar
|
[23]
|
Martindale L. 2021. From land consolidation and food safety to Taobao villages and alternative food networks: Four components of China's dynamic agri-rural innovation system. Journal of Rural Studies 82:404−416 doi: 10.1016/j.jrurstud.2021.01.012
CrossRef Google Scholar
|
[24]
|
Wang Z, Yin Y, Wang Y, Tian X, Ying H, et al. 2022. Integrating crop redistribution and improved management towards meeting China's food demand with lower environmental costs. Nature Food 3:1031−39 doi: 10.1038/s43016-022-00646-0
CrossRef Google Scholar
|
[25]
|
Whitehorn PR, Navarro LM, Schröter M, Fernandez M, Rotllan-Puig X, et al. 2019. Mainstreaming biodiversity: A review of national strategies. Biological Conservation 235:157−63 doi: 10.1016/j.biocon.2019.04.016
CrossRef Google Scholar
|
[26]
|
Delabre I, Rodriguez LO, Smallwood JM, Scharlemann JPW, Alcamo J, et al. 2021. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Science Advances 7(12):eabc8259 doi: 10.1126/sciadv.abc8259
CrossRef Google Scholar
|
[27]
|
Farooque M, Zhang A, Liu Y. 2019. Barriers to circular food supply chains in China. Supply Chain Management 24:677−96 doi: 10.1108/SCM-10-2018-0345
CrossRef Google Scholar
|
[28]
|
Reyes-García V, Cámara-Leret R, Halpern BS, O'Hara C, Renard D, et al. 2023. Biocultural vulnerability exposes threats of culturally important species. Proceedings of the National Academy of Sciences of the United States of America 120:e2217303120 doi: 10.1073/pnas.2217303120
CrossRef Google Scholar
|
[29]
|
Secretariat of the Convention on Biological Diversity. 2022. Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework. Conference of the Parties to the Convention on Biological Diversity. Fifteenth Meeting – Part II. CBD/COP15/L.26. Montreal, Canada, 7−19 December 2022. CBD, Montreal www.cbd.int/doc/c/179e/aecb/592f67904bf07dca7d0971da/cop-15-l-26-en.pdf
|
[30]
|
Zomer RJ, Xu J, Trabucco A. 2022. Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data 9:409 doi: 10.1038/s41597-022-01493-1
CrossRef Google Scholar
|
[31]
|
Wang W, Pijl A, Tarolli P. 2022. Future climate-zone shifts are threatening steep-slope agriculture. Nature Food 3:193−196 doi: 10.1038/s43016-021-00454-y
CrossRef Google Scholar
|
[32]
|
Looby CI, Martin PH. 2020. Diversity and function of soil microbes on montane gradients: the state of knowledge in a changing world. FEMS Microbiology Ecology 96:fiaa122 doi: 10.1093/femsec/fiaa122
CrossRef Google Scholar
|
[33]
|
Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, et al. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97:1−136 doi: 10.1007/s13225-019-00430-9
CrossRef Google Scholar
|
[34]
|
Wanasinghe DN, Mortimer PE, Xu J. 2021. Insight into the systematics of microfungi colonizing dead woody twigs of Dodonaea viscosa in Honghe (China). Journal of Fungi 7:180 doi: 10.3390/jof7030180
CrossRef Google Scholar
|
[35]
|
Li X, Tian L, Li B, Chen H, Zhao G, et al. 2022. Polyaspartic acid enhances the Cd phytoextraction efficiency of Bidens pilosa by remolding the rhizospheric environment and reprogramming plant metabolism. Chemosphere 307:136068 doi: 10.1016/j.chemosphere.2022.136068
CrossRef Google Scholar
|
[36]
|
Xiao D, He X, Zhang W, Hu P, Sun M, et al. 2022. Comparison of bacterial and fungal diversity and network connectivity in karst and non-karst forests in southwest China. Science of the Total Environment 822:153179 doi: 10.1016/j.scitotenv.2022.153179
CrossRef Google Scholar
|
[37]
|
Wang J, Hu A, Meng F, Zhao W, Yang Y, et al. 2022. Embracing mountain microbiome and ecosystem functions under global change. New Phytologist 234:1987−2002 doi: 10.1111/nph.18051
CrossRef Google Scholar
|
[38]
|
Yang T, Li X, Hu B, Wei D, Wang Z, et al. 2022. Soil microbial biomass and community composition along a latitudinal gradient in the arid valleys of southwest China. Geoderma 413:115750 doi: 10.1016/j.geoderma.2022.115750
CrossRef Google Scholar
|
[39]
|
Wang Z, Liu X, Zhou W, Sinclair F, Shi L, et al. 2022. Land use intensification in a dry-hot valley reduced the constraints of water content on soil microbial diversity and multifunctionality but increased CO2 production. Science of The Total Environment 852:158397 doi: 10.1016/j.scitotenv.2022.158397
CrossRef Google Scholar
|
[40]
|
UNEP, Grid-Arendal, GNBA, MRI. 2020. Elevating Mountains in the Post-2020 Global Biodiversity Framework 2.0. UNEP, Nairobi. https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/523/original/ElevatingMountains_V2_lores.pdf?1582632637
|
[41]
|
Li Y, Li M, Ding Z. 2022. Study on methodology of assessing synergy between conservation and development of karst protected area in the case of the Diehong Bridge Scenic Area of Jiuxiang Gorge Cave Geopark, Yunnan, China. Environment, Development and Sustainability 24:5867−5886 doi: 10.1007/s10668-021-01688-3
CrossRef Google Scholar
|
[42]
|
Garibaldi LA, Oddi FJ, Miguez FE, Bartomeus I, Orr MC, et al. 2021. Working landscapes need at least 20% native habitat. Conservation Letters 14:e12773 doi: 10.1111/conl.12773
CrossRef Google Scholar
|
[43]
|
der Esch V, Sewell S, Bakkenes A, Berkhout M, Doelman E, et al. 2022. The Global Potential for Land Restoration: Scenarios for the Global Land Outlook 2. Policy Report. PBL Netherlands Environmental Assessment Agency, The Hague. www.pbl.nl/sites/default/files/downloads/pbl-2022-the-global-potential-for-land-restoration-glo2-4816.pdf
|
[44]
|
Kremen C, Merenlender AM. 2018. Landscapes that work for biodiversity and people. Science 362:eaau6020 doi: 10.1126/science.aau6020
CrossRef Google Scholar
|
[45]
|
Zomer RJ, Bossio DA, Trabucco A, van Noordwijk M, Xu J. 2022. Global carbon sequestration potential of agroforestry and increased tree cover on agricultural land. Circular Agricultural Systems 2:1−10 doi: 10.48130/cas-2022-0003
CrossRef Google Scholar
|
[46]
|
Montagnini F, del Fierro S. 2022. Functions of agroforestry systems as biodiversity islands in productive landscapes. In Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments, ed. Montagnini F. Switzerland: Springer, Cham. pp. 89–116. https://doi.org/10.1007/978-3-030-92234-4_4
|
[47]
|
Ran Y, Lei D, Li J, Gao L, Mo J, et al. 2022. Identification of crucial areas of territorial ecological restoration based on ecological security pattern: a case study of the central Yunnan urban agglomeration, China. Ecological Indicators 143:109318 doi: 10.1016/j.ecolind.2022.109318
CrossRef Google Scholar
|
[48]
|
Jiang X, Ziegler AD, Liang S, Wang D, Zeng Z. 2022. Forest restoration potential in China: Implications for carbon capture. Journal of Remote Sensing 2022:0006 doi: 10.34133/remotesensing.0006
CrossRef Google Scholar
|
[49]
|
Berlinches de Gea A, Hautier Y, Geisen S. 2023. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Global Change Biology 29:296−307 doi: 10.1111/gcb.16471
CrossRef Google Scholar
|
[50]
|
Zhang WP, Fornara D, Yang H, Yu RP, Callaway RM, et al. 2023. Plant litter strengthens positive biodiversity-ecosystem functioning relationships over time. Trends in Ecology & Evolution 38:473−84 doi: 10.1016/j.tree.2022.12.008
CrossRef Google Scholar
|
[51]
|
Wang Z, Wubshet TT, Chen H, Wu L, Yang H, et al. 2021. Effects of degraded grassland conversion to mango plantation on soil CO2 fluxes. Applied Soil Ecology 167:104045 doi: 10.1016/j.apsoil.2021.104045
CrossRef Google Scholar
|
[52]
|
Leal Filho W, Nagy GJ, Setti AFF, Sharifi A, Donkor FK, et al. 2023. Handling the impacts of climate change on soil biodiversity. Science of the Total Environment 869:161671 doi: 10.1016/j.scitotenv.2023.161671
CrossRef Google Scholar
|
[53]
|
Ilyas M, Ahmad W, Khan H, Yousaf S, Khan K et al. 2018. Plastic waste as a significant threat to environment—a systematic literature review. Reviews on Environmental Health 33:383−406 doi: 10.1515/reveh-2017-0035
CrossRef Google Scholar
|
[54]
|
Khan S, Nadir S, Zu S, Shan AA, Karunarathna SC, et al. 2017. Biodegradation of polyester polyurethane by Aspergillis sp. isolated from the gut of Zophobas morio. Environmental Pollution 255:469−80
Google Scholar
|
[55]
|
Danso D, Chow J, Streit WR. 2019. Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology 85:e01095-19 doi: 10.1128/AEM.01095-19
CrossRef Google Scholar
|
[56]
|
Singh N, Ogunseitan OA, Wong MH, Tang Y. 2022. Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustainable Horizons 2:100016 doi: 10.1016/j.horiz.2022.100016
CrossRef Google Scholar
|
[57]
|
Chia WY, Tang DYY, Khoo KS, Kay Lup AN, Chew KW. 2020. Nature's fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology 4:100065 doi: 10.1016/j.ese.2020.100065
CrossRef Google Scholar
|
[58]
|
Ciriminna R, Pagliaro M. 2020. Biodegradable and compostable plastics: A critical perspective on the dawn of their global adoption. ChemistryOPEN 9:8−13 doi: 10.1002/open.201900272
CrossRef Google Scholar
|
[59]
|
Gong L, Passari AK, Yin C, Kumar Thakur V, Newbold J, et al. 2023. Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production. Critical Reviews in Biotechnology 00:1−19 doi: 10.1080/07388551.2022.2157241
CrossRef Google Scholar
|
[60]
|
Nguyen-Viet H, Pham G, Lam S, Pham-Duc P, Dinh-Xuan T, et al. 2021. International, transdisciplinary, and ecohealth action for sustainable agriculture in Asia. Frontiers in Public Health 9:592311 doi: 10.3389/fpubh.2021.592311
CrossRef Google Scholar
|
[61]
|
Willetts L, Comeau L, Vora N, Horn O, Studer M, et al. 2023. Health in global biodiversity governance: what is next? The Lancet 401:533−36 doi: 10.1016/S0140-6736(23)00130-7
CrossRef Google Scholar
|
[62]
|
Gurney GG, Darling ES, Ahmadia GN, Agostini VN, Ban NC, et al. 2021. Biodiversity needs every tool in the box: use OECMs. Nature 595:646−49 doi: 10.1038/d41586-021-02041-4
CrossRef Google Scholar
|
[63]
|
Lemieux CJ, Kraus DT, Beazley KF. 2022. Running to stand still: The application of substandard OECMs in national and provincial policy in Canada. Biological Conservation 275:109780 doi: 10.1016/j.biocon.2022.109780
CrossRef Google Scholar
|
[64]
|
Sze JS, Carrasco LR, Childs D, Edwards DP. 2022. Reduced deforestation and degradation in Indigenous Lands pan-tropically. Nature Sustainability 5:123−30 doi: 10.1038/s41893-021-00815-2
CrossRef Google Scholar
|
[65]
|
Gao J. 2019. How China will protect one-quarter of its land. Nature 569:457−458 doi: 10.1038/d41586-019-01563-2
CrossRef Google Scholar
|
[66]
|
Liu Y, Wang L, Lu Y, Zou Q, Yang L, et al. 2023. Identification and optimization methods for delineating ecological red lines in Sichuan Province of southwest China. Ecological Indicators 146:109786 doi: 10.1016/j.ecolind.2022.109786
CrossRef Google Scholar
|
[67]
|
Wu H, Fang S, Yu L, Hu S, Chen X, et al. 2023. Limited co-benefits of protected areas in southwest China under current climate change and human modification. Journal of Environmental Management 330:117190 doi: 10.1016/j.jenvman.2022.117190
CrossRef Google Scholar
|
[68]
|
Jiao W, Cui W, He S. 2023. Can agricultural heritage systems keep clean production in the context of modernization? A case study of Qingtian rice-fish culture system of China based on carbon footprint Sustainability Science doi: 10.1007/s11625-022-01274-0
CrossRef Google Scholar
|
[69]
|
Gao J, Lin H, Zhang C. 2021. Locally situated rights and the ‘doing’ of responsibility for heritage conservation and tourism development at the cultural landscape of Honghe Rice Terraces, China. Journal of Sustainable Tourism 29:193−213 doi: 10.1080/09669582.2020.1727912
CrossRef Google Scholar
|
[70]
|
Qu C, Zhang C, Shen S, Olsen DH. 2023. Heritage conservation and communities’ sense of deprivation in tourism: the case of the Hani community in Yunnan, China. Tourism Geographies 25:881−98 doi: 10.1080/14616688.2021.2016936
CrossRef Google Scholar
|
[71]
|
Li K, Li Q. 2022. Towards more efficient low-carbon agricultural technology extension in China: identifying lead smallholder farmers and their behavioral determinants. Environmental Science and Pollution Research 30:27833−45 doi: 10.1007/s11356-022-24159-2
CrossRef Google Scholar
|
[72]
|
Zhang Y, Lu Q, Yang C, Grant MK. 2023. Cooperative membership, service provision, and the adoption of green control techniques: Evidence from China. Journal of Cleaner Production 384:135462 doi: 10.1016/j.jclepro.2022.135462
CrossRef Google Scholar
|
[73]
|
Xu Y, Tao Y, Smith B. 2022. China's emerging legislative and policy framework for safeguarding intangible cultural heritage. International Journal of Cultural Policy 28:566−80 doi: 10.1080/10286632.2021.1993838
CrossRef Google Scholar
|
[74]
|
Zhang Y, Lee TJ. 2022. Alienation and authenticity in intangible cultural heritage tourism production. International Journal of Tourism Research 24:18−32 doi: 10.1002/jtr.2478
CrossRef Google Scholar
|
[75]
|
He S, Ding L, Min Q. 2021. The role of the important agricultural heritage systems in the construction of China’s national park system and the optimization of the protected area system. Journal of Resources and Ecology 12:444−52 doi: 10.5814/j.issn.1674-764x.2021.04.002
CrossRef Google Scholar
|
[76]
|
Su J. 2019. Panel 5 Paper 5.3 Rural Intangible Cultural Heritage and Ethnic Tourism: Experiences ofYunnan, China. Rural Heritage-Landscapes and Beyond/PATRIMOINE RURAL: Paysages et au-dela. https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1169&context=icomos_isccl
|
[77]
|
Li Z. 2020. On the sustainable development of folk handicraft culture based on multimedia technology, In Innovative Computing. Lecture Notes in Electrical Engineering, eds. Yang CT, Pei Y, Chang JW. vol 675. Singapore: Springer. pp. 1103−8. https://doi.org/10.1007/978-981-15-5959-4_135
|
[78]
|
Su MM, Wall G, Ma J, Notarianni M, Wang S. 2023. Empowerment of women through cultural tourism: perspectives of Hui minority embroiderers in Ningxia, China. Journal of Sustainable Tourism 31:307−28 doi: 10.1080/09669582.2020.1841217
CrossRef Google Scholar
|
[79]
|
Liu P, Ravenscroft N. 2020. Shortening the Supply Chain for Local Organic Food in Chinese Cities. In Food Supply Chains in Cities, eds. Aktas E, Bourlakis M. Switzerland: Palgrave Macmillan, Cham. pp. 171−200. https://doi.org/10.1007/978-3-030-34065-0_6
|
[80]
|
Krul K, Ho P. 2017. Alternative approaches to food: Community supported agriculture in urban China. Sustainability 9:844 doi: 10.3390/su9050844
CrossRef Google Scholar
|
[81]
|
Klerkx L, Rose D. 2020. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security 24:100347 doi: 10.1016/j.gfs.2019.100347
CrossRef Google Scholar
|
[82]
|
Tong Q, Anders S, Zhang J, Zhang L. 2020. The roles of pollution concerns and environmental knowledge in making green food choices: Evidence from Chinese consumers. Food Research International 130:108881 doi: 10.1016/j.foodres.2019.108881
CrossRef Google Scholar
|
[83]
|
Grumbine RE, Xu J, Ma L. 2021. An overview of the problems and prospects for circular agriculture in sustainable food systems in the Anthropocene. Circular Agricultural Systems 1:3 doi: 10.48130/cas-2021-0003
CrossRef Google Scholar
|
[84]
|
Mathews JA, Tan H. 2016. Circular economy: Lessons from China. Nature 531:440−42 doi: 10.1038/531440a
CrossRef Google Scholar
|
[85]
|
Cui X, Guo L, Li C, Liu M, Wu G, et al. 2021. The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China. Renewable and Sustainable Energy Reviews 135:110215 doi: 10.1016/j.rser.2020.110215
CrossRef Google Scholar
|
[86]
|
Georganas A, Giamouri E, Pappas AC, Papadomichelakis G, Galliou F, et al. 2020. Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods 9:291 doi: 10.3390/foods9030291
CrossRef Google Scholar
|
[87]
|
Chia SY, Tanga CM, van Loon JJ, Dicke M. 2019. Insects for sustainable animal feed: inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability 41:23−30 doi: 10.1016/j.cosust.2019.09.003
CrossRef Google Scholar
|
[88]
|
Miles A, Hoy C. 2023. Editorial: Achieving food system resilience and equity in the era of global environmental change. Frontiers in Sustainable Food Systems 6:1126013 doi: 10.3389/fsufs.2022.1126013
CrossRef Google Scholar
|
[89]
|
Engels A, Marotzke J, Gresse E, López-Rivera A, Pagnone A, et al. 2023. Hamburg Climate Futures Outlook: The Plausibility of a 1.5°C Limit to Global Warming – Social Drivers and Physical Processes (Version 2/2023). http://doi.org/10.25592/uhhfdm.11230
|
[90]
|
Rounce DR, Hock R, Maussion F, Hugonnet R, Kochtitzky W, et al. 2023. Global glacier change in the 21st century: Every increase in temperature matters. Science 379:78−83 doi: 10.1126/science.abo1324
CrossRef Google Scholar
|
[91]
|
Zhang Y, Zheng H, Zhang X, Leung LR, Liu C, et al. 2023. Future global streamflow declines are probably more severe than previously estimated. Nature Water 1:261−71 doi: 10.1038/s44221-023-00030-7
CrossRef Google Scholar
|
[92]
|
Arora NK, Mishra I. 2022. Current scenario and future directions for sustainable development goal 2: a roadmap to zero hunger. Environmental Sustainability 5:129−33 doi: 10.1007/s42398-022-00235-8
CrossRef Google Scholar
|
[93]
|
Leach M, Reyers B, Bai X, Brondizio ES, Cook C, et al. 2018. Equity and sustainability in the Anthropocene: A social-ecological systems perspective on their intertwined futures. Global Sustainability 1:e13 doi: 10.1017/sus.2018.12
CrossRef Google Scholar
|