[1]
|
Whipps JM. 1993. A review of white rust (Puccinia horiana Henn.) disease on chrysanthemum and the potential for its biological control with Verticillium lecanii (Zimm.) Viégas. Annals of Applied Biology 122:173−87 doi: 10.1111/j.1744-7348.1993.tb04025.x
CrossRef Google Scholar
|
[2]
|
De Jong J and Rademaker W. 1986. The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 35:945−52 doi: 10.1007/BF00028604
CrossRef Google Scholar
|
[3]
|
Zhu P, Zhao N, Qi D, Liu N, and Duan Y. 2011. Optimization of identification standards and artificial inoculation methods in vitro on resistance to chrysanthemum white rust. Chinese Agricultural Science Bulletin 27:149−52
Google Scholar
|
[4]
|
Matsuura S. 2019. Does QoI (strobilurin) resistance in isolates of Puccinia horiana, the causal agent of chrysanthemum white rust, occur in western Japan? Journal of Plant Diseases and Protection 126:469−73 doi: 10.1007/s41348-019-00224-w
CrossRef Google Scholar
|
[5]
|
O’Keefe G, and Davis DD. 2015. Morphology of Puccinia horiana, causal agent of chrysanthemum white rust, sampled from naturally infected plants. Plant Disease 99:1738−43 doi: 10.1094/PDIS-02-15-0239-RE
CrossRef Google Scholar
|
[6]
|
Bonde MR, Murphy CA, Bauchan GR, Luster DG, Palmer CL, et al. 2015. Evidence for systemic infection by Puccinia horiana, causal agent of chrysanthemum white rust, in chrysanthemum. Phytopathology 105:91−98 doi: 10.1094/PHYTO-09-13-0266-R
CrossRef Google Scholar
|
[7]
|
Ellison MA, McMahon MB, Bonde MR, Palmer CL, Luster DG. 2016. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections. Plant Methods 12:37 doi: 10.1186/s13007-016-0137-3
CrossRef Google Scholar
|
[8]
|
Torres DE, Rojas-Martínez RI, Zavaleta-Mejía E, Guevara-Fefer P, Márquez-Guzmán GJ, et al. 2017. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of Chrysanthemum white rust. PloS One 12:e0170782 doi: 10.1371/journal.pone.0170782
CrossRef Google Scholar
|
[9]
|
Dheepa R, Vinodkumar S, Renukadevi P, Nakkeeran S. 2016. Phenotypic and molecular characterization of Chrysanthemum white rust pathogen Puccinia horiana (Henn) and the effect of liquid based formulation of Bacillus spp. for the management of Chrysanthemum white rust under protected cultivation. Biological Control 103:172−86 doi: 10.1016/j.biocontrol.2016.09.006
CrossRef Google Scholar
|
[10]
|
Alaei H, de Backer M, Nuytinck J, Maes, M, Höfte M, et al. 2009. Phylogenetic relationships of Puccinia horiana and other rust pathogens of Chrysanthemum× morifolium based on rDNA ITS sequence analysis. Mycological Research 113:668−83 doi: 10.1016/j.mycres.2009.02.003
CrossRef Google Scholar
|
[11]
|
de Backer M, Bonants P, Pedley KF, Maes M, Roldan-Ruiz I, et al. 2013. Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination. Phytopathology 103:1169−79 doi: 10.1094/PHYTO-01-13-0007-R
CrossRef Google Scholar
|
[12]
|
Demers JE, Crouch JA, Castlebury LA. 2015. A multiplex real-time PCR assay for the detection of Puccinia horiana and P. chrysanthemi on chrysanthemum. Plant Disease 99:195−200 doi: 10.1094/PDIS-06-14-0632-RE
CrossRef Google Scholar
|
[13]
|
De Backer M, Alaei H, Van Bockstaele E, Roldan-Ruiz I, van der Lee T, et al. 2011. Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum ×morifolium. European Journal of Plant Pathology 130:325−38 doi: 10.1007/s10658-011-9756-8
CrossRef Google Scholar
|
[14]
|
Park SK, Lim JH, Shin HK, Jung JA, Kwon YS, et al. 2014. Identification of Chrysanthemum genetic resources resistant to white rust caused by Puccinia horiana. Plant Breeding and Biotechnology 2:184−93 doi: 10.9787/PBB.2014.2.2.184
CrossRef Google Scholar
|
[15]
|
Zeng J, Sun J, Xu Y, Chen F, Jiang J, et al. 2013. Variation for resistance to white rust (Puccinia horiana) among Ajania and Chrysanthemum species. Horticultural Science 48:1231−4 doi: 10.21273/HORTSCI.48.10.1231
CrossRef Google Scholar
|
[16]
|
Thakur N, Nair SA, Sriram S, Kumar R. 2019. Identification of resistant sources in chrysanthemum to white rust. Indian Phytopathology 72:513−18 doi: 10.1007/s42360-019-00164-3
CrossRef Google Scholar
|
[17]
|
Kumar S, Kumar R, Sriram S, Aswath C, Rao TM, et al. 2021. Screening of chrysanthemum (Dendranthema grandiflora) genotypes for resistance to white rust (Puccinia horiana Henn. ). Journal of Pharmacognosy and Phytochemistry 10:293−97 doi: 10.22271/phyto.2021.v10.i2d.13820
CrossRef Google Scholar
|
[18]
|
Sumitomo K, Shirasawa K, Isobe SN, Hirakawa H, Harata A, et al. 2021. DNA marker for resistance to Puccinia horiana in chrysanthemum (Chrysanthemum morifolium Ramat.) "Southern Pegasus". Breeding Science 71:261−7 doi: 10.1270/jsbbs.20063
CrossRef Google Scholar
|
[19]
|
Bi M, Li X, Yan X, Liu D, Gao G, et al. 2021. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Horticulture Research 8:6 doi: 10.1038/s41438-020-00436-4
CrossRef Google Scholar
|
[20]
|
Gao G, Jin R, Liu D, Zhang X, Sun X, et al. 2022. CmWRKY15-1 promotes resistance to chrysanthemum white rust by regulating CmNPR1 expression. Frontiers in Plant Science 13:865607 doi: 10.3389/fpls.2022.865607
CrossRef Google Scholar
|
[21]
|
McHale L, Tan X, Koehl P, Michelmore RW. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biology 7:212 doi: 10.1186/gb-2006-7-4-21
CrossRef Google Scholar
|
[22]
|
Lukasik E, Takken FL. 2009. STANDing strong, resistance proteins instigators of plant defence. Current Opinion in Plant Biology 12:427−36 doi: 10.1016/j.pbi.2009.03.001
CrossRef Google Scholar
|
[23]
|
Li J, Huang H, Zhu M, Huang S, Zhang W, et al. 2019. A plant immune receptor adopts a two-step recognition mechanism to enhance viral effector perception. Molecular Plant 12:248−62 doi: 10.1016/j.molp.2019.01.005
CrossRef Google Scholar
|
[24]
|
Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323−29 doi: 10.1038/nature05286
CrossRef Google Scholar
|
[25]
|
Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11:539−48 doi: 10.1038/nrg2812
CrossRef Google Scholar
|
[26]
|
Lee HA, Yeom SI. 2015. Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Briefings in Functional Genomics 14:233−42 doi: 10.1093/bfgp/elv012
CrossRef Google Scholar
|
[27]
|
Takken FLW, Albrecht M, and Tameling WIL. 2006. Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology 9:383−90 doi: 10.1016/j.pbi.2006.05.009
CrossRef Google Scholar
|
[28]
|
Takken FLW, Tameling WIL. 2009. To nibble at plant resistance proteins. Science 324:744−6 doi: 10.1126/science.1171666
CrossRef Google Scholar
|
[29]
|
Wang J, Chen T, Han M, Qian L, Li J, et al. 2020. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain. PLoS Pathogens 16:e1008475 doi: 10.1371/journal.ppat.1008475
CrossRef Google Scholar
|
[30]
|
Burch-Smith TM, Dinesh-Kumar SP. 2007. The functions of plant TIR domains. Science's STKE 2007:pe46 doi: 10.1126/stke.4012007pe46
CrossRef Google Scholar
|
[31]
|
Takken FLW, Goverse A. 2012. How to build a pathogen detector: structural basis of NB-LRR function. Current Opinion in Plant Biology 15:375−84 doi: 10.1016/j.pbi.2012.05.001
CrossRef Google Scholar
|
[32]
|
Chen X, Zhu M, Jiang L, Zhao W, Li J, et al. 2016. A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain. New Phytologist 212:161−75 doi: 10.1111/nph.14013
CrossRef Google Scholar
|
[33]
|
van der Biezen EA, Jones JD. 1998. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology 8:R226−R228 doi: 10.1016/S0960-9822(98)70145-9
CrossRef Google Scholar
|
[34]
|
van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, et al. 2008. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany 59:1383−97 doi: 10.1093/jxb/ern045
CrossRef Google Scholar
|
[35]
|
Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, et al. 2012. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13:75 doi: 10.1186/1471-2164-13-75
CrossRef Google Scholar
|
[36]
|
Chandra S, Kazmi AZ, Ahmed Z, Roychowdhury G, Kumari V, et al. 2017. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection. Plant Cell Reports 36:1097−1112 doi: 10.1007/s00299-017-2141-0
CrossRef Google Scholar
|
[37]
|
Wang X, Zhang H, Nyamesorto B, Luo Y, Mu X, et al. 2020. A new mode of NPR1 action via an NB-ARC-NPR1 fusion protein negatively regulates the defence response in wheat to stem rust pathogen. New Phytologist 228:959−72 doi: 10.1111/nph.16748
CrossRef Google Scholar
|
[38]
|
Hayashi N, Inoue H, Kato T, Funao T, Shirota M, et al. 2010. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal 64:498−510 doi: 10.1111/j.1365-313X.2010.04348.x
CrossRef Google Scholar
|
[39]
|
Wen C, Mao A, Dong C, Liu H, Yu S, et al. 2015. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L. Theoretical and Applied Genetics 128:2495−506 doi: 10.1007/s00122-015-2604-z
CrossRef Google Scholar
|
[40]
|
Arora H, Padmaja KL, Paritosh K, Mukhi N, Tewari AK, et al. 2019. BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theoretical and Applied Genetics 132:2223−36 doi: 10.1007/s00122-019-03350-z
CrossRef Google Scholar
|
[41]
|
Chakraborty J, Priya P, Dastidar SG, Das S. 2018. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea. Plant Science 276:111−33 doi: 10.1016/j.plantsci.2018.08.008
CrossRef Google Scholar
|
[42]
|
Zhang Y, Zhang Q, Hao L, Wang S, Wang S, et al. 2019. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple. Horticulture Research 6:93 doi: 10.1038/s41438-019-0175-x
CrossRef Google Scholar
|
[43]
|
Islam MR, Hossain MR, Jesse DMI, Jung HJ, Kim HT, et al. 2020. Characterization, identification and expression profiling of genome-wide R-genes in melon and their putative roles in bacterial fruit blotch resistance. BMC Genetics 21:80 doi: 10.1186/s12863-020-00885-9
CrossRef Google Scholar
|
[44]
|
Gedil MA, Slabaugh MB, Berry S, Johnson R, Michelmore R, et al. 2001. Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: genetic mapping and linkage to the downy mildew resistance gene Pl1. Genome 44:205−12 doi: 10.1139/g00-110
CrossRef Google Scholar
|
[45]
|
Radwan O, Bouzidi MF, Nicolas P, and Mouzeyar S. 2004. Development of PCR markers for the Pl5/Pl8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS-LRR sequences. Theoretical and Applied Genetics 109:176−85 doi: 10.1007/s00122-004-1613-0
CrossRef Google Scholar
|
[46]
|
Qi LL, Hulke BS, Vick BA, Gulya TJ. 2011. Molecular mapping of the rust resistance gene R4 to a large NBS-LRR cluster on linkage group 13 of sunflower. Theoretical and Applied Genetics 123:351−8 doi: 10.1007/s00122-011-1588-6
CrossRef Google Scholar
|
[47]
|
Kaufmann H, Mattiesch L, Lörz H, Debener T. 2003. Construction of a BAC library of Rosa rugosa Thunb. and assembly of a contig spanning Rdr1, a gene that confers resistance to blackspot. Molecular Genetics and Genomics 268:666−74 doi: 10.1007/s00438-002-0784-0
CrossRef Google Scholar
|
[48]
|
Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26 doi: 10.1093/nar/8.19.4321
CrossRef Google Scholar
|
[49]
|
Feng X, Li X, Yang X, Zhu P. 2020. Fine mapping and identification of the leaf shape gene BoFL in ornamental kale. Theoretical and Applied Genetics 133:1303−12 doi: 10.1007/s00122-020-03551-x
CrossRef Google Scholar
|
[50]
|
Shen Q, Zhang L, Liao Z, Wang S, Yan T, et al. 2018. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Molecular Plant 11:776−88 doi: 10.1016/j.molp.2018.03.015
CrossRef Google Scholar
|
[51]
|
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8:14953 doi: 10.1038/ncomms14953
CrossRef Google Scholar
|
[52]
|
Radwan O, Mouzeyar S, Nicolas P, Bouzidi MF. 2005. Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmopara halstedii. Journal of Experimental Botany 56:567−75 doi: 10.1093/jxb/eri030
CrossRef Google Scholar
|
[53]
|
Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, et al. 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Molecular Biology 65:93−106 doi: 10.1007/s11103-007-9201-8
CrossRef Google Scholar
|
[54]
|
Borhan MH, Holub EB, Beynon JL, Rozwadowski K, Rimmer SR. 2004. The Arabidopsis TIR-NB-LRR geneRAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4. Molecular Plant-Microbe Interactions 17:711−19 doi: 10.1094/MPMI.2004.17.7.711
CrossRef Google Scholar
|
[55]
|
Song C, Liu Y, Song A, Dong G, Zhao H, et al. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular Plant 11:1482−91 doi: 10.1016/j.molp.2018.10.003
CrossRef Google Scholar
|
[56]
|
Feng X, Zhang Y, Wang H, Tian Z, Xin S, et al. 2021. The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale. Theoretical and Applied Genetics 134:159−69 doi: 10.1007/s00122-020-03688-9
CrossRef Google Scholar
|
[57]
|
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406−25 doi: 10.1093/oxfordjournals.molbev.a040454
CrossRef Google Scholar
|
[58]
|
Felenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783−91 doi: 10.2307/2408678
CrossRef Google Scholar
|
[59]
|
Kumar S, Stecher G, and Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74 doi: 10.1093/molbev/msw054
CrossRef Google Scholar
|
[60]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time uantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[61]
|
Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. Evolving Genes and Proteins97−166 doi: 10.1016/B978-1-4832-2734-4.50017-6
CrossRef Google Scholar
|
[62]
|
Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, et al. 2008. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. The Plant Cell 20:739−51 doi: 10.1105/tpc.107.056036
CrossRef Google Scholar
|
[63]
|
Yildirim-Ersoy F, Ridout CJ, Akkaya MS. 2011. Detection of physically interacting proteins with the CC and NB-ARC domains of a putative yellow rust resistance protein, Yr10, in wheat. Journal of Plant Diseases and Protection 118:119−26 doi: 10.1007/BF03356391
CrossRef Google Scholar
|
[64]
|
Jiang N, Cui J, Meng J, Luan Y. 2018. A tomato nucleotide binding sites-leucine-rich repeat gene is positively involved in plant resistance to Phytophthora infestans. Phytopathology 108:980−87 doi: 10.1094/PHYTO-12-17-0389-R
CrossRef Google Scholar
|
[65]
|
Kolmer JA. 1996. Genetics of resistance to wheat leaf rust. Annual Review of Phytopathology 34:435−55 doi: 10.1146/annurev.phyto.34.1.435
CrossRef Google Scholar
|