Akhtar MS, Siddiqui ZA. 2008 –Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In Mycorrhizae: Sustainable agriculture and forestry. Springer, Dordrecht.
Google Scholar
|
Alawathugoda CJ, Dahanayake N. 2014 –Effects of mycorrhizae as a substitute for inorganic fertilizer on growth and yield of tomato (Lycopersicon esculentum L. ) and soybean (Glycine max L. ), and soil microbial activity. Tropical Agricultural Research and Extension. 16, 107–112.
Google Scholar
|
Bagyaraj DJ. 2014 –Mycorrhizal fungi. Proceedings of the Indian National Science Academy 80, 415–428. doi: 10.16943/ptinsa/2014/v80i2/55118
CrossRef Google Scholar
|
Balasuriya A, Arulpragasam PV, Ratnayake RMA. 1991 –Mycorrhiza in tea. Tea Bulletin (Sri Lanka).
Google Scholar
|
Balasuriya A, Wimaladasa GD, Ratnayake RMA. 2000 –Effect of application of NPK fertilizers on the natural incidence of vesicular-arbuscular mycorrhiza in the rhizosphere soils and feeder roots of tea (Camellia sinensis). Sri Lanka Journal of Tea Science 66, 61–66.
Google Scholar
|
Brady NC, Weil RR. 2008 –The soils around us. The nature and properties of soils, 14th ed Pearson Prentice Hall, New Jersey and Ohio.
Google Scholar
|
Brundrett M. 2004 –Diversity and classification of mycorrhizal associations. Biological Reviews 79, 473–495. doi: 10.1017/S1464793103006316
CrossRef Google Scholar
|
Brundrett MC. 2009 –Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320, 37–77. doi: 10.1007/s11104-008-9877-9
CrossRef Google Scholar
|
Bryla DR, Duniway JM. 1997 –Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant and soil 197, 95–103. doi: 10.1023/A:1004286704906
CrossRef Google Scholar
|
Chithranayana D. 2008 –Identification of drought prone agro-ecological regions in Sri Lanka. Journal of National Science Foundation Sri Lanka 36, 117–123. doi: 10.4038/jnsfsr.v36i2.143
CrossRef Google Scholar
|
Dahanayake D, Alawathugoda CJ. 2015 –Effect of mycorrhizae, NPK and compost on vegetative and reproductive parameters of soybean (Glycine max L). International Journal of Science and Research 5, 342–46.
Google Scholar
|
Dahanayake N. Alawathugoda CJ. 2016 –Influence of Mycorrhizae and Inorganic Fertilizer on Plant Growth and Yield Components of Two Sri Lankan Traditional Rice Accessions (Oryza sativa L). Tropical Agricultural Research and Extension 19, 260–263. doi: 10.4038/tare.v19i2.5352
CrossRef Google Scholar
|
Davidson BE. 2015 –Consequences of pre-inoculation with native arbuscular mycorrhizae on root colonization and survival of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) seedlings after transplanting. PhD thesis, Boise State University, Idaho, USA.
Google Scholar
|
Davies Jr FT, Olalde-Portugal V, Aguilera-Gomez L, Alvarado MJ et al. 2002 –Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Scientia Horticulturae. 92, 347–359. doi: 10.1016/S0304-4238(01)00293-X
CrossRef Google Scholar
|
Denny HJ, Ridge I. 1995 –Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants. New Phytologist. 130, 251–257. doi: 10.1111/j.1469-8137.1995.tb03046.x
CrossRef Google Scholar
|
Dissanayake CB, Chandrajith R. 2009 –Phosphate mineral fertilizers, trace metals and human health - A review. Journal of the National Science Foundation of Sri Lanka. 37, 153–165. doi: 10.4038/jnsfsr.v37i3.1219
CrossRef Google Scholar
|
Douds Jr DD, Millner PD. 1999 –Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agriculture, ecosystem and environment. 74, 77–93. doi: 10.1016/S0167-8809(99)00031-6
CrossRef Google Scholar
|
Edirisinghe C, Madawala S. 2017 –Arbuscular mycorrhizal fungal dynamics following change of land use from mature forest to Eucalyptus plantation. Journal of National Science Foundation Sri Lanka. 45, 321–328. doi: 10.4038/jnsfsr.v45i4.8225
CrossRef Google Scholar
|
Entry JA, Watrud LS, Reeves M. 1999 –Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environmental Pollution 104, 449–457. doi: 10.1016/S0269-7491(98)00163-8
CrossRef Google Scholar
|
Fortin JA, Plenchette C, Piché Y. 2009 –Mycorrhizas: The new green revolution. Éditions MultiMondes.
Google Scholar
|
Galli U, Schüepp H, Brunold C. 1994 –Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum. 92, 364–368. doi: 10.1111/j.1399-3054.1994.tb05349.x
CrossRef Google Scholar
|
Gamage HK, Singhakumara BMP, Ashton MS. 2004 –Effects of light and fertilization on arbuscular mycorrhizal colonization and growth of tropical rain-forest Syzygium tree seedlings. Journal of Tropical Ecology 20, 525–34. doi: 10.1017/S0266467404001592
CrossRef Google Scholar
|
Garbaye J. 1991 –Biological interactions in the mycorrhizosphere. Experimentia. 47, 370–375. doi: 10.1007/BF01972079
CrossRef Google Scholar
|
Goltapeh EM, Danesh YR, Prasad R, Varma A. 2008 –Mycorrhizal fungi: What we know and what should we know? In Mycorrhiza. Springer, Berlin, Heidelberg.
Google Scholar
|
Gosling P, Hodge A, Goodlass G, Bending GD. 2006 –Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems and Environment 113, 17–35. doi: 10.1016/j.agee.2005.09.009
CrossRef Google Scholar
|
Gregory PJ. 2006 –Plant roots: Growth, activity and interaction with soils. Blackwell Publishing: Oxford, UK.
Google Scholar
|
Gunadasa SG, Yapa PI, Nissanka SP, Perera SP. 2012 –Remediation of Pb/Cd contaminated forest soils by compost and mycorrhizae: will it be a solution to the forest dieback. In International Conference on Future Environment and Energy. 28, 139–44.
Google Scholar
|
Gunathilakae N, Yapa PN, Hettiarachchi R. 2018 –Effect of arbuscular mycorrhizal fungi on the cadmium phytoremediation potential of Eichhornia crassipes (Mart. ) Solms. Groundwater and Sustainable Development 7, 477–82. doi: 10.1016/j.gsd.2018.03.008
CrossRef Google Scholar
|
Halim NA. 2009 –Effects of using enhanced biofertilizer containing N-fixer bacteria on patchouli growth (Doctoral dissertation, UMP).
Google Scholar
|
Hamel C, Plenchette C. 2007 –Extraradical arbuscular mycorrhizal mycelia: shadowy figures in the soil. Mycorrhizae in crop production: applying knowledge. Haworth, Binghampton.
Google Scholar
|
Harrier LA, Watson CA. 2004 –The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science 60, 149–157. doi: 10.1002/ps.820
CrossRef Google Scholar
|
Harrison MJ. 2005 –Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology 59, 19–42. doi: 10.1146/annurev.micro.58.030603.123749
CrossRef Google Scholar
|
Hayman DS. 1983 –The physiology of vesicular–arbuscular endomycorrhizal symbiosis. Canadian Journal of Botany 61, 944–963. doi: 10.1139/b83-105
CrossRef Google Scholar
|
Hutchinson SL, Schwab AP, Banks MK. 2003 –Biodegradation of petroleum hydrocarbons in the rhizosphere. Phytoremediation: transformation and control of contaminants.
Google Scholar
|
Jayaratna R, Liyanage ADS, Pahalawattaarachchi W. 1986 –Effect of VA mycorrhizae (Gigaspora margarita) on white root disease resistance in Pueraria phaseoloides and Hevea brasiliensis seedlings. Journal of Rubber Research Institute of Sri Lanka 65, 22–31.
Google Scholar
|
Jayaratne AHR, Peries OS, Waidyanatha UDS. 1984 –Effect of vesicular-arbuscular mycorrhizae on seedlings of Hevea and Pueraria phaseoloides. Journal of Rubber Research Institute Sri Lanka 62, 75–84.
Google Scholar
|
Jayaratne AHR, Siriwardene D. 2000 –Arbuscular mycorrhizal inoculum production for commercial use. Tropical Agricultural Research and Extension 3, 137–40.
Google Scholar
|
Jayasumana C, Fonseka S, Fernando S, Jayalath K et al. 2015 –Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springer Plus. 4, 90. doi: 10.1186/s40064-015-0868-z
CrossRef Google Scholar
|
Jayawardhane S, Yapa PN. 2018 –Potential of microbial solubilization of rock phosphate for use in sustainable agriculture: Does biochar application enhance microbial solubilization. Journal of Advances in Microbiology 8, 1–8.
Google Scholar
|
Johnson NC, Gehring CA. 2007 –Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In the Rhizosphere. Academic Press.
Google Scholar
|
Joner EJ, Briones R, Leyval C. 2000 –Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil. 226, 227–234. doi: 10.1023/A:1026565701391
CrossRef Google Scholar
|
Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H. 1999 –Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology. 154, 718–728. doi: 10.1016/S0176-1617(99)80250-8
CrossRef Google Scholar
|
Karunasinghe TG, Fernando WC, Jayasekera LR. 2009 –The effect of poultry manure and inorganic fertilizer on the arbuscular mycorrhiza in coconut. Journal of National Science Foundation Sri Lanka. 37, 277–279. doi: 10.4038/jnsfsr.v37i4.1476
CrossRef Google Scholar
|
Kodithuwakku RD, Wijekoon WMRWB, Kumari IS, De Silva DPP. 2016 –Efficacy of single and combined application of Trichoderma spp. and Pseudomonas fluorescens along with bio-fertilizer (Arbuscular mycorrhizae) on growth of nursery plants of black pepper (Piper nigrum L. ). Sri Lanka Journal of Food and Agriculture 2, 69–72. doi: 10.4038/sljfa.v2i1.26
CrossRef Google Scholar
|
Lakmali JPD, Yapa PN, Sadaruwan MKKD. 2019 –Role of the vetiver (Chrysopogon zizanioides L. ) and arbuscular mycorrhizal fungi on soil quality improvement in Pinus plantation soil. In proceedings of International Research Symposium on Pure and Applied Sciences, Faculty of Science, University of Kelaniya, Sri Lanka. 25th October 2019.
Google Scholar
|
Leyval C, Berthelin J. 1993 –Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biology and Fertility of Soils. 15, 259–267. doi: 10.1007/BF00337210
CrossRef Google Scholar
|
Leyval C, Joner EJ, Del Val C, Haselwandter K. 2002 –Potential of arbuscular mycorrhizal fungi for bioremediation. In Mycorrhizal technology in agriculture. Birkhäuser, Basel.
Google Scholar
|
Leyval C, Turnau K, Haselwandter K. 1997 –Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza. 7, 139–153. doi: 10.1007/s005720050174
CrossRef Google Scholar
|
Linderman RG. 1991 –Mycorrhizal interactions in the rhizosphere. In The rhizosphere and plant growth. Springer, Dordrecht.
Google Scholar
|
Madawala HMSP. 2014 –Austroeupatorium inulifolium invasion increases arbuscular mycorrhizal abundance in Cymbopogon-dominated grasslands in Knuckles Conservation Area. Journal of National Science Foundation Sri Lanka. 42, 361–64. doi: 10.4038/jnsfsr.v42i4.7735
CrossRef Google Scholar
|
Madhushan KWA, Yapa PN, Dissanayake DMD, Priyadarshani TDC. 2020 –Effect of arbuscular mycorrhizal fungi on growth and yield of lowland rice (Oryza sativa L. ) intercropped with vetiver grass (Chrysopogon zizanioides L. ). In 12th Annual Symposium Proceedings. Faculty of Agriculture, Rajarata University of Sri Lanka, Anuradhapura.
Google Scholar
|
Mafaziya F, Madawala S. 2015 –Abundance, richness and root colonization of arbuscular mycorrhizal fungi in natural and semi-natural land use types at upper Hantana. Ceylon Journal of Science (Biological Sciences) 44, 25–34. doi: 10.4038/cjsbs.v44i1.7338
CrossRef Google Scholar
|
Mafaziya F, Wijewickrama T, Madawala HMSP. 2019 –Does over-dominance of Bambusa bambos (L. ) Voss. alter abundance and richness of Arbuscular Mycorrhizal fungal community in forests? Ceylon Journal of Science 48, 51–59. doi: 10.4038/cjs.v48i1.7588
CrossRef Google Scholar
|
Mala WJ, Kumari S, Sumanasena HA, Nanayakkara CM. 2010 –Effective spore density of Glomus mosseae, arbuscular mycorrhiza (AM), for inoculation of rooted cuttings of Black Pepper (Piper nigrum L. ). Tropical Agricultural Research. 21, 189–197. doi: 10.4038/tar.v21i2.2600
CrossRef Google Scholar
|
Marshall JD, Perry DA. 1987 –Basal and maintenance respiration of mycorrhizal and nonmycorrhizal root systems of conifers. Canadian Journal of Forest Research 17, 872–877. doi: 10.1139/x87-138
CrossRef Google Scholar
|
Martin F, Perotto S, Bonfante P. 2007 –Mycorrhizal fungi: a fungal community at the interface between soil and roots. The rhizosphere: Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York.
Google Scholar
|
Morton JB, Benny GL. 1990 –Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon. 37, 471–491.
Google Scholar
|
Morton JB, Bentivenga SP. 1994 –Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups. Plant and soil. 159, 47. doi: 10.1007/BF00000094
CrossRef Google Scholar
|
Morton JB, Msiska Z. 2010 –Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza. 20, 483–496. doi: 10.1007/s00572-010-0303-9
CrossRef Google Scholar
|
Muchovej RM. 2001 –Importance of mycorrhizae for agriculture crops. University of Florida Extension Service. Pamphlet SS-AGR-170.
Google Scholar
|
Nanayakkara S, Komiya T, Ratnatunga N, Senevirathna ST et al. 2012 –Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka. Environmental Health and Preventive Medicine. 17, 213–221. doi: 10.1007/s12199-011-0243-9
CrossRef Google Scholar
|
Oehl F, de Souza FA, Sieverding E. 2008 –Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106, 311–360.
Google Scholar
|
Pathiratna LSS, Waidyanatha UDS, Peiris OS. 1990 –Utilization of phosphorus from apatite and growth of plants inoculated with vesicular arbuscular mycorrhiza and phosphate dissolving bacteria. Journal of Rubber Research Institute of Sri Lanka. 70, 35–43.
Google Scholar
|
Pavithra D, Yapa PN. 2018 –Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater and Sustainable Development 7, 490–494. doi: 10.1016/j.gsd.2018.03.005
CrossRef Google Scholar
|
Peterson RL, Massicotte HB, Melville LH. 2004 –Mycorrhizas: anatomy and cell biology. NRC Research Press.
Google Scholar
|
Prasanna RPIR. 2018 –Economic costs of drought and farmers' adaptation strategies: evidence from Sri Lanka. Sri Lanka Journal of Economic Research 5(2), 61–79.
Google Scholar
|
Qin M, Zhang Q, Pan J, Jiang S et al. 2020 –Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. European Journal of Soil Science 71, 84–92.
Google Scholar
|
Quilambo OA. 2003 –The vesicular-arbuscular mycorrhizal symbiosis. African Journal of Biotechnology 2, 539–546. doi: 10.5897/AJB2003.000-1105
CrossRef Google Scholar
|
Rajapaksha RMCP, Ranasinghe RASW. 2007 –Arbuscular mycorrhizal fungi associations in exotic vegetables grown on Ultisols of Nuwara Eliya. Journal of Soil Science Society of Sri Lanka. 19, 1–8.
Google Scholar
|
Sadhana B. 2014 –Arbuscular mycorrhizal fungi (AMF) as a biofertilizer-a review. International Journal of Current Microbiology and Applied Sciences 3, 384–400.
Google Scholar
|
Samarakoon D, Yapa N. 2019 –Growth, yield and seed nutrient quality of soybean (Glycine max L. ) as affected by organic, biofertilizer and synthetic fertilizer application. South Asian Journal of Research in Microbiology 5, 1–6.
Google Scholar
|
Schüßler A, Schwarzott D, Walker C. 2001 – A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105, 1413–1421. doi: 10.1017/S0953756201005196
CrossRef Google Scholar
|
Seneviratne G, Kulasooriya SA. 1994 –Fate of applied N in traditional, modern, and conservation farming systems of lowland rice in Sri Lanka. International Rice Research Notes (Philippines).
Google Scholar
|
Siddiqui ZA, Mahmood I. 1995 –Role of plant symbionts in nematode management: a review. Bioresource Technology 54, 217–226. doi: 10.1016/0960-8524(95)00137-9
CrossRef Google Scholar
|
Siddiqui ZA, Pichtel J. 2008 –Mycorrhizae: an overview. In: Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht.
Google Scholar
|
Silva KSN, Yapa PN. 2010 –The status of vesicular arbuscular mycorrhizal associations with medicinal plants in Mihintale Sanctuary. In: Proceedings of the 15th International Forestry and Environment Symposium. University of Sri Jayawardanapura, Sri Lanka. 26th–27th November 2010.
Google Scholar
|
Smith SE, Read DJ. 2010 –Mycorrhizal symbiosis. Academic press.
Google Scholar
|
Strullu DG, Chamel A, Eloy JF, Gourret JP. 1983 –Ultrastructure and analysis, by laser probe mass spectrography, of the mineral composition of the vesicles of trifolium pra tense endomycorrhizas. New Phytologist 94, 81–88. doi: 10.1111/j.1469-8137.1983.tb02723.x
CrossRef Google Scholar
|
Toro M, Azcón R, Barea JM. 1998 –The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. The New Phytologist 138, 265–273. doi: 10.1046/j.1469-8137.1998.00108.x
CrossRef Google Scholar
|
Turnau K, Kottke I, Oberwinkler F. 1993 –Element localization in mycorrhizal roots of Pteridium aquilinum (L. ) Kuhn collected from experimental plots treated with cadmium dust. New Phytologist 123, 313–324. doi: 10.1111/j.1469-8137.1993.tb03741.x
CrossRef Google Scholar
|
Treseder KK. 2013 –The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil 371, 1–13. doi: 10.1007/s11104-013-1681-5
CrossRef Google Scholar
|
van der Heijden MG, Martin FM, Selosse MA, Sanders IR. 2015 –Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205, 1406–1423. doi: 10.1111/nph.13288
CrossRef Google Scholar
|
van der Putten WH, Klironomos JN, Wardle DA. 2007 –Microbial ecology of biological invasions. Multidisciplinary Journal of Microbial Ecology. 1, 28–37.
Google Scholar
|
van Kauwenbergh SJ. 2002 –Cadmium content of phosphate rocks and fertilizers. International Fertilizer Industrial Association (IFA) Technical Conference, Chennai, India. P. 31.
Google Scholar
|
Wang B, Qiu YL. 2006 –Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363. doi: 10.1007/s00572-005-0033-6
CrossRef Google Scholar
|
Wanninayake PCU, Malaviarachchi MAPWK, Hettiarachch RP, Yapa PN. 2021 –Different sources of phosphorus fertilizers and soil amendments affected the phosphorus and cadmium content in soil, roots and seeds of maize (Zea mays L. ). Turkish Journal of Agriculture, Food Science and Technology 9, 640–645. doi: 10.24925/turjaf.v9i4.640-645.3513
CrossRef Google Scholar
|
Wardle DA, Bardgett RD, Klironomos JN, Setälä H et al. 2004 –Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633. doi: 10.1126/science.1094875
CrossRef Google Scholar
|
Weerawardena TE, Bandara WMSB. 2018 –Spore abundance and morphological root modifications of arbuscular mycorrhizal fungi-infected black pepper (Piper nigrum L) plants in reddish brown latosolic soil of Matale in Sri Lanka. Sri Lanka Journal of Food and Agriculture 4, 1–5.
Google Scholar
|
Yapa PN, Sadaruwan MKKD, Duminda, DMS, Bamunuarachchige TC. 2020 –Effect of bacterial biofertilizers, native arbuscular mycorrhizal fungi and soil amendments on soil and grain phosphorus availability of flooded rice in dry zone, Sri Lanka. Vingnanam Journal of Science University of Jaffna, Sri Lanka 15, 10–21.
Google Scholar
|