Archibald FS. 1992 - A new assay for lignin-type peroxidases employing the dye Azure B. Applied and Environment Microbiology 58, 3110-3116. doi: 10.1128/aem.58.9.3110-3116.1992
CrossRef Google Scholar
|
Arora DS, Sharma RK. 2010 - Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology 160(6), 1760-1788. doi: 10.1007/s12010-009-8676-y
CrossRef Google Scholar
|
Bonnen AM, Anton LH, Orth AB. 1994 - Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Applied and Environmental Microbiology 60(3), 960-965. doi: 10.1128/aem.60.3.960-965.1994
CrossRef Google Scholar
|
Bozell JJ, Petersen GR. 2010 - Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy's "Top 10" revisited. Green Chemistry 12(4), 539-554. doi: 10.1039/b922014c
CrossRef Google Scholar
|
Chandra R, Chowdhary P. 2015 - Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science: Processes & Impacts, 17(2), 326-342.
Google Scholar
|
Chauhan R. 2019 - Nitrogen sources and trace elements influence Laccase and peroxidase enzymes activity of Grammothele fuligo. Vegetos 32(3), 316-323. doi: 10.1007/s42535-019-00049-w
CrossRef Google Scholar
|
Chowdhary P, More N, Yadav A, Bharagava RN. 2019 - Ligninolytic enzymes: an introduction and applications in the food industry. In Enzymes in Food Biotechnology (pp. 181-195). Academic Press.
Google Scholar
|
Dandge VS. 2012 - Effect of nitrogen sources on the growth of different species of Curvularia, Fusarium, Phoma and Botryodiplodia. Journal of Experimental Sciences 3(3), 24-27.
Google Scholar
|
Das N, Sengupta S, Mukherjee M. 1997 - Importance of laccase in vegetative growth of Pleurotus florida. Applied and Environmental Microbiology 63(10), 4120-4122. doi: 10.1128/aem.63.10.4120-4122.1997
CrossRef Google Scholar
|
Dhanda RK, Prasher IB. 2021 - Optimization of nutritional requirements for mycelial growth and production of ligninolytic enzymes for endophytic Lasiodiplodia hormozganesis in submerged culture. Research Journal of Biotechnology 16(3), 41-51.
Google Scholar
|
Elisashvili V, Parlar H, Kachlishvili E, Chichua D, Bakradze M. 2001 - Ligninolytic activity of basidiomycetes grown under submerged and solid-state fermentation on plant raw material (sawdust of grapevine cuttings). Advances in food sciences 23(3), 117-123.
Google Scholar
|
Elshafei AM, Hassan MM, Haroun BM, Elsayed MA, Othman AM. 2012 - Optimization of laccase production from Penicillium martensii NRC 345. Advances in life Sciences 2(1), 31-37. doi: 10.5923/j.als.20120201.05
CrossRef Google Scholar
|
Fouda AH, Hassan SED, Eid AM, Ewais EED. 2015 - Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences 60(1), 95-104. doi: 10.1016/j.aoas.2015.04.001
CrossRef Google Scholar
|
Fukasawa Y, Osono T, Takeda H. 2005 - Decomposition of Japanese beech wood by diverse fungi isolated from a cool temperate deciduous forest. Mycoscience 46(2), 97-101. doi: 10.1007/S10267-004-0215-7
CrossRef Google Scholar
|
Galhaup C, Wagner H, Hinterstoisser B, Haltrich D. 2002 - Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme and Microbial Technology 30(4), 529-536. doi: 10.1016/S0141-0229(01)00522-1
CrossRef Google Scholar
|
Gupta A, Gupta R, Singh RL. 2017 - Microbes and environment. In Principles and applications of environmental biotechnology for a sustainable future (pp. 43-84). Springer, Singapore.
Google Scholar
|
Hallmann J, Berg G, Schulz B. 2006 - Isolation procedures for endophytic microorganisms. In Microbial root endophytes (pp. 299-319). Springer, Berlin, Heidelberg.
Google Scholar
|
Held AA. 1970 - Nutrition and fermentative energy metabolism of the water mold Aqualinderella fermentans. Mycologia 62(2), 339-358. doi: 10.1080/00275514.1970.12018972
CrossRef Google Scholar
|
Iqbal HMN, Asgher M, Bhatti HN. 2011 - Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. Bio Resources 6(2), 1273-1287.
Google Scholar
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U et al. 2017 - Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS microbiology reviews 41(6), 941-962. doi: 10.1093/femsre/fux049
CrossRef Google Scholar
|
Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J et al. 2015 - The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal diversity 74(1), 3-18. doi: 10.1007/s13225-015-0351-8
CrossRef Google Scholar
|
Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V. 2006 - Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World Journal of Microbiology and Biotechnology 22(4), 391-397. doi: 10.1007/s11274-005-9046-8
CrossRef Google Scholar
|
Kanwal HK, Reddy MS. 2011 - Effect of carbon, nitrogen sources and inducers on ligninolytic enzyme production by Morchella crassipes. World Journal of Microbiology and Biotechnology 27(3), 687-691. doi: 10.1007/s11274-010-0507-3
CrossRef Google Scholar
|
Kataria R, Ruhal R, Babu R, Ghosh S. 2013 - Saccharification of alkali treated biomass of Kans grass contributes higher sugar in contrast to acid treated biomass. Chemical Engineering Journal 230, 36-47. doi: 10.1016/j.cej.2013.06.045
CrossRef Google Scholar
|
Kumar A, Chandra R. 2020 - Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6(2), e03170. doi: 10.1016/j.heliyon.2020.e03170
CrossRef Google Scholar
|
Kumar V, Prasher IB. 2021- Phytochemical analysis and antimicrobial potential of Nigrospora sphaerica (Berk. & Broome) Petch, a fungal endophyte isolated from Dillenia indica L. Advances in Traditional Medicine 1-13. https://doi.org/10.1007/s13596-021-00619-x
Google Scholar
|
Levin L, Melignani E, Ramos AM. 2010 - Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresource Technology 101(12), 4554-4563.
Google Scholar
|
Li X, Xia J, Zhu X, Bilal M et al. 2019 - Construction and characterization of bifunctional cellulases: Caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochemical Engineering Journal 151, 107363. doi: 10.1016/j.bej.2019.107363
CrossRef Google Scholar
|
Mayolo-Deloisa K, Gonzalez-Gonzalez M, Rito-Palomares M. 2020 - Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology 8, 222. doi: 10.3389/fbioe.2020.00222
CrossRef Google Scholar
|
Promputtha I, Hyde KD, McKenzie EH, Peberdy JF, Lumyong S. 2010 - Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes?. Fungal Diversity 41(1), 89-99. doi: 10.1007/s13225-010-0024-6
CrossRef Google Scholar
|
Prasher IB, Shehnaz. 2019 - Nutritional requirements for growth and ligninolytic enzymes production by Chondrostereum purpureum. Annals of Plant and Soil Research 21(3), 270-274.
Google Scholar
|
Ragauskas AJ, Williams CK, Davison BH, Britovsek G et al. 2006 - The path forward for biofuels and biomaterials. Science 311(5760), 484-489. doi: 10.1126/science.1114736
CrossRef Google Scholar
|
Saini JK, Saini R, Tewari L. 2015 - Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4), 337-353. doi: 10.1007/s13205-014-0246-5
CrossRef Google Scholar
|
Sati SC, Bisht S. 2006 - Utilization of various carbon sources for the growth of waterborne conidial fungi. Mycologia 98, 678-681. doi: 10.1080/15572536.2006.11832639
CrossRef Google Scholar
|
Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K. 2002 - Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research 106(9), 996-1004. doi: 10.1017/S0953756202006342
CrossRef Google Scholar
|
Shi Y, Chai L, Tang C, Yang Z et al. 2013 - Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnology for Biofuels 6(1), 1-14. doi: 10.1186/1754-6834-6-1
CrossRef Google Scholar
|
Sharma VK, Kumar J, Singh DK, Mishra A et al. 2017 - Induction of Cryptic and Bioactive Metabolites through Natural Dietary Components in an Endophytic Fungus Colletotrichum gloeosporioides (Penz.) Sacc. Frontiers in Microbiology 8, 1126. doi: 10.3389/fmicb.2017.01126
CrossRef Google Scholar
|
Singh BP, Tandon RN. 1970 - Utilization of monosaccharides by two pathogenic species of Curvularia. Indian Phytopathology 23(4), 629-633.
Google Scholar
|
Stajic M, Persky L, Friesem D, Hadar Y et al. 2006 - Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme and Microbial Technology 38(1-2), 65-73. doi: 10.1016/j.enzmictec.2005.03.026
CrossRef Google Scholar
|
Subbulakshmi GK, Thalavaipandian A, Ramesh V, Rajendran A. 2012 - Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa Wall. and Thuja occidentalis L. International Journal of Advanced Life Sciences, 1(4), 9-15.
Google Scholar
|
Sunitha VH, Nirmala DD, Srinivas C. 2013 - Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World Journal of Agricultural Sciences 9(1), 1-9.
Google Scholar
|
Tien M, Kirk TK. 1988 - Lignin peroxidase of Phanerochaete chrysosporium. Methods in enzymology 161, 238-249.
Google Scholar
|
Urairuj C, Khanongnuch C, Lumyong S. 2003 - Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Diversity 13, 209-219.
Google Scholar
|
Varshney AK, Mohan MK, Vidyarthi AS, Nigam VK, Ghosh P. 2013 - Statistical optimization of medium components to increase the manganese peroxidase productivity by Phanerochaete chrysosporium NCIM 1197. Biotechnology and Bioprocess Engineering 18(6), 1176-1184. doi: 10.1007/s12257-013-0233-4
CrossRef Google Scholar
|
Wong DW. 2009 - Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology 157(2), 174-209. doi: 10.1007/s12010-008-8279-z
CrossRef Google Scholar
|
Zhang J, Elser JJ. 2017 - Carbon: nitrogen: phosphorus stoichiometry in fungi: a meta-analysis. Frontiers in Microbiology 8(1281), 1-9.
Google Scholar
|