[1]
|
Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, et al. 2018. The timescale of early land plant evolution. Proceedings of the National Academy of Sciences of the United States of America 115:E2274−E2283 doi: 10.1073/pnas.171958811
CrossRef Google Scholar
|
[2]
|
Krings M, Serbet SM, Harper CJ. 2021. Rhizophydites matryoshkae gen. et sp. nov. (fossil chytridiomycota) on spores of the early land plant Horneophyton lignieri from the lower devonian rhynie chert. International Journal of Plant Sciences 182:109−22 doi: 10.1086/712250
CrossRef Google Scholar
|
[3]
|
White JF Jr, Kingsley K, Harper CJ, Verma SK, Brindisi L, et al. 2018. Reactive oxygen defense against cellular endoparasites and the origin of eukaryotes. In Transformative Paleobotany, eds Krings M, Cuneo NR, Harper CJ, Cúneo NR, Rothwell GW. Amsterdam: Elsevier. pp 439−60. https://doi.org/10.1016/b978-0-12-813012-4.00018-8
|
[4]
|
Knack JJ, Wilcox LW, Delaux PM, Ané JM, Piotrowski MJ, et al. 2015. Microbiomes of streptophyte algae and bryophytes suggest that a functional suite of microbiota fostered plant colonization of land. International Journal of Plant Sciences 176:405−20 doi: 10.1086/681161
CrossRef Google Scholar
|
[5]
|
Wellman CH, Osterloff PL, Mohiuddin U. 2003. Fragments of the earliest land plants. Nature 425:282−85 doi: 10.1038/nature01884
CrossRef Google Scholar
|
[6]
|
Kerp H. 2018. Organs and tissues of Rhynie chert plants. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 373:20160495 doi: 10.1098/rstb.2016.0495
CrossRef Google Scholar
|
[7]
|
Remy W, Taylor TN, Hass H, Kerp H. 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America 91:11841−43 doi: 10.1073/pnas.91.25.11841
CrossRef Google Scholar
|
[8]
|
White JF, Kingsley KL, Zhang Q, Verma R, Obi N, et al. 2019. Review: endophytic microbes and their potential applications in crop management. Pest Management Science 75:2558−65 doi: 10.1002/ps.5527
CrossRef Google Scholar
|
[9]
|
Chang X, Kingsley KL, White JF. 2021. Chemical interactions at the interface of plant root hair cells and intracellular bacteria. Microorganisms 9:1041 doi: 10.3390/microorganisms9051041
CrossRef Google Scholar
|
[10]
|
Micci A, Zhang Q, Chang X, Kingsley K, Park L, et al. 2022. Histochemical evidence for nitrogen-transfer endosymbiosis in non-photosynthetic cells of leaves and inflorescence bracts of angiosperms. Biology 11:876 doi: 10.3390/biology11060876
CrossRef Google Scholar
|
[11]
|
Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, et al. 2010. Turning the table: plants consume microbes as a source of nutrients. PLoS One 5:e11915 doi: 10.1371/journal.pone.0011915
CrossRef Google Scholar
|
[12]
|
White JF, Kingsley KL, Verma SK, Kowalski KP. 2018. Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 6:95 doi: 10.3390/microorganisms6030095
CrossRef Google Scholar
|
[13]
|
Macedo-Raygoza GM, Valdez-Salas B, Prado FM, Prieto KR, Yamaguchi LF, et al. 2019. Enterobacter cloacae, an endophyte that establishes a nutrient-transfer symbiosis with banana plants and protects against the black sigatoka pathogen. Frontiers in Microbiology 10:804 doi: 10.3389/fmicb.2019.00804
CrossRef Google Scholar
|
[14]
|
Beltran-Garcia MJ, Martinez-Rodriguez A, Olmos-Arriaga I, Valdez-Salas B, Chavez-Castrillon YY, et al. 2021. Probiotic endophytes for more sustainable banana production. Microorganisms 9:1805 doi: 10.3390/microorganisms9091805
CrossRef Google Scholar
|
[15]
|
Thomas P, Agrawal M, Bharathkumar CB. 2019. Diverse cellular colonizing endophytic bacteria in field shoots and in vitro cultured papaya with physiological and functional implications. Physiologia Plantarum 166:729−47 doi: 10.1111/ppl.12825
CrossRef Google Scholar
|
[16]
|
White JF, Chang X, Kingsley KL, Zhang Q, Chiaranunt P, et al. 2021. Endophytic bacteria in grass crop growth promotion and biostimulation. Grass Research 1:5 doi: 10.48130/GR-2021-0005
CrossRef Google Scholar
|
[17]
|
Sangwan S, Prasanna R. 2022. Mycorrhizae helper bacteria: unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microbial Ecology 84:1−10 doi: 10.1007/s00248-021-01831-7
CrossRef Google Scholar
|
[18]
|
Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, et al. 2011. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science 174:3−11 doi: 10.1002/jpln.201000085
CrossRef Google Scholar
|
[19]
|
Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R. 2005. Nitrogen fixation: key genetic regulatory mechanisms. Biochemical Society Transactions 33:152−56 doi: 10.1042/BST0330152
CrossRef Google Scholar
|
[20]
|
Sarkar D, Sankar A, Devika OS, Singh S, Shikha, et al. 2021. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Scientific Reports 11:15680 doi: 10.1038/s41598-021-95092-6
CrossRef Google Scholar
|
[21]
|
Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, et al. 2016. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist 210:657−68 doi: 10.1111/nph.13850
CrossRef Google Scholar
|
[22]
|
Bierne H, Cossart P. 2012. When bacteria target the nucleus: the emerging family of nucleomodulins. Cellular Microbiology 14:622−33 doi: 10.1111/j.1462-5822.2012.01758.x
CrossRef Google Scholar
|
[23]
|
Hanford HE, Von Dwingelo J, Abu Kwaik Y. 2021. Bacterial nucleomodulins: a coevolutionary adaptation to the eukaryotic command center. PLoS Pathogens 17:e1009184 doi: 10.1371/journal.ppat.1009184
CrossRef Google Scholar
|
[24]
|
Prieto KR, Echaide-Aquino F, Huerta-Robles A, Valério HP, Macedo-Raygoza G, et al. 2017. Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants. In Plant Macronutrient Use Efficiency, eds Hossain MA, Kamiya T, Burritt DJ, Tran LSP, Fujiwara T. Amsterdam: Elsevier. pp 285−306. https://doi.org/10.1016/b978-0-12-811308-0.00016-8
|
[25]
|
Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, et al. 2021. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology 131:2161−77 doi: 10.1111/jam.15111
CrossRef Google Scholar
|
[26]
|
Zhang Q, White JF. 2021. Bioprospecting desert plants for endophytic and biostimulant microbes: a strategy for enhancing agricultural production in a hotter, drier future. Biology 10:961 doi: 10.3390/biology10100961
CrossRef Google Scholar
|
[27]
|
Dent D, Cocking E. 2017. Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: the greener nitrogen revolution. Agriculture & Food Security 6:7 doi: 10.1186/s40066-016-0084-2
CrossRef Google Scholar
|
[28]
|
Davis DR. 2009. Declining fruit and vegetable nutrient composition: what is the evidence? HortScience 44:15−19 doi: 10.21273/hortsci.44.1.15
CrossRef Google Scholar
|
[29]
|
Wang S, Chen C, Sciarappa W, Wang C, Camp MJ. 2008. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. Journal of Agricultural and Food Chemistry 56:5788−94 doi: 10.1021/jf703775r
CrossRef Google Scholar
|
[30]
|
White JF Jr, Torres MS. 2010. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiologia Plantarum 138:440−46 doi: 10.1111/j.1399-3054.2009.01332.x
CrossRef Google Scholar
|
[31]
|
Qawasmeh A, Obied HK, Raman A, Wheatley W. 2012. Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: Interaction between Lolium perenne and different strains of Neotyphodium lolii. Journal of Agricultural and Food Chemistry 60:3381−88 doi: 10.1021/jf204105k
CrossRef Google Scholar
|
[32]
|
Irizarry I, White JF. 2018. Bacillus amyloliquefaciens alters gene expression, ROS production and lignin synthesis in cotton seedling roots. Journal of Applied Microbiology 124:1589−603 doi: 10.1111/jam.13744
CrossRef Google Scholar
|
[33]
|
White JF Jr, Cole GT. 1986. Endophyte-host associations in forage grasses. IV. The endophyte of Festuca Versuta. Mycologia 78:102−7 doi: 10.1080/00275514.1986.12025211
CrossRef Google Scholar
|
[34]
|
Rodríguez CE, Mitter B, Barret M, Sessitsch A, Compant S. 2018. Commentary: seed bacterial inhabitants and their routes of colonization. Plant and Soil 422:129−34 doi: 10.1007/s11104-017-3368-9
CrossRef Google Scholar
|
[35]
|
Li H, Parmar S, Sharma VK, White JF Jr. 2019. Seed endophytes and their potential applications. In Seed Endophytes, eds. Verma SK, White JF Jr. Cham, Switzerland: Springer. pp 35–54. https://doi.org/10.1007/978-3-030-10504-4_3
|
[36]
|
Chen Q, Meyer WA, Zhang Q, White JF. 2020. 16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. PeerJ 8:e8417 doi: 10.7717/peerj.8417
CrossRef Google Scholar
|
[37]
|
Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, et al. 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America 112:E5013−E5020 doi: 10.1073/pnas.1505765112
CrossRef Google Scholar
|
[38]
|
White JF, Kingsley KI, Kowalski KP, Irizarry I, Micci A, et al. 2018. Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Plant and Soil 422:195−208 doi: 10.1007/s11104-016-3169-6
CrossRef Google Scholar
|
[39]
|
Ali S, Tyagi A, Bae H. 2023. Plant microbiome: an ocean of possibilities for improving disease resistance in plants. Microorganisms 11:392 doi: 10.3390/microorganisms11020392
CrossRef Google Scholar
|
[40]
|
Lata R, Chowdhury S, Gond SK, White JF Jr. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology 66:268−76 doi: 10.1111/lam.12855
CrossRef Google Scholar
|
[41]
|
Irizarry I, White JF. 2017. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. Journal of Applied Microbiology 122:1110−20 doi: 10.1111/jam.13414
CrossRef Google Scholar
|
[42]
|
Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, et al. 2008. Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal 2:404−16 doi: 10.1038/ismej.2007.106
CrossRef Google Scholar
|
[43]
|
Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D. 2020. Plant microbiota modified by plant domestication. Systematic and Applied Microbiology 43:126106 doi: 10.1016/j.syapm.2020.126106
CrossRef Google Scholar
|
[44]
|
Johnston-Monje D, Raizada MN. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE 6:e20396 doi: 10.1371/journal.pone.0020396
CrossRef Google Scholar
|
[45]
|
Johnston-Monje D, Gutiérrez JP, Lopez-Lavalle LAB. 2021. Seed-transmitted bacteria and fungi dominate juvenile plant microbiomes. Frontiers in Microbiology 12:737616 doi: 10.3389/fmicb.2021.737616
CrossRef Google Scholar
|
[46]
|
Berg G, Raaijmakers JM. 2018. Saving seed microbiomes. The ISME Journal 12:1167−70 doi: 10.1038/s41396-017-0028-2
CrossRef Google Scholar
|
[47]
|
Waugh FW. 1916. Iroquois Foods and Food Preparation. In Memoir. Ottawa: Government Printing Bureau. Ottawa: Government Printing Bureau. v, 235 pp. https://ehrafworldcultures.yale.edu/document?id=nm09-025
|
[48]
|
Ahmed M, Rauf M, Mukhtar Z, Saeed NA. 2017. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research 24:26983−87 doi: 10.1007/s11356-017-0589-7
CrossRef Google Scholar
|
[49]
|
Ding Y, Jin Y, He K, Yi Z, Tan L, et al. 2020. Low nitrogen fertilization alter rhizosphere microorganism community and improve sweetpotato yield in a nitrogen-deficient rocky soil. Frontiers in Microbiology 11:678 doi: 10.3389/fmicb.2020.00678
CrossRef Google Scholar
|