[1]
|
Yao R, Heinrich M, Weckerle CS. 2018. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. Journal of Ethnopharmacology 212:50−66 doi: 10.1016/j.jep.2017.10.010
CrossRef Google Scholar
|
[2]
|
Chang RCC, So KF. (Eds.) 2015. Lycium barbarum and human health (No. 12075). Dordrecht, Netherlands: Springer. doi: 10.1007/978-94-017-9658-3
|
[3]
|
Dharmananda S. 2007. Lycium Fruit: Food and Medicine. Portland, Oregon: Institute for Traditional Medicine. www.itmonline.org/arts/lycium.htm
|
[4]
|
Sun W, Shahrajabian MH, Cheng Q. 2021. Health benefits of wolfberry (Gou Qi Zi, Fructus barbarum L.) on the basis of ancient Chinese herbalism and Western modern medicine. Avicenna Journal of Phytomedicine 11(2):109 doi: 10.22038/AJP.2020.17147
CrossRef Google Scholar
|
[5]
|
Wang Z. 2006. The Magic Lycium barbarum from Ningxia Province, China. pp. 58–128
|
[6]
|
Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, et al. 2016. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in Retinal and Eye Research 50:34−66 doi: 10.1016/j.preteyeres.2015.10.003
CrossRef Google Scholar
|
[7]
|
Gao Y, Wei Y, Wang Y, Gao F, Chen Z. 2017. Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent. Aging and disease 8(6):778−91 doi: 10.14336/AD.2017.0725
CrossRef Google Scholar
|
[8]
|
Mocan A, Vlase L, Vodnar DC, Bischin C, Hanganu D, et al. 2014. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules 19(7):10056−73 doi: 10.3390/molecules190710056
CrossRef Google Scholar
|
[9]
|
Zhang KY, Leung HW, Yeung HW, Wong RN. 2001. Differentiation of Lycium barbarum from its related Lycium species using random amplified polymorphic DNA. Planta medica 67(04):379−81 doi: 10.1055/s-2001-14310
CrossRef Google Scholar
|
[10]
|
Qian JY, Liu D, Huang AG. 2004. The efficiency of flavonoids in polar extracts of Lycium chinense Mill. fruits as free radical scavenger. Food Chemistry 87:283−88 doi: 10.1016/j.foodchem.2003.11.008
CrossRef Google Scholar
|
[11]
|
Yao R, Heinrich M, Zou Y, Reich E, Zhang X, et al. 2018. Quality variation of goji (fruits of Lycium spp. ) in China: a comparative morphological and metabolomic analysis. Frontiers in Pharmacology 9:151 doi: 10.3389/fphar.2018.00151
CrossRef Google Scholar
|
[12]
|
Shen T, Zou X, Shi J, Li Z, Huang X, et al. 2016. Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics. Food Analytical Methods 9:68−79 doi: 10.1007/s12161-015-0175-x
CrossRef Google Scholar
|
[13]
|
Burke DS, Smidt CR, Vuong LT. 2005. Momordica cochichinensis, Rosa roxburghii, goji berry, and sea buckthorn highly nutritional fruits supported by tradition and science. Current Topics Nutraceutical Research 3:259−66
Google Scholar
|
[14]
|
Shahrajabian MH, Sun W, Cheng Q. 2018. A review of goji berry (Lycium barbarum) in traditional Chinese medicine as a promising organic superfood and superfruit in modern industry. Academia Journal Medicinal Plants 6(12):437−45
Google Scholar
|
[15]
|
Pedro AC, Sánchez-Mata MC, Pérez-Rodríguez ML, Cámara M, López-Colón JL, et al. 2019. Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Scientia Horticulturae 257:108660 doi: 10.1016/j.scienta.2019.108660
CrossRef Google Scholar
|
[16]
|
Ma Y, Xie Y, Ha R, Cao B, Song L. 2021. Effects of elevated CO2 on photosynthetic accumulation, sucrose metabolism-related enzymes, and genes identification in goji berry (Lycium barbarum L. ). Frontiers in Plant Science 12:64355 doi: 10.3389/fpls.2021.643555
CrossRef Google Scholar
|
[17]
|
Zhao K, Fan H, Ungar IA. 2002. Survey of halophyte species in China. Plant Science 163(3):491−98 doi: 10.1016/S0168-9452(02)00160-7
CrossRef Google Scholar
|
[18]
|
Cao Y, Yan Y (Eds.). 2022. Goji berry (GOJI). Yinchuan, China: Yellow River Publishing and Media Group Co., LTD, Sunshine Publishing House.
|
[19]
|
Upton R, Garran TA, Casper L, Laenger R, Petrone C, et al. 2019. Lycium (Goji) Berry. In American Herbal Pharmacopoeia and Therapeutic Compendium. Scotts Valley, CA, USA: American Herbal Pharmacopoeia. https://herbal-ahp.com/products/lycium-goji-berry
|
[20]
|
Chen J, Chao CT, Wei X. 2018. Gojiberry breeding: current status and future prospects. In Breeding and Health Benefits of Fruit and Nut Crops, eds. Soneji JR, Nageswara-Rao M. London: Intech Open. http://dx.doi.org/10.5772/intechopen.76388
|
[21]
|
Miller JS, Venable DL. 2003. Floral morphometrics and the evolution of sexual dimorphism in Lycium (Solanaceae). Evolution 57:74−86 doi: 10.1111/j.0014-3820.2003.tb00217.x
CrossRef Google Scholar
|
[22]
|
Fan G, Wang Z, Gen S, Ma Y. 2009. Preliminary report on Qinghai goji berry crossbreeding. Science and Technology of Qinghai Agriculture Forestry 2009(4):5−7 doi: 10.3969/j.issn.1004-9967.2009.04.002
CrossRef Google Scholar
|
[23]
|
Hu Z, Yang J, Guo G, Zheng G. 2002. High-efficiency transformation of Lycium barbarum mediated by Agrobacterium tumefaciens and transgenic plant regeneration via somatic embryogenesis. Plant Cell Reports 21:233−37 doi: 10.1007/s00299-002-0462-z
CrossRef Google Scholar
|
[24]
|
Wang W, Liu J, Wang H, Li T, Zhao H. 2021. A highly efficient regeneration, genetic transformation system and induction of targeted mutations using CRISPR/Cas9 in Lycium ruthenicum. Plant Methods 17:71 doi: 10.1186/s13007-021-00774-x
CrossRef Google Scholar
|
[25]
|
Ai P, Xue D, Wang Y, Zeng S. 2023. An efficient improved CRISPR mediated gene function analysis system established in Lycium ruthenicum Murr. Industrial Crops and Products 192:116142 doi: 10.1016/j.indcrop.2022.116142
CrossRef Google Scholar
|
[26]
|
Zhao J, Xu Y, Li H, Yin Y, An W, et al. 2019. A SNP-based high-density genetic map of leaf and fruit related quantitative trait loci in wolfberry (Lycium Linn. ). Frontiers in Plant Science 10:977 doi: 10.3389/fpls.2019.00977
CrossRef Google Scholar
|
[27]
|
Zhao X, Huang L, Zhang X, Wang J, Yan D, et al. 2016. Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. Scientific Reports 6(1):29345 doi: 10.1038/srep29345
CrossRef Google Scholar
|
[28]
|
Gong H, Rehman F, Yang T, Li Z, Zeng S, et al. 2019. Construction of the first high-density genetic map and QTL mapping for photosynthetic traits in Lycium barbarum L. Molecular Breeding 39:106 doi: 10.1007/s11032-019-1000-9
CrossRef Google Scholar
|
[29]
|
Rehman F, Gong H, Li Z, Zeng S, Yang T, et al. 2020. Identification of fruit size associated quantitative trait loci featuring SLAF based high-density linkage map of goji berry (Lycium spp.). BMC Plant Biology 20:474 doi: 10.1186/s12870-020-02567-1
CrossRef Google Scholar
|
[30]
|
Zhao J, Li H, Xu Y, Yin Y, Huang T, et al. 2021. A consensus and saturated genetic map provides insight into genome anchoring, synteny of Solanaceae and leaf-and fruit-related QTLs in wolfberry (Lycium Linn. ). BMC Plant Biology 21:350 doi: 10.1186/s12870-021-03115-1
CrossRef Google Scholar
|
[31]
|
Tanksley SD, McCouch SR. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063−66 doi: 10.1126/science.277.5329.1063
CrossRef Google Scholar
|
[32]
|
Ireland KB, Hunter GC, Wood A, Delaisse C, Morin L. 2019. Evaluation of the rust fungus Puccinia rapipes for biological control of Lycium Ferocissimum (African Boxthorn) in Australia: life cycle, taxonomy and pathogenicity. Fungal Biology 123(11):811−23 doi: 10.1016/j.funbio.2019.08.007
CrossRef Google Scholar
|
[33]
|
Xie DM, Zhang XB, Qian D, Zha X, Huang LQ. 2016. Lycium amarum sp. nov. (Solanaceae) from Xizang, supported from morphological characters and phylogenetic analysis. Nordic Journal of Botany 34(5):538−44 doi: 10.1111/njb.01071
CrossRef Google Scholar
|
[34]
|
Bertoldi D, Cossignani L, Blasi F, Perini M, Barbero A, et al. 2019. Characterisation and geographical traceability of Italian goji berries. Food Chemistry 275:585−93 doi: 10.1016/j.foodchem.2018.09.098
CrossRef Google Scholar
|
[35]
|
Aparecida Plastina Cardoso M, Windson Isidoro Haminiuk C, Pedro AC, de Andrade Arruda Fernandes Fernandes I, Akemi Casagrande Yamato M, et al. 2021. Biological effects of Goji berry and the association with new industrial applications: A review. Food Reviews International 39(5):2990−3007 doi: 10.1080/87559129.2021.2007261
CrossRef Google Scholar
|
[36]
|
Gong H, Rehman F, Li Z, Liu J, Yang T, et al. 2022. Discrimination of geographical origins of wolfberry (Lycium barbarum L.) fruits using stable isotopes, earth elements, free amino acids, and saccharides. Journal of Agricultural and Food Chemistry 70(9):2984−97 doi: 10.1021/acs.jafc.1c06207
CrossRef Google Scholar
|
[37]
|
Yang T, Dong J, Yue J, Wang Y. 2015. A new goji berry cultivar 'zhongke lüchuan 1'. Acta Horticulturae Sinica 42:2557−58 doi: 10.16420/j.issn.0513-353x.2014-1003
CrossRef Google Scholar
|
[38]
|
Qin K, Dai G. 2017. Progress and Prospect of Breeding of Chinese Wolfberry Varieties. Ningxia journal of Agriculture and Forestry Science and Technology 58(12):25−28,33 doi: 10.3969/j.issn.1002-204X.2017.12.009
CrossRef Google Scholar
|
[39]
|
An W, Zhao J, Yin Y, Li Y. 2019. Research status and development trend of wolfberry germplasm resources. Ningxia Journal of Agriculture and Forestry Science and Technology 60(9):49−50,99 doi: 10.3969/j.issn.1002-204x.2019.09.016
CrossRef Google Scholar
|
[40]
|
Wang Z, Jin K, Gu L. 2013. Investigation and conservation measures of Lycium resources in Xinjiang. Northern Horticulture 2013(3):169−71
Google Scholar
|
[41]
|
Wang Y, Zhang B. 2021. Species resources of Lycium L. in China and their development strategies. World Forestry Research 34(3):107−11 doi: 10.13348/j.cnki.sjlyyj.2020.0117.y
CrossRef Google Scholar
|
[42]
|
Pai D, Ma J. 1997. A germplasm resource with broad application prospects: American Lycium barbarum. Hubei Agricultural Sciences 6:52−54
Google Scholar
|
[43]
|
Arenas P, Scarpa GF. 2007. Edible wild plants of the Chorote Indians, Gran Chaco, Argentina. Botanical Journal of the Linnean Society 153:73−85 doi: 10.1111/j.1095-8339.2007.00576.x
CrossRef Google Scholar
|
[44]
|
Miller JS. 2002. Phylogenetic relationships and the evolution of gender dimorphism in Lycium (Solanaceae). Systematic Botany 27:416−428
Google Scholar
|
[45]
|
Peinado M, Delgadillo J, Aguirre JL. 2005. Plant associations of El Vizcaíno Biosphere Reserve, Baja California Sur, Mexico. The Southwestern Naturalist 50:129−49
Google Scholar
|
[46]
|
He J, Li X, Duan L, Jiao L, Zhang B, et al. 2019. A wild species of American Wolfberry-Lycium exertum A. Gray. Agricultural Biotechnology 8(6):19−22
Google Scholar
|
[47]
|
Blank CM, Levin RA, Miller JS. 2014. Intraspecific variation in gender strategies in Lycium (Solanaceae): associations with ploidy and changes in floral form following the evolution of gender dimorphism. American Journal of Botany 101(12):2160−68
Google Scholar
|
[48]
|
Fukuda T, Yokoyama J, Ohashi H. 2001. Phylogeny and biogeography of the genus Lycium (Solanaceae): inferences from chloroplast DNA sequences. Molecular Phylogenetics and Evolution 19:246−58 doi: 10.1006/mpev.2001.0921
CrossRef Google Scholar
|
[49]
|
Dhar P, Tayade A, Ballabh B, Chaurasia OP, Bhatt RP, Srivastava RB. 2011. Lycium ruthenicum Murray: a less-explored but high-value medicinal plant from Trans-Himalayan cold deserts of Ladakh, India. Plant Archives 11(2):583−86
Google Scholar
|
[50]
|
McCulloch GA, Mauda EV, Chari LD, Martin GD, Gurdasani K, et al. 2020. Genetic diversity and morphological variation in African boxthorn (Lycium ferocissimum) – characterizing the target weed for biological control. Biological Control 143:104206 doi: 10.1016/j.biocontrol.2020.104206
CrossRef Google Scholar
|
[51]
|
Ali SI, Nasir YJ. 1978−1991. Flora of Pakistan. Islamabad: Pakistan Agricultural Research Council. www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=119146
|
[52]
|
Konarska A. 2018. Microstructural and histochemical characteristics of Lycium Barbarum L. fruits used in folk herbal medicine and as functional food. Protoplasma 255(6):1839−54 doi: 10.1007/s00709-018-1277-2
CrossRef Google Scholar
|
[53]
|
Wetters S, Horn T, Nick P. 2018. Goji who? Morphological and DNA based authentication of a "superfood". Frontiers in Plant Science 9:1859 doi: 10.3389/fpls.2018.01859
CrossRef Google Scholar
|
[54]
|
Lee HS, Choi CI. 2023. Black Goji Berry (Lycium ruthenicum Murray): A Review of Its Pharmacological Activity. Nutrients 15(19):4181 doi: 10.3390/nu15194181
CrossRef Google Scholar
|
[55]
|
Maughan T, Black B. 2015. Goji in the garden. USA: Utah State University Extension. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1775&context=extension_curall
|
[56]
|
An W, Zhang H, He J, Li X, Fan Y. 2009. Progress and prospects of goji berry breeding. Northern Horticulture 2009(5):125−28
Google Scholar
|
[57]
|
Cao Y, Jia Y, Luo Q. 1998. Selection of Goji berry resistance to Fusarium graminearum through in vitro tissue culture. In Ningxia Goji berry Research, ed. Bei S. Ningxia, China: Ningxia People's Publishing House. pp. 188−91
|
[58]
|
Wang N, Lu W, Sun D. 1998. Selection of salt tolerant goji berry variants through plant regeneration. In Ningxia Goji berry Research, ed. Bei S. Ningxia, China: Ningxia People's Publishing House. pp. 171−75
|
[59]
|
Luo Q, Qu L, Cao Y. 2001. A preliminary study of transgenic goji berry for resistance to aphid. Ningxia Journal of Agriculture and Forestry Science and Technology 2001(1):1−3 doi: 10.3969/j.issn.1002-204X.2001.01.001
CrossRef Google Scholar
|
[60]
|
Ji J, Wang G, Wang J, Wang P. 2009. Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L. for their effects on β-carotene production in transgenic tobacco. Biotechnology Letters 31:305−12 doi: 10.1007/s10529-008-9861-8
CrossRef Google Scholar
|
[61]
|
Zhu J, Guo Y, Su K, Liu Z, Ren Z, et al. 2018. Construction of a highly saturated genetic map for Vitis by next-generation restriction site-associated DNA sequencing. BMC Plant Biology 18:347 doi: 10.1186/s12870-018-1575-z
CrossRef Google Scholar
|
[62]
|
Zhu WY, Huang L, Chen L, Yang JT, Wu JN, et al. 2016. A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science 7:437 doi: 10.3389/fpls.2016.00437
CrossRef Google Scholar
|
[63]
|
Rehman F, Gong H, Ma Y, Zeng S, Ke D, et al. 2024. An ultra-dense linkage map identified quantitative trait loci corresponding to fruit quality-and size-related traits in red goji berry. Frontiers in Plant Science 15:1390936 doi: 10.3389/fpls.2024.1390936
CrossRef Google Scholar
|
[64]
|
Carlier JD, Reis A, Duval MF, D'Eeckenbrugge GC, Leitão JM. 2004. Genetic maps of RAPD, AFLP and ISSR markers in Ananas bracteatus and A. comosus using the pseudo-testcross strategy. Plant Breeding 123:186−92 doi: 10.1046/j.1439-0523.2003.00924.x
CrossRef Google Scholar
|
[65]
|
Cao YL, Li YL, Fan YF, Li Z, Yoshida K, et al. 2021. Wolfberry berry genomes and the evolution of Lycium (Solanaceae). Communications Biology 4:671 doi: 10.1038/s42003-021-02152-8
CrossRef Google Scholar
|
[66]
|
Wang Y, Chen H, Wu M, Zeng S, Liu Y, et al. 2015. Chemical and genetic diversity of wolfberry. In Lycium Barbarum and human health, eds. Chang RC, So KF. Dordrecht, Springer. pp. 1−26. doi: 10.1007/978-94-017-9658-3_1
|
[67]
|
Rehman F, Gong H, Bao Y, Zeng S, Huang H, et al. 2022. CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. Plant Molecular Biology 108(3):157−73 doi: 10.1007/s11103-021-01229-6
CrossRef Google Scholar
|
[68]
|
Xu Y. 2010. Molecular plant breeding. Cambridge, MA: CABI North American Office. doi: 10.1079/9781845933920.0000#
|
[69]
|
Rubiales D, Fondevilla S, Fernández-Aparicio M. 2020. Development of pea breeding lines with resistance to Orobanche crenata derived from pea landraces and wild Pisum spp. Agronomy 11(1):36 doi: 10.3390/agronomy11010036
CrossRef Google Scholar
|
[70]
|
Grandillo S, Ku HM, Tanksley SD. 1999. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics 99:978−987 doi: 10.1007/s001220051405
CrossRef Google Scholar
|
[71]
|
Lippman Z, Tanksley SD. 2001. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158(1):413−22 doi: 10.1093/genetics/158.1.413
CrossRef Google Scholar
|
[72]
|
Hao Y, Wang X, Li X, Bassa C, Mila I, et al. 2014. Genome-wide identification, phylogenetic analysis, expression profiling, and protein–protein interaction properties of TOPLESS gene family members in tomato. Journal of Experimental Botany 65:1013−23 doi: 10.1093/jxb/ert440
CrossRef Google Scholar
|
[73]
|
Song S, Huang B, Pan Z, Zhong Q, Yang Y, et al. 2022. The SlTPL3–SlWUS module regulates multi-locule formation in tomato by modulating auxin and gibberellin levels in the shoot apical meristem. Journal of Integrative Plant Biology 64(11):2150−67 doi: 10.1111/jipb.13347
CrossRef Google Scholar
|
[74]
|
Zheng X, Tang Y, Ye J, Pan Z, Tan M, et al. 2019. SLAF-based construction of a high-density genetic map and its application in QTL mapping of carotenoids content in citrus fruit. Journal of Agricultural Food Chemistry 67(3):994−1002 doi: 10.1021/acs.jafc.8b05176
CrossRef Google Scholar
|
[75]
|
Guo P, Ren G, Li Z, Zeng S, De T. 2019. Progress of determinate growth genes and gene editing breeding. Chinese Journal of Tropical Crops 40:2016−21 doi: 10.3969/j.issn.1000-2561.2019.10.014
CrossRef Google Scholar
|
[76]
|
Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, et al. 1996. Control of inflorescence architecture in Antirrhinum. Nature 379:791−97 doi: 10.1038/379791a0
CrossRef Google Scholar
|
[77]
|
Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, et al. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979−89 doi: 10.1242/dev.125.11.1979
CrossRef Google Scholar
|
[78]
|
Li T, Yang X, Yu Y, Si X, Zhai X. 2018. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36:1160−63 doi: 10.1038/nbt.4273
CrossRef Google Scholar
|
[79]
|
Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, et al. 2018. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants 4:766−70 doi: 10.1038/s41477-018-0259-x
CrossRef Google Scholar
|
[80]
|
Kwon CT, Heo J, Lemmon ZH, Capua Y, Hutton SF, et al. 2020. Rapid customization of Solanaceae fruit crops for urban agriculture. Nature Biotechnology 38:182−88 doi: 10.1038/s41587-019-0361-2
CrossRef Google Scholar
|