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Abstract
Chickens are important breeding animals and models for biomedical  research, particularly due to
their  oviparous  nature,  which  makes  it  an  ideal  subject  for  studying  maternal  effects.  This  study
employs RNA-Seq to conduct a comprehensive analysis of the transcriptomics of the poultry liver,
with a focus on maternal transgenerational effects.  Samples were examined from broiler breeders,
E19  embryos,  and  21-day-old  offspring,  identifying  2,753  DEGs.  GO  analysis  revealed  significant
enrichment  of  differentially  expressed  RNAs  in  functions  such  as  actin  filament  binding  and
lysosomal  activity.  KEGG  analysis  identified  pathways  associated  with  endocytosis  and  Toll-like
receptor  signaling,  displaying  a  high-low-high  expression  pattern  across  the  broiler  breeders,
embryos,  and  offspring,  which  is  closely  linked  to  immune  function  regulation.  Conversely,  the
Neuroactive ligand-receptor interaction and Calcium signaling exhibited a low-high-low expression
pattern,  which  is  intimately  associated  with  organogenesis,  and  embryonic  development.
Additionally, based on DEGs, genes such as IGF1, IGFBP, FASN, and ELOVL were identified, which
are  significantly  expressed  in  embryos  and  are  crucial  for  development  and  lipid  metabolism
regulation. In summary, the present research provides a valuable transcriptional regulatory network
for studying maternal effects on liver tissue development in broiler breeders, laying a foundation for
further exploration of the molecular mechanisms underlying maternal effects.
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Introduction
Maternal  transgenerational  effects  significantly  influence the phenotypic
traits of the offspring, encompassing factors such as nutrition, hormones,
gut  microbiota,  and  epigenetic  regulation[1−4].  As  oviparous  animals,
chickens rely solely on the nutrition provided by the egg post-separation
from the mother, rendering maternal effects critical from the embryonic
to  early  developmental  stages  in  chicks.  However,  the  patterns  of  these
changes  remain  largely  unexplored[5].  Our  previous  research  identified
the chicken liver as a target organ influenced by maternal effects at both
the  transcriptional  and  epigenetic  levels[6,7].  The  liver,  being  the  most
crucial  metabolic  organ  in  chickens,  facilitates  fat  and  protein
metabolism,  as  well  as  the  storage  of  vitamins  and  minerals,  playing  a
pivotal  role  in  hematopoiesis  and  glucose  and  lipid  metabolism  during
embryonic development[8]. Yet, systematic analyses of the transcriptional
diversity  in  the  liver  across  generations,  from  breeders  to  embryos  to
offspring, are scarce.

During  the  reprogramming  process  of  avian  embryonic  develop-
ment,  epigenetic  modifications  of  specific  genes  can  undergo  aberra-
tions. Mutations in genes encoding epigenetic regulatory proteins may
also  occur.  These  changes  represent  critical  phases  where  maternal
effects  are  exerted[9].  Epigenetics  plays  a  significant  role  in  regulating
complex  cellular  networks.  They  are  involved  in  key  physiological
processes such as chromatin assembly and mRNA splicing. The distri-
bution of epigenetic regulators within both the cytoplasm and nucleus
is  closely  associated  with  their  mechanisms  of  action[10,11].  Notably,
genes  are  intimately  linked  to  embryogenesis  and  development,  with
maternally  inherited  LncRNAs  being  abundantly  present  in  early
embryos[9];  in  chicken  embryos,  there  is  a  marked  increase  in  the

expression  of  mRNA  during  developmental  stages,  suggesting  that
maternal  effect  contributes  to  maintaining  pluripotency  in  stem  cells
and  plays  a  role  in  embryonic  development[6].  Furthermore,  studies
indicate  that  the  duration  of  maternal  effects  in  birds  is  relatively
short[12],  which  may be  closely  related  to  the  efficiency  of  early  chick
development.  However,  the  changes  in  marker  genes  involved in  this
process and the underlying mechanisms remain largely unclear.

In the production cycle of broiler breeders, individuals entering the
late  laying  phase  exhibit  significant  declines  in  egg  production  and
increased  body  fat  deposition,  impacting  liver  lipid  metabolism  and
other  metabolic  pathways[13].  By  contrast,  during  rapid  cell  division
and  differentiation,  the  liver  of  hatching  chicken  embryos  showcases
an  efficient  energy  metabolism  system  and  biosynthesis  activities,
laying the foundation for subsequent life stages[14]. Furthermore, at 21
d post-hatch, during a period of rapid growth, the liver's  functions in
energy  and  protein/amino  acid  metabolism,  lipid  metabolism  adjust-
ment, vitamin and mineral storage, and immune regulation are crucial
to support this growth rate[15].

To  delve  into  the  temporal  and  spatial  variations  in  the  liver  tran-
scriptomes  of  broiler  chickens  at  different  developmental  stages  and
identify  key  transcription  factors  associated  with  economic  traits,
particularly metabolic efficiency, this study analyzed 23 high-through-
put  RNA-Seq  libraries  from  liver  tissue  samples  of  AA  strain  broiler
breeders,  offspring  at  the  E19  embryonic  stage,  and  21-day-old  post-
hatch  offspring.  Through  this  approach,  we  aim  to  gain  a  deeper
understanding  of  the  functional  changes  in  the  liver  across  develop-
mental  stages  and  their  potential  impacts  on  overall  health  and
productivity,  thereby  uncovering  key  gene  expression  patterns  that
influence liver health and metabolic characteristics. 
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Materials and methods
 

Animals and sample collection
The  experiment  utilized  late-laying  57-week-old  broiler  breeders  and
their  male  broiler  offspring,  ROSS  308,  raised  under  standardized
conditions  at  the  Meat  Chicken  Science  and  Technology  Backyard
(Zhuozhou, China). At the end of 65 weeks, liver samples were collected
from  eight  selected  broiler  breeders.  Fertilized  eggs  were  collected,  and
incubated,  and  only  male  offspring  chicks  were  used  in  this  study.
Samples  were  taken  on  the  19th day  of  embryonic  development  for
collection and sex determination (seven were selected),  and chicks  were
raised  until  the  age  of  21  d,  at  which  point  liver  samples  from  eight
selected individuals were collected. The samples were immediately frozen
in  liquid  nitrogen  and  stored  at −80°C  for  further  analysis.  The
experimental workflow is illustrated in Fig. 1. 

Total RNA isolation
The  liver  samples  were  collected  and  immediately  placed  in  RNase-free
centrifuge tubes, followed by rapid freezing in liquid nitrogen. Total RNA

isolation  was  performed  using  100  mg  tissue  samples  and  1  mL  Trizol
reagent  (Vazyme  #R701),  adhering  to  the  protocols  provided  by  the
supplier. To evaluate the RNA integrity and purity, a NanoDrop micro-
volume  spectrophotometer  (Thermo  Fisher,  Wilmington,  USA)  was
utilized, following the procedure outlined by Gao et al.[16]. This procedure
guaranteed  the  structural  integrity  and  dependability  of  the  RNA
specimens before further examination. 

RNA-Seq library construction and sequencing
Total RNA that met the criteria, with a RIN value of ≥ 7 as determined by
the Agilent 2100 Bioanalyzer, was utilized for mRNA library preparation
for  sequencing[17].  To  precisely  quantify  the  molar  concentration  of  the
constructed libraries, qPCR with standards was conducted, employing the
KAPA Library Quantification Kit (Cat no. KK4602) as recommended by
Illumina, ensuring accurate library loading volumes for sequencing. The
libraries  were  then  hybridized  to  a  Flowcell  using  the  TruSeq  Rapid  PE
Cluster  Kit  on  a  cBot,  followed by  clustering  on  the  HiSeq2500  system.
This  step  involves  immobilizing  the  library  molecules  on  Flowcell
primers  and  undergoing  bridge  PCR  amplification  before  sequencing.
Illumina's data collection software managed the sequencing operation. 
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Fig. 1    Liver transcriptome profiles of maternal, embryo, and offspring stages. (a) Workflow diagram, (b) differential gene expression profiles across the three
stages, (c) PCoA plot of sample distribution, (d) number of differentially expressed genes between stages, (e) Venn diagram of differentially expressed genes.
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Gene expression analysis
Gene  expression  differentiation  analysis  employed  DESeq2[18],  adhering
to  the  approach  outlined  by  Fan  et  al.[6].  Differentially  expressed  genes
were identified by setting the criteria to an absolute log2 |fold change| ≥1
and  a  Q-value  ≤  0.05.  To  assess  the  expression  correlation  among
samples,  the  Pearson  correlation  coefficient  for  all  gene  expression  data
was  calculated.  For  intra-group  comparisons,  only  Pearson  correlation
coefficients  exceeding  0.80  were  considered,  denoting  superior  repro-
ducibility. Prediction pipeline for lncRNA transcripts：(1) Cufflinks were
used to assemble the transcripts for each sample. (2) Cuffmerge was used
to  merge  the  transcripts  predicted  from all  individuals.  (3)  The  merged
transcripts  were  compared  with  the  known  protein-coding  transcripts
downloaded from Ensembl using Cuffcompare, filtering out lncRNA loci
that encode proteins. (4) Transcripts shorter than 200 bp and with fewer
than two exons were removed. (5) CNCI was used to predict the coding
potential  of  transcripts,  and  transcripts  with  coding  potential  were
removed. (6) BLAST was used to further filter out transcripts with coding
potential by comparing them with the NCBI protein database. Based on
the  FPKM values  of  lncRNA expression,  differential  expression  analysis
between  samples  was  performed  using  the  DEGseq  package.  The
differential lncRNAs were screened using the statistical methods of fold-
change (expression difference multiple) and Fisher's exact test. 

Functional enrichment analysis
Enrichment analysis was executed with the entire genome serving as the
background set, focusing on the biological process (BP) category of Gene
Ontology  (GO)  for  the  functional  assessment.  GO  terms  were  deemed
significant if they achieved a P value < 0.01 and were associated with ≥ 2
genes. 

Time analysis
Short  Time-series  Expression  Miner  (STEM),  Using  STEM,  time-series
gene  expression  data  was  normalized  and  analyzed  by  clustering  genes
into  predefined  temporal  expression  profiles.  Parameters  such  as  the
number  of  profiles  and  FDR  correction  were  set,  and  the  analysis
identified significant profiles based on gene expression trends across time
points.  The  results  were  then  visualized,  and  significant  profiles  were
subjected to Gene Ontology (GO) enrichment analysis to identify related
biological  processes.  Key  findings  included  the  identification  of  gene

clusters  with  distinct  temporal  expression  patterns  and  their  associated
GO terms. 

Results
 

Expression of DEGs in the liver across maternal-embryo-
offspring stages
To  delineate  the  RNA  expression  profiles  involved  in  liver  function
during  maternal  effects  in  broiler  breeders  (Fig.  1a,b),  high-throughput
RNA  sequencing  generated  185.88  GB  of  clean  data  from  23  liver
samples,  encompassing  both  maternal  and  offspring  stages,  specifically
embryos at day 19 of gestation and chicks 21 d post-hatch. Each sample
contributed 7.9 GB of clean data, with a Q30 base percentage consistently
exceeding 91.71% (Table 1). A total of 19,031 genes were identified across
the  liver  samples.  Clean  reads  were  aligned  to  the  reference  chicken
genome  using  HISAT,  resulting  in  a  mapping  success  rate  between
90.83%  and  93.35%  (Table  1).  The  identification  of  differentially  ex-
pressed genes  (DEGs)  was  grounded on comparative  analyses  and their
expression  levels  across  the  various  samples.  A  comprehensive  array  of
DEGs was identified in the liver tissue (Table 2, Supplementary Fig. S1a).
Principal  component analysis  (PCA) was employed to model  the distri-
bution  and  segregation  trends  among  the  maternal,  embryonic,  and
offspring  comparison  groups,  illustrating  distinct  clustering  patterns
(Fig.  1c).  A  Venn  diagram  further  emphasized  the  shared  and  unique
gene  expression  alterations  occurring  across  the  maternal,  embryonic,
and  offspring  stages.  When  considering  these  stages  as  distinct  entities,
pairwise differential expression analyses revealed that the maternal versus
embryonic stages exhibited the highest number of differentially expressed
genes,  followed  by  the  embryonic  versus  offspring  stages,  with  the  least
differential  expression  observed  between  the  maternal  and  offspring
stages (Fig. 1d, e). 

Differential GO analysis of DEGs in the maternal effect
process
To  further  elucidate  the  characteristic  DEGs  involved  in  the  liver's  role
during  maternal  effects,  the  top  10  DEGs  in  the  maternal-embryo  and
embryo-offspring  comparisons  were  identified,  including IGFBP1,
ABI3BP, DIO3, PDK4, IGFALS, IGF1,  among  others  (Tables  3 & 4).  In

 

Table 1.    RNA-seq read statistics.

Sample name Clean_reads Raw_bases Q20 Q30 GC_content HISAT mapped HISAT Uniquely mapped

Breeder1 38362812 11040224580 96.53% 93.16% 51.99% 88.5% 75.78%
Breeder2 37847708 10940622840 96.28% 92.59% 56.15% 72.49% 52.58%
Breeder3 34672132 9846336276 96.52% 93.10% 51.41% 89.35% 77.37%
Breeder4 40482362 11592999936 96.48% 93.04% 51.51% 89.92% 76.84%
Breeder5 37196291 10296891108 96.86% 93.68% 49.86% 92.12% 82.17%
Breeder6 40958805 12072458664 96.59% 93.12% 59.16% 59.57% 32.85%
Breeder7 35709829 10510141572 96.47% 92.96% 56.03% 75.07% 55.02%
Breeder8 33669242 9914908752 96.79% 93.69% 51.39% 90.98% 78.82%
Embryo1 40485557 11654523972 95.90% 91.83% 52.50% 89.67% 74.26%
Embryo2 37432078 11069231292 96.48% 93.04% 51.34% 88.79% 74.68%
Embryo3 39065142 11126909556 96.26% 92.59% 51.62% 88.44% 75.25%
Embryo4 35508865 10322469360 96.30% 92.65% 51.73% 90.69% 77.44%
Embryo5 37076246 10837283688 96.46% 92.94% 52.48% 89.48% 74.28%
Embryo6 39932521 11473593264 96.23% 92.53% 51.41% 89.88% 77.24%
Embryo7 43619518 12556149732 96.36% 92.82% 51.46% 90.88% 76.31%
Embryo8 36859302 10562648292 96.14% 92.44% 53.36% 76.34% 58.07%
Offspring1 35823274 10444364028 96.48% 93.12% 50.66% 91.04% 78.7%
Offspring2 38678468 11108159496 96.39% 92.82% 53.96% 81.18% 63.04%
Offspring3 38105455 11117678544 96.33% 92.70% 55.17% 79.53% 62.3%
Offspring4 38509142 11038901832 95.75% 91.71% 51.52% 88.96% 74.73%
Offspring5 38362812 11040224580 96.53% 93.16% 51.99% 88.5% 75.78%
Offspring6 37847708 10940622840 96.28% 92.59% 56.15% 72.49% 52.58%
Offspring7 34672132 9846336276 96.52% 93.10% 51.41% 89.35% 77.37%
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addition,  2,090  differentially  expressed  long  non-coding  RNAs
(LncRNAs)  were  detected,  each  longer  than  1,000  nucleotides
(Supplementary  Table  S1).  The  distribution  of  DEGs  in  the  liver  are
visually depicted in the volcano plots (Fig. 2a).

Enrichment analysis was also performed to pinpoint key genes and
pathways  implicated  in  the  maternal  effect.  The  liver  undergoes  a
functional transition from cell development and differentiation during
the  embryonic  stage  to  glucose  and  lipid  metabolism  and  immune
function  by  the  21-d  post-hatch  stage.  Gene  Ontology  (GO)  enrich-
ment analysis revealed significant biological pathways, including those
related  to  multicellular  organism development,  synaptic  transmission
(GABAergic),  adherens  junction  organization,  cholesterol  biosynthe-
tic  process,  unsaturated  fatty  acid  biosynthetic  process,  immune  res-
ponse, and the B cell receptor signaling pathway (Fig. 2b, Fig. 3a & b). 

Expression patterns of developmentally related genes
across three stages
Based on the analysis of RNA expression profiles across the three stages,
20 characteristic genes involved in the regulation of cell proliferation and

organ development were successfully identified (Fig. 4). Key genes such as
IGF1, IGFBP1, IGFBP2, IGFBP4, IGFALS, and HMGCR were significantly
upregulated  in  the  liver  tissues  of  both  embryos  and  offspring,  with
expression  levels  being  particularly  higher  in  the  embryonic  stage.
Additionally, critical genes regulating lipid metabolism, including FASN,
ELOVL2, ELOVL5, ELOVL6, SREBF2, ACACA,  and CYP7A1 were  also
found  to  be  significantly  upregulated  in  the  liver  of  both  embryos  and
offspring.  A correlation analysis  of  characteristic  target  genes (including
LncRNAs) across the three stages was conducted to gain deeper insights
into  the  regulatory  patterns  of  maternal  effects  (Fig.  5, Supplementary
Table S2). 

Time analysis of liver function across three
developmental stages
Time-series  analysis  was  utilized  to  explore  the  DEGs  across  the
maternal-embryo-offspring  stages,  aiming  to  delineate  the  dynamic
changes in liver mRNA expression profiles influenced by maternal effects
(Fig.  6a).  By  comparing  DEGs  with  a  Q  value  ≤  0.05  and  an  absolute
log2|fold change| ≥ 1 across the various stages, the DEGs were organized
into  six  distinct  clusters,  with  expression  patterns  predominantly
following 'high-low-high' and 'low-high-low' trends (Fig. 6b).

In Cluster 1, KEGG pathway enrichment analysis revealed a signifi-
cant association with the 'Toll-like receptor signaling pathway',  where
key characteristic genes included TLR2, TLR4, TLR5, MyD88, and NF-
κB. The 'Lysosome' pathway was also enriched, with CTSD (Cathepsin
D)  and LAMP1 (Lysosomal  Associated  Membrane  Protein  1)  identi-
fied  as  pivotal  genes,  alongside  the  'C-type  lectin  receptor  signaling
pathway'.  Furthermore,  the  Gene  Ontology  (GO)  categories  in  this
cluster were significantly enriched for activities such as GTPase activa-
tor activity, actin filament binding, small GTPase binding, and protein
tyrosine kinase activity (Fig. 7a−c).

In Cluster 2, KEGG analysis highlighted enrichment in the 'Neuro-
active ligand-receptor interaction' pathway, with GABRA identified as
a characteristic gene, as well as in the 'Calcium signaling pathway' and
'ECM-receptor  interaction'.  GO  categories  in  this  cluster  were
enriched in functions such as 'Calcium ion binding', 'nucleotide bind-
ing', 'synapse', 'neuron projection', 'glutamatergic synapse', and 'micro-
tubule  cytoskeleton',  with TUBB, MAPs,  and KIFs identified  as  key
genes  (Supplementary  Table  S3).  The  remaining  four  clusters  also
displayed  enrichment  in  GO  categories  related  to  metabolism,  deve-
lopment,  and  immune  function,  reflecting  dynamic  processes  that
occur throughout the maternal-embryo-offspring transition (Fig. 8a−c,
Supplementary Fig. S1b). 

Discussion
Chicken  embryos  require  21  d  to  develop  and  hatch,  constituting  one-
third of the overall  grow-out period. Consequently,  early developmental
stages  are  crucial  in  determining  the  final  body  weight  at  market.  The
maternal  effects  exerted  by  breeder  hens  play  a  decisive  role  during
embryonic  development[19].  The  development  of  the  liver  during  the
embryonic stage is  critical  for broiler growth and is  regulated by factors
such  as  maternal  nutrition  and  maternal  epigenetic  modifications[7].
Throughout  embryonic  development,  the  liver's  metabolic  functions
transition from an early reliance on anaerobic glycolysis to a dependence
on aerobic respiration. As development progresses, the liver's capacity for
glucose  metabolism  strengthens,  with  gluconeogenesis  and  glycogen
metabolism  becoming  increasingly  refined[20].  Simultaneously,  lipid
metabolism  becomes  more  active,  with  enhanced  fatty  acid  oxidation
capabilities[21].  However,  the  core  regulatory  genes  involved  in  liver
development, as well as the mechanisms underlying their changes during
maternal effects, remain inadequately understood. To address this gap, a
comprehensive  transcriptome  analysis  was  performed  to  elucidate  the

 

Table 2.    Pairwise comparison of up and downregulated DEGs between maternal,
embryo and offspring chickens in liver.

Compare group Down Up Total

Liver Maternal-vs-Embryo 1540 4569 6109
Embryo-vs-Offspring 1449 4578 6027
Maternal-vs-Offspring 26 38 64

 

Table 3.    Maternal-vs-embryo Top 10 DEGs.

Gene Log2FC p−value Regulation

IGFBP1 −3.4921 < 0.0001 down
ABI3BP −4.4975 < 0.0001 down
MT3 −4.7465 < 0.0001 down
DIO3 −4.8438 < 0.0001 down
CHRNA7 −5.4058 < 0.0001 down
TTLL2 −5.4702 < 0.0001 down
NEGR1 −6.8204 < 0.0001 down
SREBF2 −2.9490 6.11E-303 down
PDK4 −2.8915 3.08E-300 down
IRF1 −3.0829 4.15E-299 down

IGFBP1,  Insulin-like  Growth  Factor  Binding  Protein  1; ABI3BP, ABI  Family
Member  3  Binding  Protein; MT3,  Metallothionein  3; DIO3,  Deiodinase  Iodothyro-
nine  Type  III; CHRNA7,  Cholinergic  Receptor  Nicotinic  Alpha  7  Subunit; TTLL2,
Tubulin  Tyrosine  Ligase  Like  2; NEGR1,  Neuronal  Growth  Regulator  1; SREBF2,
Sterol  Regulatory  Element  Binding  Transcription  Factor  2; PDK4,  Pyruvate
Dehydrogenase Kinase 4; IRF1, Interferon Regulatory Factor 1.

 

Table 4.    Embryo-vs-Offspring Top 10 DEGs.

Gene Log2FC p−value Regulation

MT3 5.1899 < 0.0001 up
ABI3BP 4.5664 < 0.0001 up
IGFBP1 4.1745 < 0.0001 up
HMGCR −3.1252 < 0.0001 down
IGFALS −3.7697 < 0.0001 down
IGFBP4 −3.8229 < 0.0001 down
FASN −5.1979 < 0.0001 down
IGF1 −6.3826 < 0.0001 down
CDKN2B −6.4335 < 0.0001 down
ELOVL2 −6.2947 < 0.0001 down

MT3,  Metallothionein 3; ABI3BP,  ABI Family  Member 3  Binding Protein; IGFBP1,
Insulin-like growth factor-binding protein 1; HMGCR, 3-Hydroxy-3-Methylglutaryl-
CoA  Reductase; IGFALS,  Insulin-like  growth  factor-binding  protein;  acid  labile
subunit; IGFBP4,  Insulin-like  growth  factor-binding  protein  4; FASN,  Fatty  Acid
Synthase; IGF1,  Insulin-like  growth  factor  1; CDKN2B,  Cyclin  Dependent  Kinase
Inhibitor 2B; ELOVL2,ELOVL Fatty Acid Elongase 2.
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gene  expression  changes  and  related  functional  pathways  that  charac-
terize  liver  development  from  breeder  chickens,  through  embryos,  to
offspring broilers. This analysis offers critical insights into the molecular
underpinnings of liver development, laying a solid foundation for future
research into the maternal effects influencing growth and development in
broiler chickens.

Based  on  the  comparative  analysis  of  liver  expression  profiles
between  breeder  hens  and  E19  chicken  embryos,  the  top  10  signifi-
cantly  differentially  expressed  genes  were  identified,  including
IGFBP1, ABI3BP, MT3, DIO3, CHRNA7, TTLL2, NEGR1, SREBF2,
PDK4,  and IRF1.  Previous  studies  have  demonstrated  that IGFBP1
plays  a  crucial  role  in  regulating  cell  growth,  differentiation,  and
metabolism  by  modulating  the  activity  of  insulin-like  growth  factors
(IGFs)[22].  Additionally, DIO3 is  involved in the regulation of  thyroid
hormones  and  promotes  embryonic  development  by  inactivating  T3
and T4[23]. Through a comparative analysis of liver expression profiles
between  E19  chicken  embryos  and  D21  broiler  chickens, MT3,
ABI3BP,  and IGFBP1 were  identified  as  characteristic  genes  highly
expressed in E19 embryos. ABI3BP is  involved in cytoskeletal  reorga-
nization  and  extracellular  matrix  signaling,  playing  a  crucial  role  in
influencing  cell  migration  and  tissue  morphology  during  embryonic
development[24].  Furthermore,  a  significant upregulation of  key genes
regulating lipid metabolism, FASN, and ELOVL2, was observed in D21
broilers. FASN acts  as  a  pivotal  enzyme  in  fatty  acid  synthesis,  is
closely  associated  with  adipogenesis,  and  is  highly  expressed  in

metabolically  active  liver  tissues[25]. ELOVL2 is  essential  for  the  elon-
gation of fatty acids and is integral to the synthesis of polyunsaturated
fatty  acids[26].  The  elevated  expression  of  these  genes  is  intricately
linked  to  the  nutritional  demands  of  different  developmental  stages;
E19  chicken  embryos  primarily  rely  on  glycogen  metabolism  for
energy, whereas D21 broilers, during their rapid growth phase, neces-
sitate  extensive  lipid  metabolism  to  satisfy  their  energy
requirements[27].  Maternal  nutrition  plays  an  important  role  in  shap-
ing the offspring's  metabolic  system. For instance,  lipid and carbohy-
drate  metabolism are  closely  related to  the  mother's  fat  and carbohy-
drate intake. Nutritional imbalances could lead to metabolic disorders
or abnormal fat deposition in the offspring.

In the GO analysis of DEGs between maternal and embryo samples,
significant  enrichment  in  terms  related  to  multicellular  organism
development,  cell  morphogenesis,  and  regulation  of  cell  differentia-
tion were observed. These biological processes are critical for ensuring
the  correct  spatial  arrangement  of  cells  within  tissues  and  organs
during  embryonic  development,  allowing  cells  to  acquire  the  neces-
sary functional characteristics[28].  Epigenetic regulation plays a crucial
role  in  influencing  both  embryonic  and offspring  development[29].  In
this study, 2,090 differential LncRNAs were identified and an associa-
tion analysis performed with differential mRNAs, uncovering relation-
ships of synergistic regulation and mutual inhibition. Previous studies
have suggested that the maternal effects in breeder hens can influence
the  transcriptional  levels  of  key  genes  such  as MyoD in  chicken
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embryos  through  LncRNA-mediated  cis-regulation,  thereby  impact-
ing  embryonic  metabolic  development  and  immune  processes[30].
Moreover, the present study analyzed DEGs across maternal, embryo,
and offspring stages, and constructed an inter-regulatory GO network
based  on  the  distinct  metabolic  characteristics  of  each  stage.  This
network  provides  a  theoretical  basis  for  further  research  into  the
mechanisms by which maternal effects regulate offspring development.
The  distinct  metabolic  characteristics  observed  across  maternal,
embryo,  and  offspring  stages  suggest  that  maternal  effects  play  a

crucial  role  in  shaping  the  developmental  trajectory  and  functional
maturation of offspring.

To  further  investigate  the  maternal  effects  on  liver  expression
profiles,  the  top  20  DEGs were  identified  by  selecting  those  with  low
expression  levels  in  breeder  hens  and  high  expression  levels  in
embryos  and  offspring  broilers.  Among  these,  the  IGF  family
members,  including IGF1, IGFBP1, IGFBP2, IGFBP4,  and IGFALS,
were  found  to  exhibit  consistently  high  expression  from  the  E19
embryo  stage  to  D21  broilers.  The  expression  of IGF1 is  subject  to
regulation by DNA methylation and non-coding RNAs, where mater-
nal  malnutrition  can  lead  to  decreased  levels  of  fetal IGF1 through
epigenetic  modifications,  subsequently  inhibiting  fetal  growth  and
development[31]. IGFBP1, IGFBP2,  and IGFBP4 modulate  the  activity
of  growth  factors  by  binding  to IGF1 and IGF2[32,33].  Additionally,
maternal  metabolic  conditions,  such  as  obesity  or  diabetes,  can
suppress  the  activity  of  these  IGFBPs  through  mechanisms  involving
miRNA  and  DNA  methylation,  thereby  reducing  the  secretion  of
growth  factors  and  potentially  affecting  the  growth  and  development
of  the  offspring[34,35].  Additionally,  lipid  metabolism-related  genes,
such as FASN, ELOVL2, ELOVL5, ELOVL6,  and ACACA,  were found
to be consistently highly expressed from the E19 embryo stage to D21
broilers.  Research  has  shown that FASN is  subject  to  indirect  regula-
tion by LncRNA H19, which promotes the process of fatty acid synthe-
sis[36].  Although there  are  few reports  on  the  epigenetic  regulation  of
the ELOVL gene family,  these genes play a  crucial  role  in the elonga-
tion  of  fatty  acids.  Their  activity  is  modulated  under  varying  lipid
nutritional  conditions,  thereby  enhancing  the  elongation  process  to
support lipid metabolism[37]. These findings further highlight the criti-
cal  role  of  maternal  effects  in  regulating  the  development  of  the
offspring's liver.

To elucidate the gene regulatory mechanisms and temporal charac-
teristics  during  maternal  effects,  a  time-series  analysis  of  DEGs  was
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constructed  across  the  maternal,  embryo,  and  offspring  stages.  The
enriched  DEGs  predominantly  followed  'high-low-high'  and  'low-
high-low'  expression  patterns.  In  the  'high-low-high'  pattern,  the
enriched genes were primarily associated with immune function.  The
'Lysosome  pathway'  was  particularly  significant  in  both  the  maternal
and D21 offspring broiler stages, where cellular renewal, tissue repair,
and  immune  responses  depend  heavily  on  lysosomal  activity[38].
During  the  chicken  embryo  development  stage,  the  primary  cellular
functions  are  rapid  proliferation and differentiation,  which leads  to  a
relatively lower demand for lysosomal degradation. In this context, key
genes  such  as  Lysosomal  Associated  Membrane  Protein  1  (LAMP1)
and Cathepsin D (CTSD) were identified as crucial players. LAMP1 is
essential for lysosomal transport, facilitating the movement of enzymes
and  proteins  within  lysosomes. CTSD,  on  the  other  hand,  plays  a
significant role in lysosomal protein degradation, breaking down cellu-
lar waste and damaged proteins. These genes are vital for maintaining

lysosomal  function,  which  is  critical  for  cellular  homeostasis  and
metabolic regulation[39,40]. These findings provide deeper insights into
the gene regulatory dynamics influenced by maternal effects through-
out  different  developmental  stages.  The  'Toll-like  receptor  signaling
pathway'  plays  a  crucial  role  in  recognizing  pathogen-associated
molecular  patterns  (PAMPs)  and  initiating  immune  responses[41].
During  the  maternal  and  offspring  stages,  exposure  to  external  envi-
ronments  increases  the  likelihood  of  encountering  bacteria  and
viruses, which in turn activates the expression of relevant characteris-
tic  genes  involved  in  this  pathway[42].  However,  during  the  chicken
embryo  developmental  stage,  the  immune  system remains  immature,
and the relatively enclosed embryonic environment limits exposure to
pathogens, resulting in fewer opportunities for activation of this path-
way.  The  present  study  revealed  that MyD88,  TLR  family  genes,  and
NF-kB were  significantly  downregulated in chicken embryos,  indicat-
ing that the immune response in chicken embryos relies more heavily
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on  maternally  provided  antibodies  and  other  protective  mechanisms,
resulting in a lower requirement for TLR pathway activation.

In  the  'low-high-low'  expression  pattern,  the  enriched  genes  were
predominantly  linked  to  cell  proliferation  and  organogenesis.  The
'Neuroactive  ligand-receptor  interaction  pathway',  which  reflects  the
functional  demands  of  the  nervous  system  at  various  developmental
stages showed that during the chicken embryo stage, neurotransmitter
activity  is  primarily  concentrated  on  early  neural  network  formation
and initial  signal  transduction[43].  The  differentially  upregulated  gene
Gamma-Aminobutyric  Acid  Receptor  Subunit  Alpha  (GABRA),  a
major  receptor  for  GABA  plays  a  critical  role  in  the  synthesis  of
neurons in chicken embryos[44]. The 'Calcium signaling pathway' plays
a  crucial  role  during  chicken  embryo  development,  particularly  in
regulating rapid cell division, differentiation, and the formation of the
muscle system[45].  As breeder hens and offspring broilers reach matu-
rity, the rate of cell division and differentiation significantly decreases,
leading to reduced dependence on calcium signaling[46]. Concurrently,

metabolic  processes  undergo  reprogramming,  especially  in  offspring
broilers,  where  the  focus  shifts  toward  energy  metabolism,  muscle
hypertrophy, and enhanced production performance[27].

Significant  enrichment  of  the  'Microtubule  cytoskeleton'  was  also
observed during the chicken embryo stage, where it plays a pivotal role
in  maintaining  cell  structure  and  supporting  cell  proliferation[47].
During  this  developmental  phase,  cells  require  frequent  structural
reorganization  and  dynamic  changes,  and  the  high  expression  of
microtubule  cytoskeleton  components  ensures  these  processes  occur
efficiently,  thereby  facilitating  organ  formation  and  functional  deve-
lopment[48].  Among  the  enriched  genes, TUBB (Beta-tubulin)  stands
out  as  a  core  gene  involved  in  maintaining  cell  morphology,  driving
cell  division,  mediating  endocytosis,  and  supporting  intracellular
transport[49].  Additionally, MAPs (Microtubule-associated  proteins)
are  crucial  for  regulating  microtubule  growth  by  binding  to
microtubules, ensuring the proper functioning of the cytoskeleton and
thereby maintaining cellular integrity and facilitating development[50].
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In  summary,  the  distinct  gene  regulatory  networks  observed  in  this
study  reflect  the  dynamic  changes  in  gene  expression  and  function
across  different  developmental  stages.  Immune-related  pathways
become  increasingly  active  as  broilers  grow,  supporting  the  complex
functions of  a  mature physiological  system. In contrast,  the pathways
enriched  in  chicken  embryos  are  primarily  focused  on  fundamental
developmental functions, such as cell division, migration, and nervous
system development. These differences in gene expression underscore
the  varying  metabolic  and  physiological  processes  occurring  at  each
stage  of  development.  Moreover,  these  findings  provide  a  founda-
tional  basis  for  further  investigation  into  the  epigenetic  regulation  of
maternal  effects  in  breeder  hens,  offering  insights  into  how  these
effects influence the development and function of offspring. 

Conclusions
This  study,  by  comparing  liver  gene  expression  profiles  among  breeder
hens, chicken embryos, and offspring broilers, has highlighted the pivotal
role  of  maternal  effects  in  embryonic  development.  Significantly
differentially  expressed genes such as IGFBP1, ABI3BP,  and DIO3,  were
identified  which  are  crucial  for  glucose  metabolism,  lipid  metabolism,
and cytoskeletal reorganization. Time analysis revealed two primary gene
expression  patterns:  'high-low-high'  and  'low-high-low'.  The  former
pattern,  associated  with  immune  function,  includes  genes  like LAMP1
and CTSD that  are  highly  expressed  in  breeder  hens  and  offspring
broilers, indicating enhanced immune activity. The latter pattern includes
genes such as GABRA and TUBB, which are highly expressed in chicken
embryos,  supporting neural  network formation and cytoskeletal  reorga-
nization.  In  summary,  maternal  effects  influence  the  expression  of  key
genes in embryonic development through epigenetic  regulation.  Under-
standing  this  mechanism  is  crucial  for  improving  broiler  production
performance. Future research should focus on exploring the relationship
between maternal nutrition and epigenetics to optimize feeding strategies
for breeder hens. 
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