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Abstract
Tea plant (Camellia sinensis) diseases are one of the factors that reduce tea production yield and quality. Herein, a new leaf disease of tea plants

was  observed  in  tea  plantations.  A  representative  isolate  was  obtained  from  diseased  leaf  by  the  traditional  fungus  separation  method.  The

isolate  identified  was  confirmed  as Muyocopron  laterale based  on  morphological  and  molecular  results  and  phylogenetic  tree  analysis.

Pathogenicity tests were conducted on tea plant seedlings, and which is fulfilling Koch’s postulates. The disease was first identified in C. sinensis
leaves caused by M. laterale in China. In the future, the results of this studies will enrich our knowledge and help control tea leaf disease.
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INTRODUCTION

The tea  plant  (Camellia  sinensis (L.)  O.  Kuntze)  is  a  perennial
woody plant that is widely known for its high economic, health
and  cultural  value[1,2].  Tea  plants  have  been  planted  in  more
than 60 countries around the world as an important economic
horticultural  crop[3].  Tea  plants  leaves  are  generally  used  to
produce a prominent beverage that is the world’s most popular
and consumed nonalcoholic  beverage after  water[4].  There  are
abundant  characteristic  compounds  in  tea  that  are  strongly
associated with  the  quality  and health  benefits  of  tea,  such as
tea polyphenols,  theanine,  and caffeine[4−6].  It  is  widely known
that  tea's  metabolite  composition  and  quality  are  affected  by
many factors, including some biotic and abiotic factors[7].  Such
as  drought  stress[8−10],  low  temperature[11−13],  heavy  metal
toxicity[14], insect attack[15,16], and pathogen infection[17−19].

Tea  plant  diseases  are  one  of  the  factors  reducing  tea  yield
and quality. Meanwhile, foliar disease is one of the most serious
diseases  of  tea  plants  causing  severe  tea  production  losses.  It
has been reported that a number of foliar blight diseases of tea
plants are infected by different fungal pathogens[19].  A disease
called  tea  gray  blight  is  caused  by Pseudopestalotiopsis
camelliae-sinensis and Pestalotiopsis-like  species,  resulting  in
serious  losses  in  tea  quality  and  production[17,20,21].  Anthrac-
nose  of  the  tea  plant  caused  by  the Colletotrichum species  is
also  a  serious  foliar  disease  of  the  tea  plant,  causing  severe
losses  in  yield  and  quality  of  tea  products.[22,23].  At  present,
many research reports  have found that many tea leaf  diseases
are  caused  by  many  new  pathogens  such  as Colletotrichum
fructicola[23], Epicoccum  layuense[19], Arthrinium  arundinis[1],
Colletotrichum  acutatum[24], Alternaria  longipes[25], Epicoccum
nigrum[26] and  so  on.  The  pathogens  that  cause  these  foliar
diseases can cause the loss of tea production.

In this study, brown blight disease of tea plants was observed
at a tea plantation in Shucheng County, Anhui Province, China.

There are reddish brown lesions at the leaf margins of diseased
leaves, and the junction of healthy and diseased leaf is obvious
(Fig. 1a).  One of the fungal isolates was isolated from diseased
leaves of tea plants by a traditional fungus separation method,
and identified as Muyocopron laterale through a combination of
morphology  and  molecular  biology.  The  Koch  hypothesis  was
successfully  fulfilled  with  the  re-isolation  of M.  laterale from
symptomatic  plants.  This  is  the  first  report  of  leaf  disease
caused by M. laterale on the tea plant (C. sinensis) in China. The
results  will  provide  a  basis  for  controlling  the  management  of
tea plant leaf disease in future. 

MATERIALS AND METHODS
 

Plant materials and reagents
In  August  2020,  a  leaf  blight  disease  of  tea  plant  was  ob-

served  and  collected  from  tea  plantations  ('Shuchazao',  SCZ)
located  in  Shucheng  County,  in  the  Anhui  Province  of  China.
The  symptom  of  the  diseased  leaf  is  reddish  brown  deadness
with  irregular  margins,  and  the  junction  of  healthy  and
diseased  leaf  is  obvious  (Fig.  1a).  The  malt  extract  agar  (MEA),
oat  agar  (OA)  and  potato  dextrose  agar  (PDA),  medium  were
purchased from HuanKai Microbial (Guangdong, China). 

Isolation of fungal pathogens
Small  tissues  (4−6  mm2)  were  taken  from  the  infected

sections of  the diseased leaf  (junction of  healthy and diseased
regions) and underwent surface disinfection by 75% ethanol for
45−60  s.  After  which,  the  sterile  water  was  rinsed  three  times.
On  sterilized  filter  paper,  each  piece  was  blotted  dry  before
being  placed  on  a  PDA,  which  was  incubated  in  the  dark  at
25 °C for 5 d. In order to obtain a pure isolate, the single-hyphal
tip was transferred to a new PDA. A representative isolate (AH-
2020-A52)  was  obtained  and  deposited  in  the  State  key
laboratory of tea plant biology and utilization. 
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Molecular biology identification of fungal pathogens
To identify the representative isolate (AH-2020-A52), nucleo-

tide  sequence  of  the  small  subunit  of  ribosomal  DNA  (18S;
NS1/NS4),  the  internal  transcribed  spacer  region  of  ribosomal
DNA (ITS; ITS1/ITS4) and part of translation elongation factor 1-
alpha  (TEF1-α;  EF1-983F/EF1-2281R)  were  amplified.  Analyzing
GenBank  data  with  the  18S  region,  ITS  sequence  and  TEF1-α
region to identify, respectively, using BLAST (Basic Local Align-
ment  Search  Tool).  The  phylogenetic  tree  was  generated  by
Neighbor-joining analysis  using MEGA-X with  the  sequence of
18S, ITS and EF1-α. 

Morphological identification of fungal pathogens
The  pure  isolate  was  cultivated  on  MEA,  OA  and  PDA

medium  respectively  and  the  morphological  characteristics  of
the colony were observed.  The size and morphology of fungal
spores,  hyphae and other  reproduction organs  were  observed
with  a  microscope  (Olympus  BX51,  Olympus  Corporation,
Monolith, Tokyo, Japan). 

Pathogenicity tests
Pathogenicity tests were conducted on 1-year-old C. sinensis

seedlings.  Sterile  needles  were  used  to  generate  two  wounds
per  leaf  of  test  tea  leaves.  Six  millimetre  mycelial  plugs  of
isolate  derived  from  10-day-old  cultures  grown  on  PDA  were
inoculated  to  test  leaves.  Control  leaves  were  treated  with  6-
mm  agar  plugs.  The  experiments  were  repeated  three  times
with five biological replicates. All tea seedlings were placed in a
black box for 24 h, and then were growth in a greenhouse at 25
°C and 70% relative humidity. 

RESULTS AND DISCUSSION
 

Identification of M. laterale
The isolate (AH-2020-A52) was inoculated in tea leaves, some

strains  formed  black  ascocarp  which  was  observed  on  the  tea
tissue after  10−15 d  (Fig.  1).  Eight-spored asci  that  are  obpyri-
form,  bitunicate,  or  slightly  obpyriform  and  are  pedicellate.
(Fig.  1).  The  ascospore  were  hyaline,  oval  to  obovoid,  with
obtuse  ends,  aseptate,  and  granular  in  appearance.  The

measurements were 7.34 to 12.04 µm × 4.88 to 7.25 µm (mean,
9.60 µm  ×  6.26 µm;  n  =  40)  (Fig.  1).  The  morphology  of  the
isolate (AH-2020-A52) was consistent with the description of M.
laterale [27].

Further, elevated aerial mycelium appeared on MEA medium
at  25  °C  after  10  d  with  white,  buff,  or  pale  gray  mycelium;
reverse umber, paler dark umber toward the periphery. (Fig. 2a
& b).  At  25 °C after  10 d,  an aerial  mycelium is  scarce,  cottony,
buff  with  an  apricot  center  and  paler  to  the  periphery  on  OA
medium;  reverse  buff  with  brick  center  and  apricot  periphery
(Fig.  2c & d).  The  purified  colony  on  PDA  after  10  d  at  25  °C,
floccose with aerial mycelium scarce, white or brown, brown in
the  center  to  paler  to  the  periphery,  irregular  margin;  reverse
zonate and brown in the center, white to the periphery (Fig. 2e
& f).  These  morphological  findings  was  also  similar  with M.
laterale.

To  confirm  the  identity  of  this  putative  pathogen  at  the
molecular  level,  nucleotide  sequence  of  the  small  subunit  of
ribosomal DNA (18S;  NS1/NS4),  the internal  transcribed spacer
region of ribosomal DNA (ITS; ITS1/ITS4) and part of translation
elongation  factor  1-alpha  (TEF1-α;  EF1-983F/EF1-2281R)  were
analyzed[28].  The  sequences  were  deposited  in  GenBank  (18S:
MW653327,  ITS:  MW653328,  EF1-α:  MW661229).  Following
alignment of the resultant sequences with GenBank via a BLAST

a b

c d

 
Fig. 1    Muyocopron laterale (AH-2020-A52). (a) Infected C. sinensis
leaf.  (b)  Pycnidia.  (c)  Asci.  (d)  Ascospores.  Scale  bars:  b  =  20 µm,
c–d =10 µm.
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Fig. 2    Growth of Muyocopron laterale (AH-2020-A52) on different
culture  media.  (a)  &  (b)  Culture  characteristic  on  MEA  (upper  and
dorsa)  for  10  d.  (c)  &  (d)  Culture  characteristic  on  OA  (upper  and
dorsa)  for  10 d.  (e)  &  (f)  Culture  characteristic  on PDA (upper  and
dorsa) for 10 d.
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analysis,  for  18S  region  showed  99.1%  similarity  with M.  litho-
carpi (GenBank accession numbers: MK447740.1, MW079368.1).
While,  the  ITS  and TEF1-α region highest  nucleotide sequence
identity  with M.  laterale reference  sequence  (ITS:  99.34%,
NR_164055.1;  EF1-α:  99.33%,  MK495970.1).  In  order  to  more
accurately identify the molecular level and taxonomic status of
the Fungal Pathogens, Phylogram was generated with MEGA-X
using  bootstrap  analysis  with  1000  replicates  and  bootstrap
support  values equal  to or  greater  than 50% are shown at  the
nodes.  Phylogenetic  tree  generated  by  Neighbor-joining
analysis using MEGA-X with the sequence of 18S, ITS and EF1-α
placed  AH-2020-A52  in  the  clade  of M.  laterale (Fig.  3). Based
upon these morphological and molecular results, this pathogen
was identified as M. laterale. 

Pathogenicity of M. laterale
The mycelium of M. laterale were inoculated on adult leaves

and tender leaves of tea seedlings, respectively. The tea leaves
were infected by the strain AH-2020-A52, and showed obvious
symptoms,  reddish-brown spots,  in the inoculated leaves after
7  d  (Fig.  4a).  In  contrast,  control  seedlings  remained  healthy
and asymptomatic (Fig. 4b). We were again able to re-isolate M.
laterale from  the  infected  tea  seedlings.  The  re-isolates  were
ultimately identified as the pathogenic fungal M. laterale based

on  morphological  and  molecular  analyses,  and  thus  fulfilling
Koch's postulate. 

CONCLUSIONS

A fungal pathogen was isolated and identified as M. laterale
from diseased leaves of tea plants. As far as we are aware, this is
the  first  report  of M.  laterale being  isolated  from  leaves  of  tea
plants suffering from leaf blight disease in China. This result will
be providing a foundation effort aimed at presenting tea plant

 
Fig. 3    Phylogenetic tree generated by Neighbor-joining analysis based on combined dataset of 18S, ITS, and TEF1 sequence data. Lophium
mytilinum AFTOL-ID  1609, Mytilinidion  rhenanum CBS  135.34, Mycoleptodiscus  terrestris CBS  231.53  and Neocochlearomyces  chromolaenae
BCCTHA  68250  were  selected  as  outgroup  taxa.  Phylogram  was  generated  with  MEGA-X  using  bootstrap  analysis  with  1000  replicates  and
bootstrap support values equal to or greater than 50% are shown at the nodes. The M. laterale sequences are in red and M. laterale strain AH-
2020-A52 is in bold.

a b

 
Fig. 4    Symptoms on leaves of C. sinensis inoculated with mycelial
plugs of AH-2020-A52. (a) Symptoms on adult leaves infected after
7 d. (b) Control treated with PDA plugs after 7 d.
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diseases  caused  by  this  pathogen.  Further  studies  should  pay
attention  to  occurrence,  spread  and  control  tea  plant  disease
caused by M. laterale in China. This research will provide a basis
for  controlling  the  management  of  tea  plant  leaf  diseases  in
future.
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