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Abstract

Mulberry (Morus spp., Moraceae) is a traditional economic crop plant and is also being gradually utilized as a beverage plant. SWEETs (Sugars Will
Eventually be Exported Transporter) are important sugar transporters involved in various biological processes and responses to various stresses.
However, SWEETs in mulberry are still poorly studied without a comprehensive functional analysis of SWEETs. In the present study, a total of 24
SWEETs were identified using the Morus alba (Ma) genome. Phylogenetic analysis showed that these 24 MaSWEETs were clustered with SWEETs
from Arabidopsis, Populus and Oryza and fell into four clades. MaSWEETs in the same clade are likely to pose similar intron/exon patterns. These
MaSWEETs distributed on 12 chromosomes and tandem duplication and block duplication were responsible for the expansion of SWEETs in
mulberry. Transmembrane domains and conserved active sites of Tyr and Asp were observed in MaSWEETSs. Cis-elements in promoter regions of
MaSWEETs indicated the possible function of MaSWEETSs in response to hormones and environment stimulus. MaSWEETs showed quite different
expression preference in tissues and organs indicating the possible function divergence. In addition, most MaSWEETs showed a disturbed
expression levels in response to various abiotic stresses and Ciboria shiraiana infection. MaSWEET1a was functionally characterized as a negative
regulator of resistance to C. shiraiana infection based on in vivo transient overexpression of MaSWEET1a in tobacco and down-regulation of
MaSWEET1a/b in mulberry. Our results provided foundation for further functional dissection of SWEETSs in mulberry and a potential regulator for
genetic modification.
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INTRODUCTION

Sugars are predominant carbon and energy sources and
support plant vegetative and reproductive growth!'l, Transport
of sugars across the plant bio-membrane needs the assistance
of specific transporters('2l, These transporters act as bridges
that mediate the distribution of sugars between source-sink
organs, which is critical for sugar homeostasis and the cellular
exchange of sugar efflux in multicellular organismsl'341,

SWEETs (Sugars Will Eventually be Exported Transporter) and
SUTs (sucrose transporters), MSTs (monosaccharide transpor-

Thereafter, another SWEET in Arabidopsis Clade Il AtSWEET9
was characterized as an important transporter involved in
nectar secretion(®. Besides the SWEET family in Arabidopsis, the
SWEET gene family has been identified in many plants inclu-
ding Tea (Camellia sinensis, Cs), tomato (Solanum lycopersicum,
Sl), wheat (Triticum aestivum, Ta) barrel medic (Medicago
truncatula, Mt), cabbage (Brassica rapa, Br), daylily (Hemerocallis
fulva, Hf), grapevine (Vitis vinifera, W), rice (Oryza sativa, Os) and
poplar (Populus trichocarpa, Pt and P. alba x P. glandulosa,
Pag)V-13l. These SWEET homologs belong to the MtN3/saliva

ters) are the main known sugar transporters in eukaryotesb! .
Unlike SUTs and MSTs, the relatively newly reported sugar
transporter SWEETs are pH-independent transporters. SWEETSs
play important roles in phloem transport and act as bidirec-
tional transmembrane transporters of sugars along the con-
centration gradient34, AtSWEETT was first identified as a
glucose transporter with clear functional characterizationl?l. In
addition, the SWEET multi-gene family was identified and
classified into four clades and the functional divergence of
these paralogs were also revealed in Arabidopsis at the same
timel2. For example, Clade Il AtSWEET8 contributes to pollen
viability and Clade Ill AtSWEETT15 is involved in leaf senescence.
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family and consist of seven a-helical transmembrane domains
(TMs): a tandem repeat of three transmembrane domains (TMs)
connected with a linker-inversion TMI2141,

SWEETs participate in various biological processes including
development, flowering, stress responses and plant-pathogen
interaction in plants'3l, In addition, different SWEET gene
family members show functional divergence or redundancy. In
Arabidopsis, AtSWEET8 and 13 support pollen development;
AtSWEETT1 and 12 provide sucrose to the SUTs for phloem
loading and play distinct roles in seed filling; and AtSWEET9 is
essential for nectar secretion(2-46161, BrSWEET9 in Brassica rapa
was also reported to be involved in nectar secretionl'”],
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Overexpression of PagSWEET7 promotes secondary growth and
xylem sugar content!'2. OsSWEET11 and 15 have functions
affecting pollen development and are key players in seed filling
in ricel'8l, SWEET homologs also play important roles in abiotic
stress responses. Overexpression of AtSWEET16 promotes freez-
ing tolerance in Arabidopsist' while AtSWEET11 and 12
mutants exhibit greater freezing tolerance2%. AtSWEET15 could
be induced by various abiotic stresses including osmotic,
drought, salinity, and cold stresses and overexpression of
AtSWEETT15 results in transgenic plants with hypersensitiveness
to cold and salinity stresses(?'l, CsSSWEET1a and CsSWEET16 were
also reported to mediate freezing tolerancel?2231, Recently,
more studies have shown that SWEETs are involved in plant-
pathogen interaction and are known as susceptibility (S) genes,
acting as targets of effector proteins during host-microbe
interactions in many plant species!’>. GhSWEET10, is induced by
Avrb6, a transcription activator-like (TAL) effectors from
Xanthomonas citri subsp. Malvacearum (Xcm) and is responsible
for maintaining virulence of Xcm avrb6 and the cotton
susceptibility to infectionsi24. OsSWEET11-15 belonging to
clade lll in rice have been shown to be induced by TAL effector
from Xanthomonas oryzae and support pathogen growth2l, In
contrast, some SWEETs could also function as resistance genes.
Overexpression of IbSWEET10 can promote resistance to F.
oxysporum in sweet potatol2¢l, Mutation of AtSWEET2 resulted
in increased susceptibility to the root necrotrophic pathogen
Pythium irregularet?7),

Mulberry (Morus spp., Moraceae) is a traditional economic
crop plant and a new beverage plant. In addition, its fruits are
rich in nutrient and bioactive components and the ripening
process of mulberry fruits along with sugar accumulation and
distribution. Mulberry suffers various abiotic stresses and the
disasterous fungal disease sclerotiniose which bursts at the
early stage of mulberry fruit development(28-30. Mulberry fruits
with sclerotiniose lose their color and flavor and turn pale
instead of ripening. C. shiraiana is the dominant causal agent of
mulberry sclerotiniose in China, and it results in hypertrophy
sorosis sclerotiniose. SWEETs as the important transporters
involved in sugar homeostasis are expected to be involved in
mulberry fruit development and interaction with sclerotiniose
pathogens. However, to date, few studies on SWEETs have
been reported in mulberry, although the SWEET gene family
may play important roles in mulberry fruit development and
responses to abiotic and biotic stresses. Mulberry genome
information has been released successively since the Morus
notabilis genome was reported in 2013B'. The chromosome-
level genome of M.alba (Ma) was released by Jiao et al. and the
genome of M. yunnanensis was recently released by Xia et
al.B3233], Released genome information makes it possible to
perform genome-wide characterization of the SWEET gene
family in mulberry. In the present study, a total of 24 SWEET
genes were identified in the Morus alba genome and their
phylogenetic classification, conserved motifs, gene structures,
distribution on chromosomes, cis-elements in promoter
regions and tissue expression profile were revealed. In addition,
the responses of MaSWEETs to various abiotic stresses and
sclerotiniose pathogen infection were also detected.
MaSWEET1a was functionally characterized as a negative
regulator which increased the mulberry susceptibility to C
carunculoides infection.
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MATERIALS AND METHODS

Plant materials and treatments

The xylem, phloem, fruits at four different developmental
stages (SO, inflorescence; S1, green fruits; S2, reddish fruits; S3,
purple fruits)) and diseased fruit infected with C. shiraiana of
Morus atropurpurea variety Zhongshen 1 (Mazs) were collected
from the National Mulberry Genebank (NMGB) in Zhenjiang,
China for expression profiling. Seedlings of the M. alba var.
Fengchi and tobacco (Nicotiana Benthamiana) were grown in a
chamber at 22 °C with a 16/8 day/night cycle and 40%-60%
humidity. C. shiraiana was provided by Professor Zhao and was
cultured in potato dextrose agar (PDA) medium.

Tobacco at the four-leaf stage was used for transient overex-
pression. M. alba var. Fengchi seedlings at the four-euphylla
stage were used for virus-induced gene silencing (VIGS). Four-
week-old seedlings with similar growth conditions (~12-15 cm
high) were used for treatments under different abiotic stresses.
Detailed information for abiotic stress treatments were
reported in our previous studyB4. All the above samples were
immediately frozen in liquid nitrogen after collection and then
stored at —80 °C until use. Three biological replicates were
performed for each experiment.

Identification of the SWEET gene family in Morus alba

The M. alba genome sequences (.fasta) and annotation file
(.gff) were generously provided by Professor Jiao, who released
this genome information. The Hidden Markov Model (HMM)
profiles of the SWEET domain (PF03083) were downloaded
from the Pfam database (http://pfam.xfam.org/) and used to
search the candidate SWEET proteins in the M. alba proteome
with HMMER software. In addition, the protein sequences of
AtSWEETs, OsSWEETs and PtSWEETs were downloaded from
TAIR (www.arabidopsis.org/), TIGR (http://rice.plantbiology.
msu.edu/) and phyto-zome (https://phytozome-next.jgi.doe.
govV/) respectively, and used as queries to search against the M.
alba proteome. The Toolbox for Biologists v1.098774[3 was
used to analyze the sequence length, molecular weight and
theoretical isoelectric point (pl) values of each MaSWEET
protein. The distributions of TM helices were predicted by the
TMHMM Server v. 2.0 (www.cbs.dtu.dk/services/TMHMM). Pre-
diction of subcellular localization of MaSWEET proteins using
the online Tool WoLF PSORT (www.genscript.com/wolf-psort.
html)Bel,

Chromosomal location and synteny analysis of
MaSWEETs

Chromosome location information of MaSWEETs was
extracted based on the Morus alba genome annotation file.
Tbtools v1.098774 were used to identify syntenic blocks and
tandem duplication events using default parametersB7:38l, The
results were visualized using Tbtools v1.098774 and both the
tandem duplication and block duplication gene pairs were
marked.

Sequence alignment and motif analysis

MaSWEETs were aligned using clustal W assembled in
MEGAT11.0. The alignment result was exported and manually
speculated for scanning the MtN3 repeats. The online MEME
Suite version 5.5.0 was used to identify 7 conserved motifs from
24 amino acid sequences of SWEET genes in Morus alba. The
Hidden Markov Model (HMM) profiles of the SWEET domain
(PF03083) were downloaded from the Pfam database.
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Gene structure and promoter analysis of MaSWEETs

The gene structure of each MaSWEET was displayed based on
the genome sequence and its annotation file using Gene
Structure View assembled in Tbtools v1.098774. The upstream
2000 bp sequences were extracted for in silico promoter region
analysis. Cis-acting elements were predicted using PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Phylogenetic analysis of MaSWEETs

A neighbor-joining (NJ) phylogenetic tree was constructed
using full-length SWEETSs protein sequences from A. thaliana, P.
trichocarpa, O. sativa and M. alba using MEGA11.0[26] with JTT +
G model and bootstrap test with 1000 replicates.

RNA extraction and RT-qPCR analysis

RNA extraction and cDNA synthesis were performed as in our
previous report using Plant RN52 Kit (Aidlab, Beijing, China) and
PC54-TRUEscript RT kit (Aidlab, Beijing, China) according to the
manualf39. RT-qPCR (quantitative real-time PCR) was performed
to validate the expression patterns of MaSWEETs in different
tissues, fruit development stages and stresses using ABI
StepOnePlus™ Real-Time PCR System (USA). The primers are
available in Supplemental Table S1. Actin was used as a
reference genel*%l, Graphpad Prism8.0 was used to visualize the
RT-gqPCR results and to perform T-test and ANOVA. P value <
0.05 was marked as significant. At least three individuals were
used and three technical replicates respectively were per-
formed for RT-qPCR.

Transient overexpression of MaSWEET 1a in Nicotiana
Benthamiana

The recombinant plasmids pNC-1304-355:MaSWEET1a were
constructed using nimble cloning®'l. Both recombinant plas-
mids pNC-1304-35S: SWEET1a and empty vector pNC-Cam1304-
35SMCS, as the negative control, were transformed into
Agrobacterium tumefaciens GV3101 and then transferred into
N. benthamiana leaves via Agrobacterium-mediated transient
transformation, as previously reported*'l, Overexpression of
MaSWEET1a was determined using RT-gPCR by comparing the
expression levels of target genes in transgenic plants with
those in the negative controls.

Obtaining MaSWEET1a/b VIGS Transgenic Mulberry
Virus-induced gene silencing (VIGS) was used to obtain
MaSWEET1a/b down-regulated mulberry, in accordance with
our previous report#2l, Agrobacterium tumefaciens containing
recombinant plasmids pTRV2-MaSWEET1a/b, pTRV1 and pTRV2
(negative control) were cultured in transient transformation
buffer and then transferred into mulberry leaves by means of
pressure injection. Ten independent mulberry plants were
injected. The knock-down efficiency for the target genes was
determined by RT-gPCR 15 d after injection by comparing the
transgenic plants with the negative controls and wild types.

Estimation of plant resistance to C. shiraiana infection

Cell death symptoms and the growth condition of C
shiraiana were recorded to estimate the resistance of trans-
genic plants to C. shiraiana infection*344, C. shiraiana was
inoculated at 2 d after infiltration in tobacco and at 10 d after
infiltration in mulberry. The cell death symptoms were
photographed after inoculation until the sclerotia appeared.
The results are representative of at least three biological
replicates.
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RESULTS

Genome-wide identification and phylogenetic analysis
of SWEETs in M.alba

A total of 24 SWEET homologs were identified based on the
genome information of M. alba and named according to their
orthologs in A. thaliana, P. trichocarpa or V. viniferas), These
MaSWEETs encode proteins ranging from 197 aa to 304 aa with
molecular weight from 21.45 to 34.12 kDa and theoretical
isoelectric points from 7.16 to 9.61 (Table 1). Subcellular loca-
lization prediction of these MaSWEETs showed that most of
them (18/24) distributed on membrane structures such as
plasma membrane (PM), tonoplast membrane (TM) and chloro-
plast thylakoid membrane (CTM). Phylogenetic analysis of
MaSWEETs and SWEETs from model plants such as A. thaliana,
P. trichocarpa and O. sativa showed that four clades were
formed by these SWEETSs (Fig. 1). According to previous studies,
SWEETs in plants were generally classed as four phylogenetic
clades which is in agreement with our resultsl®. Major
MaSWEETSs (10/24) together with AtSWEET1, 2 and 3 belong to
clade I. Clade Il and IV contain five MaSWEETs each and Clade llI
contains four MaSWEETSs (Fig. 1 and Table 1).

Chromosomal location and gene duplication

MaSWEETs distributed on 12 chromosomes except chromo-
some 1 and 3. Chromosome 5 occupied five MaSEETs which
formed a gene cluster. Chromosome 5 is the chromosome that
had the most SWEETs and the following is chromosome 6 and 8
which had four MaWSEETs each. There was only one MaSWEET
locating on chromosome 4 (Fig. 2). In addition, there were three
MaSWEETs on chromosome 2 and 7 respectively and two
MaSWEETs on chromosome 1 and 5 respectively. Gene duplica-
tion including block duplication and tandem duplication is the
main cause for gene family expansion. Tandem duplications
were found on chromosome 2, 6 and 12 (linked by red lines in
Fig. 2). It is also interesting to find several possible gene clusters
such as MaSWEET1a-b on chromosome 5, MaSWEET2a-g on
chromosome 9, MaSWEET7 a-b on chromosome 13,
MaSWEET17a-b on chromosome 12 and MaSWEET17¢c-d on
chromosome 6. Two gene pairs (MaSWEET4b/MaSWEET5 and
MaSWEET11b/ MaSWEET15) resulting from block duplications
were also marked (linked by black lines in Fig. 2).

Sequence analysis of MaSWEETs

MaSWEETs always located on membrane structures with
transmembrane domains. The prediction results of MaSWEETs
using DeepTMHMM showed that most MaSWEETs posed seven
types of transmembrane helices (TMH) named TMH1-7 (Table 1,
Supplemental Fig. S1). Alignment and conserved motif analysis
showed that almost all MaSWEETs kept the conserved TMH and
active sites Tyr and Asp indicating by red full triangles (Fig. 3).
The active residues Tyr and Asp were reported to be involved in
forming hydrogen bonds to ensure sugar transport activity!'4l.
In addition, all MaSWEETs except MaSWEET4a had a conserved
Ser in each triple helix bundle (THB) which can be phospho-
rylated and is important for SWEET activity (Fig. 3). MaSWEET4a
replaced Ser with Thr at the first Ser phosphorylation site
between TMH1 and TMH2 which may also retain similar activity
as Thr is also a common phosphorylation site. All MaSWEETs
retained the conserved second Ser phosphorylation site
between TMH5 and TMH6 (Fig. 3).
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Phylogenetic relationships of the SWEET family genes in Arabidopsis, Oryza sativa, Populus, Vitis vinifera, and Morus alba. The sequences

of the 104 SWEET proteins from the above four plant species were aligned by Clustal Omega, and the phylogenetic tree was constructed by the
MEGA 11.0 using the NJ method with 1000 bootstrap replicates. The proteins from Arabidopsis, Oryza sativa, Populus, Vitis vinifera, and Morus
alba are indicated with the prefixes of At, Os, Pt, Vv, and Ma, respectively.

Gene organization and promoter analysis of MaSWEETs

MaSWEETs gene structures were identified based on the
annotation information of the M. alba genome. In summary,
there were six MaSWEETs with six introns, 12 MaSWEETs with
five introns and five MaSWEETs with four introns (Fig. 4). In
addition, genes clustered together based on phylogenetic
analysis are likely to show similar gene structures and length.
For example, MaSWEET2aq, ¢, d, e, f and g with six introns,
MaSWEET7a and MaSWEET7b with four introns, and
MaSWEET17a and MaSWEET17b with four introns.

Promoter region analysis of MaSWEETs indicated the possible
function of MaSWEETs in response to hormones and environ-
ment stimulus. Among all the 22 types of cis-elements identi-
fied, most of them are light response elements accounting for
44% of the total elements (Supplemental Table S2). In addition,
hormone response elements were also widely identified in the
promoters of MaSWEETSs (Fig. 4c). Most MaSWEETs had abscisic
acid (ABA), salicylic acid (SA) or methyl jasmonate (MelA)
related response elements in their promoter regions. Especially,

Kang et al. Beverage Plant Research 2023, 3:6

MaSWEET1a-b, MaSWEET16, MaSWEET17a-d had cis-elements
involved in response to five types of hormones (ABA, SA, MeJA,
auxin and gibberellins). Several Myb binding cis-elements were
also identified in promoter regions of MaSWEET2a and
MaSWEET10 (Fig. 4c, Supplemental Table S2).

Expression profile of laSWEETs in different tissues of
mulberry

The tissue or organ expression profiles of MaSWEETs were
revealed. The MaSWEETs with high sequence identity (> 91%)
are hard to distinguished by RT-qPCR and were determined by
common primers to reveal their total transcription levels.
MaSWEETs in phylogenetic clade | showed quite similar
expression patterns with highest expression levels in leaf and
relatively higher expression levels in early stages (S0 and S1) of
fruit development except MaSWEET1a/b (Fig. 5a—d).
MaSWEET1a/b showed higher expression levels in fruits during
whole fruit development with highest expression level in fruit
at SO stage (Fig. 5a). However, MaSWEETs (MaSWEET10, 11a-b,
and 15) in phylogenetic clade Ill showed preferential expression
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Fig. 3 Multiple sequence alignment of MaSWEET proteins. The positions of the TMHs are underlined. The positions of the active sites of
tyrosine (Y) and aspartic acid (D) are indicated by red triangles. The conserved serine (S) phosphorylation sites are indicated by blue triangles.
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in fruits especially at the late stages (S2 and S3) (Fig. 5j—m).
MaSWEETs in phylogenetic clade Il had different expression
patterns in different tissues or organs. MaSWEET4a and b
showed highest expression level in fruit at the S1 stage while
MaSWEET5 showed obviously preferential expression in xylem
(Fig. 5e—qg). MaSWEET7a and b showed similar expression
pattern with MaSWEET2 cluster and MaSWEET3 from phyloge-
netic clade |. MaSWEETs in phylogenetic clade IV showed similar
expression pattern with highest expression levels in leaf (Fig.
5b, d, h, i). MaSWEET16 also had higher expression in fruit with
similar expression level at four different development stages
(Fig. 5n).

Transcription-level responses of MaSWEETs to various
stresses

Mulberry sclerotiniose is a fungal disease resulting from
fungal pathogen infection. Most (20/24) MaSWEETs showed
positive or negative responses to the fungal infection.
MaSWEET1a/b,  MaSWEET2  cluster, MaSWEET4b, and
MaSWEET17 a-d showed a significant decrease of expression
levels in diseased fruits with sclerotiniose compared with the
expression levels in healthy fruits (Fig. 6). In contrast,
MaSWEET2b, MaSWEET3, MaSWEET7b, MaSWEET10 and
MaSWEET11a-b showed significant increases of expression
levels in diseased fruits. MaSWEETs also played roles in
response to various abiotic stresses including drought, water
logging, cold and high temperature. MaSWEET1a/b showed a
positive response to drought with significant increasing
expression levels while other clade | MaSWEETs, MaSWEET2b
and 3 significantly decreased their expression level under
detected abiotic stresses (Fig. 7a—d). In contrast, MaSWEET16
significantly increased its expression level under detected
abiotic stresses. MaSWEET4a-b, MaSWEET5 in phylogenetic
clade Il and MaSWEET11a-b in clade Ill showed similar response
patterns with a significant increase of expression levels in
response to low temperature (4 °C), high temperature (40 °C) or
drought (Fig. 7e—g). MaSWEET15 showed high sensitivity for
drought and significant increase of expression levels under
drought stress. MaSWEET17a-d showed a negative response to

Kang et al. Beverage Plant Research 2023, 3:6

temperature change with a significant decrease of expression
levels under low temperature and high temperature treatments
(Fig. 70—-q).

Functional characterization of MaSWEET1a in response
to sclerotiniose infection

MaSWEET1a/b is quite different from other MaSWEETs in
clade | based on expression profile analysis, which showed
preferential expression in fruits and a negative response to
sclerotiniose pathogen (Ciboria shiraiana) infection. Our
unpublished data indicated MaSWEET1a as key genes involved
in the pathogen infection process based on comparative trans-
criptome analysis. Transient overexpression of MaSWEETT1a in
tobacco and VIGS knock-down of MaSWEET1a/b in mulberry
were performed. RT-qPCR results validated the successful
overexpression of MaSWEET1a in tobacco and knock-down of
MaSWEET1a/b in mulberry (Fig. 8b, d). The expression level of
MaSWEET1a affected the resistance to C. shiraiana infection in
both tobacco and mulberry (Fig. 8a, d). Overexpression of
MaSWEET1a decreased the resistance to C. shiraiana infection
with more severe cell death symptoms observed in OE-line
tobacco (Fig. 8a). Knock-down of MaSWEET1a/b in mulberry
could increase the resistance to C. shiraiana infection in
mulberry (Fig. 8d). These results proved that MaSWEETTa is an
important negative regulator of resistance to C. shiraiana
infection in mulberry.

DISCUSSION AND CONCLUSIONS

Functional studies on SWEETs have revealed that SWEET
homologs not only act as loading and unloading transporters
of sugars but also play critical roles in various biological
processes. Typically, angiosperm genomes contain about
15-25 SWEET genes™. In the present study, a total of 24 SWEET
genes were identified and clustered into four clades corres-
ponding with the knowledge of SWEETSs in angiosperm. Several
SWEETs including MaSWEET1a/b, MaSWEET4a-b, MaSWEET10,
MaSWEET11a-b and MaSWEET15 showed preferential expre-
ssion in fruits indicating their possible roles in fruit
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Fig. 5 Transcript levels of MaSWEETSs in leaves, xylem, phloem, and different development stages of fruit. Three technical replicates were
analyzed. Error bars represent SE. Different letters indicate statistically significant differences (Duncan's test, p < 0.05).

development. Similar expression preference of AtSWEETs was
also reported in Arabidopsist?. It is noted that fruit-preferential
expressed MaSWEETs still showed temporal expression

difference during fruit development indicating time-course
regulation of MaSWEETs for fruit ripening in mulberry. Early-
stage expressed MaSWEET1a/b and MaSWEET4a/b further
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differed from late-stage expressed MaSWEET10, MaSWEET11a/b
and MaSWEET15 in terms of detailed expression patterns during
fruit ripening. MaSWEET2b and 2 cluster genes (MaSWEET2a, c-
g) showed preferential expression in leaves which is similar
with the ortholog ZjSWEET2.2 in Ziziphus jujuba. Z[SWEET2.2 was
reported to be involved in mediating sugar loading in leavesl,
MaSWEET3, 7a-b,16 and 17a-d also showed highest expression
levels in leaves indicating their possible roles in sugar source
loading or unloading. MaSWEET11b showed higher expression
levels in phloem and its ortholog AtSWEET11 in Arabidopsis was
reported to be involved in sugar phloem loading®!.

Sugar signal is critical for plants in response to various
stresses. Previous studies have shown that SWEETs participated
in abiotic and biotic responses in many plant species including
arabidopsis and ricel'.25), AtSWEETT11, 12, 15 and 16 were
reported to be involved in affecting cold tolerance in
Arabidopsist'®-21, HfSWEET17 was also reported as a positive
regulator of resistance to cold stress in daylily('"l. Cold environ-
ment (4 °C) induced expression of MaSWEET4a, 4b, 5, 11a, 11b
and 16 in mulberry. Interestingly, these cold-induced
MaSWEETs can also be induced by high temperature.
MaSWEET15 which is the ortholog of AtSWEET15 can be
induced by drought as well as low or high temperature.
MaSWEET15, MaSWEET1a/b. 4a, 4b, 5, 7a, 11a, 11b, and 16 also
showed positive responses to drought. It is obvious that some
SWEET genes can be induced by different stresses. AtSWEET15
was also reported to be induced by osmotic, drought and
salinity'l. MaSWEET4a, 4b, 11a, 11b and 16 can be induced by
low or high temperature and drought indicating their impor-
tant roles in response to various abiotic stresses in mulberry.

Kang et al. Beverage Plant Research 2023, 3:6

SWEETs were generally thought to 'support the enemy'
during infection. SWEETs especially those that function as
exporters generally facilitate the export of sugars out of host
cells, which support pathogen growth in the apoplasml'547.48],
Clade Ill SWEETs including AtSWEETT11, 12, OsSWEET11 were
characterized as negative regulators of resistance to fungal
infection and Clade Ill SWEETs including OsSWEET11, 13, 14 and
GhSWEET10 were characterized as negative regulators of
resistance to bacterial pathogen infection[22449501 |n contrast,
clade | AtSWEET2, a glucose importer and clade Ill IbSWEET10
were reported as positive regulators of resistance to fungal
infection(*851], Therefore, roles of SWEETSs in response to patho-
gen infection may be quite different. Most MaSWEETs were
disturbed in diseased fruits that resulted from sclerotiniose
pathogen infection. MaSWEET2b, MaSWEET3 in clade |,
MaSWEET7b in clade Il, MaSWEET10 and MaSWEET11a-b in clade
Il showed significant increase in expression levels in diseased
fruits while MaSWEET1a/b, MaSWEET2 cluster (MaSWEET2a, c-g)
in clade | showed significant decrease of expression levels in
diseased fruits. MaSWEET1a was further validated as a negative
regulator of resistance to C. shiraiana infection. Given the fact
that MaSWEETT1a/b was repressed in diseased fruits, it is likely
that a possible pathway through repression of MaSWEET1a
exists in mulberry to defense pathogen infection.

In conclusion, we have performed a genome-wide investi-
gation of SWEET genes in Morus and a comprehensive analysis
including phylogenetic analysis, promoter analysis and
expression profile analysis was also carried out. Their possible
roles in development and response to abiotic and biotic
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stresses were addressed. In particular, the functional role of
MaSWEETTa in regulation of tolerance to C. shiraiana infection
was validated using both VIGS knock-down and transient
overexpression in tobacco combined with inoculation of C
shiraiana. The results in this study provides a foundation for
studying the function of the SWEET family in mulberry plants
and provides a negative regulator of resistance to C. shiraiana
infection for further genetic modification.
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