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Abstract
Nucleotide binding site, leucine-rich repeat (NBS-LRR) proteins are the main types of disease resistance proteins in plants, which can perceive

plant pathogens. Anthracnose, caused by the fungus Colletotrichum camelliae, is one of the most severe diseases in tea plant. Here, we identified

an NBS-LRR-encoding gene, CsRPM1, probably conferring resistance of tea plant to C. camelliae. Phylogenetic analysis showed that CsRPM1 was

clustered with RPM1 in Arabidopsis and grouped into CC-NBS-LRR (CNL). It contained a signal peptide, a NB-ARC domain, and multiple LRR motifs.

RNA-seq  and  qRT-PCR  analysis  showed  that  the  transcript  level  of CsRPM1 was  significantly  up-regulated  after  inoculation  with C.  camelliae.

Transiently  silencing of CsRPM1 in  tea  leaves  comprised the resistance to C.  camelliae,  indicating that CsRPM1 was  required for  plant  defense

against  the  pathogen.  The subcellular  localization showed that  CsRPM1 protein  was  localized in  the  nucleus,  cytoplasm,  and cell  membrane.

Furthermore,  the  promoter  region  of CsRPM1 gene  contained  MeJA-responsive  elements,  and  the  expression  of CsRPM1 was  induced  by

exogenous methyl jasmonate, suggesting that CsRPM1 gene may be closely related to JA signaling pathway. A total of 17 transcription factors

might be responsible for the expression of CsRPM1. Our data indicates that CsRPM1 is required for disease resistance to C. camelliae in tea plant.

The characterization of this disease resistance gene sheds light on NLR protein function in tea plant and may facilitate breeding to control the

severe anthracnose.
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Introduction

Tea  plant  (Camellia  sinensis)  is  a  widely  cultivated  perennial
evergreen plant, which is used to produce health-beneficial tea
beverages[1].  However,  tea  plant  frequently  suffers  from
pathogens due to the warm and humid growing environment,
which leads  to  serious  losses  in  yield  and decreased quality  in
tea[2,3]. Colletotrichum  camelliae,  as  one  of  the  dominant Col-
letotrichum species causing anthracnose in Ca. sinensis,  caused
large  necrotic  lesions  in  tea  leaves  and  then  resulted  in  the
increased production losses[4]. In response to pathogen attacks,
plants have evolved exquisite and effective defense systems[5].
The  first  tier  of  plant  immune  system  is  pathogen-associated
molecular  patterns  (PAMPs)-triggered  immunity  (PTI), via the
recognition  of  PAMPs  by  plant  pathogen-  or  pattern-recogni-
tion receptors (PRRs)[6]. Pathogens can synthesize effectors and
deliver  them into the plant  cell  to counteract  PTI,  while  plants
can  recognize  the  effectors via disease  resistance  proteins  (R
proteins)  and  implement  effector-triggered  immunity  (ETI)[6,7].
The  majority  of  R  proteins  contain  central  nucleotide-binding
site  (NBS)  and  Apaf-1,  R-protein,  and  CED-4  homology  (ARC)
subdomains,  and  leucine-rich  repeats  (LRRs)  domain,  called
NBS-LRR or NLR receptors[8].

Plants use NBS-LRR proteins to perceive fungal pathogens by
direct or indirect recognition of fungal effectors,  triggering ETI
and developing defense  responses  against  pathogens[9,10].  For

example,  the  NBS-LRR  proteins  RGA4  and  RGA5  in  rice  physi-
cally  bind  to  two  effectors  ACR-CO39  and  ACR-Pia  of  fungal
pathogen Magnaporthe  oryzae,  resulting  in  resistance  induc-
tion and the hypersensitive response (HR)[11,12].  Over the years,
the function of NLR genes in host plants has been reported. In
tomato, one resistance (R) gene Sm encoding an NBS-LRR pro-
tein confers resistance to gray leaf spot disease caused by Stem-
phylium lycopersici[13]. In barley, virus-induced gene silencing of
an NBS-LRR gene Rpg5 resulted in a compatible reaction with a
normally  incompatible  stem  rust  pathogen Puccinia  graminis,
indicating  the  important  role  of Rpg5 as  the  stem  rust  resis-
tance  gene[14].  An  NLR  protein  YrU1  elicits  effective  ETI  after
recognition of the effectors derived from the stripe rust fungus
Puccinia  striiformis f.  sp. Tritici in  bread  wheat[10,15].  Soybean
Rps11 is  an NLR gene conferring broad-spectrum resistance  to
Phytophthora sojae causing root and stem rot[16]. In apple, three
NLR proteins MdRNL1, MdRNL2, and MdRNL3 contribute to the
resistance to apple leaf spot caused by Alternaria alternate f. sp.
mali[8].  Rice OsRLR1 gene  encoding  an  NBS-LRR  protein  medi-
ates resistance to the rice blast fungus M. oryzae through inter-
action with the transcription factor OsWRKY19[17]. Although the
role of NLR genes in the resistance against fungal infection has
been widely reported in many plants, few studies reported the
contribution of NLR genes to disease defense in tea plant.

In our previous studies, 400 and 303 CsNLRs genes have been
identified  from  the  genomes  of Ca.  sinensis var. sinensis (CSS)
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and Ca. sinensis var. assamica (CSA), respectively. Based on the
N-terminal  domains,  they  were  classified  into  two  major
groups, coiled-coil-containing NLRs (CNLs) and Toll/interleukin-
1  receptor-containing  NLRs  (TNLs)[18].  The  expression  of  these
CsNLRs was  induced  by Colletotrichum,  abiotic  stresses,  and
exogenous  methyl  jasmonate  (MeJA)  by  RNA-Seq  analysis[18].
However, the role of CsNLRs in disease resistance have not been
functionally  validated.  Here  we  identified  one CsNLR gene,
CsRPM1,  whose  expression  was  significantly  induced  by C.
camelliae.  Phylogenetic tree revealed that CsRPM1 was homol-
ogous  to  RPM1  in Arabidopsis,  and  clustered  with  CNL.  It
encodes a typical NBS-LRR protein located in the nucleus, cyto-
plasm, and cell  membrane. Further functional analysis by tran-
sient expression confirmed that this gene confers resistance to
C.  camelliae in  tea  plant.  The  transcript  level  of CsRPM1 was
induced by exogenous MeJA, and may be regulated by several
transcription factors. 

Materials and methods
 

Plant materials and treatments
Five-year-old  tea  plant  (Ca.  sinensis cv. Longjing43)  (LJ43)

seedlings were grown under natural conditions. To analyze the
expression  of CsRPM1 at  different  stages  of  infection  with C.
camelliae, the tea leaves inoculated by C. camelliae strain LS_19
were  sampled  at  0,  3,  6,  12,  24,  48,  72,  and  96  h  post  inocula-
tion.  To determine the expression of CsRPM1 under the induc-
tion of MeJA, tea leaves treated with exogenous 150 µM MeJA
and  then  inoculated  with C.  camelliae strain  LS_19  were  sam-
pled at  0,  24,  48,  and 72 h after  treatment.  The collected sam-
ples were stored at -80°C for further experiments. 

RNA-Seq analysis
The RNA-Seq expression data-set used to analyze the expres-

sion  of CsNLRs in  this  study  was  obtained  from  our  previous
study, which was transcriptome of tea leaves in response to C.
camelliae[19].  Differentially  expressed  genes  (DEGs)  were
defined  as  their  expression  presented  a  >  1.5-fold  change[18].
The heatmap was constructed by TBtools software[20]. 

qRT-PCR analysis
Total  RNA was extracted from collected samples  using Fast-

Pure® Plant Total RNA Isolation Kit (Polysaccharides& Polyphe-
nolics-rich)  (Vazyme  Biotech  Co.,  Ltd,  China).  cDNA  was  then
synthesized  using  HiScript  II  1st  Strand  cDNA  Synthesis  Kit
(+gDNA  wiper)  (Vazyme  Biotech  Co.,  Ltd,  China)  according  to
the  manufacturer's  instructions.  qRT-PCR  assays  were  per-
formed with ChamQ Universal SYBR qPCR Master Mix (Vazyme
Biotech  Co.,  Ltd,  China)  using  the  Bio-Rad  CFX96TM Real-Time
System  (USA). CsPTB1 gene  encoding  polypyrimidine  tract-
binding protein was used as reference[21].  Primer pair (forward:
5'-TCTCCTTCGTCGCTTGTC-3'  and  reverse:  5'-ATAGGGTCTTCT-
GTTAGTCTGG-3') was used to amplify CsRPM1 for qRT-PCR. The
experiment  with  at  least  three  replicates  was  independently
repeated three times. 

Transient gene suppression of CsRPM1
To transiently inhibit the expression of CsRPM1 in LJ43, anti-

sense  oligodeoxynucleotide  (asODN)  was  used.  Candidate
sequences  of  asODN  were  designed  using  Soligo  (http://sfold.
wadsworth.org/cgi-bin/index.pl)  with CsRPM1 gene  sequence
as  the  input.  The  sense  oligonucleotides  (sODN)  were  used  as
the  control.  10  sODNs-asODNs  pairs  were  selected  for  synthe-

sizing  to  ensure  and  improve  the  interference  effect[22].  The
synthesized 10 pairs of sODN and asODN were adjusted to the
concentration of 30 µM with ddH2O and then injected into the
tea  leaves  respectively.  After  incubation,  the  injected  leaves
were  inoculated  with  the  5-mm  mycelial  plugs  cut  from C.
camelliae strain LS_19 and then sampled at 12, 24, 48, and 72 h
post inoculation. At each point in time, the lesions on tea leaves
were  observed  and  measured.  The  leaves  samples  were  then
harvested and stored at  -80°C for  further  analyses.  The experi-
ment with at least three replicates was independently repeated
three times. 

Subcellular localization of CsRPM1
The CsRPM1 coding sequence lacking the termination codon

was  amplified  with  the  primers  (forward:  5'-CGAGCTCGGTACC
CGGGGATCCATGGCCTTGGCTGCCGTGGG-3'  and  reverse:  5'-
CCTTGCTCACCATGGTGTCGACAGTCAATCCTGTGGAACGAG-3'),
and then fused with the vector  pCAMBIA2300-35S-eGFP using
CloneExpress II  One Step Cloning Kit (Vazyme Biotech Co.,  Ltd,
China).  The  fused  vector  and  control  vector  (pCAMBIA2300-
35S-eGFP)  were  then  introduced  into Agrobacterium  tumefa-
ciens GV3101 using the  liquid  nitrogen quick-freezing method
respectively.  The  activated A.  tumefaciens containing  the  vec-
tors  (OD600 =  0.5)  were  infiltrated  into  5-week-old Nicotiana
benthamiana leaves  (expressing  nuclear  marker-RFP)[23].  After
two days in the dark, the GFP fluorescence signal was observed
using laser confocal  scanning microscopy (Zeiss LSM 780,  Ger-
many).  Excitation  wavelengths  of  RFP  and  GFP  were  532  and
488 nm respectively. 

Screening of candidate transcription factors (TFs)
regulating CsRPM1 expression

TeaCoN  website  (http://teacon.wchoda.com/)  was  used  for
candidate TFs screening with CsRPM1 as the query[24]. 

Statistical analysis
Data were the mean ± standard deviation of three biological

replicates. The mean and standard errors were respectively cal-
culated using the MEAN and STDEV function in Excel 2019. Sta-
tistically significant differences were determined with one-way
ANOVA analysis  (*, p <  0.05;  **, p <  0.01) via SPSS Statistics  18
software. 

Results
 

Identification and expression pattern of CsRPM1 after
inoculation with C. camelliae

To  identify  and  analyze  the  expression  pattern  of  DEGs  in
LJ43 inoculated with C. camelliae, we performed RNA-Seq anal-
ysis. Results from Venn diagram identified 12 DEGs at different
stages of  infection (12,  24,  and 72 h)  (Fig.  1a).  Notably,  among
the  12  DEGs,  there  was  an  NLR-encoding  gene  (TEA004876)
that  was  significantly  up-regulated  at  72  h  compared  to  the
control  group  (Fig.  1b).  TEA004876  was  predicted  as  the  dis-
ease resistance protein RPM1, and could be induced under vari-
ous biotic and abiotic stresses (http://tpdbtmp.shengxin.ren:81/
analyses_search_locus.html?id=TEA004876).  It  was  named
CsRPM1, and selected for further characterization. Phylogenetic
analysis showed that CsRPM1 was clustered with RPM1 belong-
ing to  CNL (CC-NBS-LRR)  group (Fig.  1c). CsRPM1 gene in  LJ43
encodes an NBS-LRR protein, containing a signal peptide, a NB-
ARC domain, and multiple LRR motifs (Fig. 1d).

 
CsRPM1 is required for disease resistance
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The expression pattern of CsRPM1 at different stages of infec-
tion with C. camelliae was further confirmed by qRT-PCR analy-
sis. The result showed that the expression of CsRPM1 was signif-
icantly up-regulated at  24,  48,  72 h,  and 96 h after  inoculation
(Fig. 1e),  suggesting that CsRPM1 can be induced by the infec-
tion  with C.  camelliae and  probably  involved  in  disease  resis-
tance in tea plant. 

Silencing of CsRPM1 impairs host resistance to C.
camelliae

To further valid the role of CsRPM1 in disease resistance in tea
plant,  asODN was  used to  transiently  inhibit  the  expression of
CsRPM1 in  LJ43.  The  transcript  of CsRPM1 was  significantly
down-regulated  at  12  and  72  h  post  injection  with  30 µM
asODN compare to the control group (transformed with sODN)
(Fig. 2a). At 72 h, the necrotic lesions caused by C. camelliae on
the  asODN  group  were  significantly  larger  than  those  on  the
sODN  control  group  (Fig.  2b, c).  The  results  indicated  that
silencing of CsRPM1 facilitates the infection by C. camelliae and
impairs the resistance of tea plant to C. camelliae. 

Subcellular localization of CsRPM1
For  examining  the  localization  of  CsRPM1  protein,  we  con-

structed  the  fused  vectors  expressing  CsRPM1-GFP  under  the
35S  promoter.  When  CsRPM1-GFP  and  nuclear  marker-RFP
were co-expressed in the N. benthamiana leaves, the green and
red  fluorescent  protein  signals  were  superimposed  (Fig.  3).
Besides,  GFP  signals  were  also  observed  in  plasma  membrane
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Fig. 1    Identification and expression pattern of CsRPM1 in tea plant leaves inoculated with C. camelliae. (a) Venn diagram of DEGs in tea plant
leaves inoculated with C. camelliae at 12, 24, and 72 h. (b) Heat maps of the expression of 12 DEGs in LJ43 at 12, 24, and 72 h after inoculation
with  ddH2O  (Control)  or C.  camelliae (Treated).  (c)  Phylogenetic  tree  constructed via the  TNL  and  CNL  genes.  (d)  Domain  map  of  CsRPM1
protein. The domain prediction of CsRPM1 was performed with SMART analysis service. (e) The expression pattern of CsRPM1 in tea plant leaves
during different stages of infection with C. camelliae by qRT-PCR analysis. **, p < 0.01.
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Fig. 2    Silencing of CsRPM1 impairs host resistance to C. camelliae.
(a)  Expression  level  of CsRPM1 gene  at  different  stages  after
injection with 30 µM asODN or sODN. *, p < 0.05;  **, p < 0.01.  (b)
Symptoms  in  detached  tea  leaves  that  were  injected  with  30 µM
asODN or sODN caused by C. camelliae strain LS_19. Bar = 0.5 cm.
(c)  Bar  chart  showing  statistical  analysis  of  the  sizes  of  necrotic
lesions in (b). Error bars represent standard deviation. **, p < 0.01.

CsRPM1 is required for disease resistance
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and cytoplasm under the confocal microscope (Fig. 2d). Above
all,  CsRPM1 localized in the nucleus,  cytoplasm, and cell  mem-
brane. 

MeJA can induce the expression of CsRPM1
When  analyzing  the cis-regulatory  elements  presenting  in

the  2  kb  upstream  region  of CsRPM1 that  was  predicted  from
LJ43 genomic  sequences,  we found that  MeJA-responsive  ele-
ments,  and  defense  and  stress-responsive  elements  are  pre-
sented in the promoter of CsRPM1 gene (Fig. 4a). The transcript
level  of CsRPM1 was  then  determined  after  exogenous  treat-
ment  with  MeJA.  qRT-PCR  analysis  showed  that  the  level  of
CsRPM1 transcripts was significantly up-regulated at 48 h after
MeJA treatment compared with the control group (Fig. 4b). The
results  indicated  that CsRPM1 might  be  involved  in  the  jas-
monic acid (JA) signaling pathway. 

Predication of candidate transcriptional factors
regulating the CsRPM1 expression

To  further  gain  insight  into  the  regulatory  mechanism  of
CsRPM1,  we  predicted  the  transcriptional  factors  (TFs)  regulat-
ing the CsRPM1 expression through the TeaCoN website. A total
of 17 DEGs annotated as involved in transcriptional regulation,
including  15  up-regulated  genes  and  two  down-regulated
genes,  were  identified  (Fig.  5a, b).  Especially,  five  genes,
TEA030980 (encoding a late embryogenesis abundant protein),
TEA031553  (encoding  a  multicopper  oxidase),  TEA031563
(encoding  a  multicopper  oxidase),  TEA013693  (encoding  a
calmodulin-binding family  protein),  and TEA018280 (encoding
a VQ motif-containing protein), showed higher correlation with
the expression of CsRPM1 and were also  significantly  up-regu-
lated  at  72  h  after  inoculation  with C.  camelliae (Fig.  5b).  The
result suggested that they may be involved in the regulation of
CsRPM1 expression. 

Discussion

As  the  most  important  gene  families  involved  in  disease
resistance in plants, NLR genes are usually highly expressed fol-
lowing  pathogens  infection,  and  the  transcript  levels  of NLRs
are  correlated  with  plant  defense  response  against
pathogens[9,13,25].  In  apple,  a  TIR-NBS-LRR  gene MdTNL1 posi-
tively  regulating  Glomerella  leaf  spot  (GLS)  resistance  was
highly expressed in resistance apple cultivar 'Fuji' after inocula-
tion  with  the  GLS  pathogen C.  fructicola[26].  Powdery  mildew
resistance gene Pm2b in wheat encoding a CC-NBS-LRR protein
was rapidly up-regulated after inoculating with Blumeria grami-
nis f.  sp. tritici[27].  Multiple StTNL genes  encoding  TIR-NBS-LRR
proteins  in  potato  showed  strong  and  constant  upregulation
under  fungal  pathogen Alternaria  solani treatment[28].  In  tea
plant, RNA-Seq have revealed that the expression of CsNLRs can
be  induced  by  anthracnose  pathogens[18].  In  this  study,  we
identified 12 DEGs commonly expressed at 12 h, 24 h, and 72 h
after inoculation with C. camelliae causing anthracnose by RNA-
Seq  analysis  (Fig.  1a),  suggesting  their  potential  functions  in
disease resistance.

Among the 12 DEGs, CsRPM1 (TEA004876) encoding an NBS-
LRR  protein  was  predicted  as  the  disease  resistance  protein
RPM1.  RPM1  is  an  NBS-LRR  protein  from Arabidopsis that  con-
fers  resistance  to  bacterial  pathogen Pseudomonas  syringae
expressing  either  two  avirulence  genes, avrRpm1 or avrB[29].
The  functional  and  potentially  molecular  homologs  of  RPM1
also  exists  in  conceivably  other  crop  species[30,31].  In  wheat,

TaRPM1 plays an important role in the resistance to infection by
the  powdery  mildew  pathogen B.  graminis f.  sp. tritici[32].
PsoRPM1 from Xinjiang wild cherry plum (Prunus sogdiana) is a
root-knot  nematode  resistance  gene  candidate[33].  In  rice,
RPM1-like  resistance  gene  1 OsRLR1 mediates  the  defense
response  to  the  fungal  pathogen M.  oryzae and  the  bacterial
pathogen Xanthomonas  oryzae pv. oryzae through  direction
interaction  with  the  transcription  factor  OsWRKY19[17]. In  this
study,  the  transcript  level  of CsRPM1 was  significantly  upregu-
lated after inoculation with C. camelliae (Fig.  1e),  and silencing
of CsRPM1 facilitates  the  infection  by C.  camelliae and  impairs
the resistance of tea plant to C. camelliae (Fig. 2a−c). The results
indicated that CsRPM1 plays an important role in the resistance
to the infection by C. camelliae.  RPM1 interacts with other pro-
teins,  such  as  RIN4  and  RIN13,  which  can  regulate  the  RPM1-
mediated disease resistance[34,35]. Therefore, based on the char-
acterization  of  CsRPM1  function,  we  can  identify  proteins
directly interacting with CsRPM1 in a yeast two-hybrid screen.

Seventeen  DEGs  including  15  up-regulated  genes  and  two
down-regulated  genes  were  predicted  to  be  involved  in  tran-
scription regulation of CsRPM1 (Fig. 5a, b). Especially, five genes
(TEA030980,  TEA031553,  TEA031563,  TEA013693,  and
TEA018280)  were  also  significantly  up-regulated  at  72  h  after
inoculation  with C.  camelliae (Fig.  5b),  showing  similar  expres-
sion  patterns  to CsRPM1.  The  results  suggested  that  these

 
Fig. 3    Subcellular localization of CsRPM1 in the epidermal cells of
N. benthamiana leaves. Tobacco leaves expressing nuclear marker-
RFP were infiltrated with A. tumefaciens carrying the fused vectors
expressing  CsRPM1-GFP  or  empty  vector  and  were  observed
under  laser  confocal  scanning  microscopy  after  2  d  in  the  dark.
Bar = 50 µm.
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Fig.  4    MeJA  can  induce  the  expression  of CsRPM1.  (a)  The
predicted  promoter  elements  of CsRPM1 gene  from  the  2  kb
upstream  region  to  ATG.  (b)  qRT-PCR  analysis  of CsRPM1
transcripts  in  tea  leaves  treated  with  exogenous  150 µM  MeJA.
Error bars represent standard deviation. **, p < 0.01.
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genes may be involved in the regulation of CsRPM1 expression.
TEA030980  was  predicted  to  encode  a  late  embryogenesis
abundant (LEA) protein. In tea plant, LEA gene family are identi-
fied  and  involved  in  response  to  abiotic  stresses  including
drought,  dehydration,  osmotic,  and  cold[36−39].  However,  over-
expressing  of  wheat TdLEA3 in Arabidopsis showed  increased
resistance to fungal infections by Fusarium graminearum, Botry-
tis  cinerea and Aspergillus niger[40],  suggesting its potential  role
in  disease  resistance.  Multicopper  oxidase  encoded  by
TEA031553  or  TEA031563  are  ubiquitous  enzymes  that  cat-
alyze the oxidation of various substrates by reducing O2 to H2O,
including laccases and several oxidases[41]. Calmodulin-binding
protein encoded by TEA013693 may act as TF to regulate biotic
and  abiotic  stress  responses,  especially  in  low  temperature
responses[42].  TEA018280  was  predicted  to  encode  a  VQ

(FxxhVQxhTG,  h:  hydrophobic  amino  acid,  x:  any  amino  acid)
motif-containing  protein,  this  family  genes  in  tea  plant  are
identified and found to play important roles in response to salt
and  drought  stress[43].  Although  all  the  five  gene  families  are
identified in tea plant, and transcriptome analysis revealed their
expression pattern in response to abiotic stresses, their roles in
disease  resistance  to Colletotrichum infection  are  little  known.
In  future  research,  we  will  verify  the  interaction  between
CsRPM1 and the five genes by yeast one-hybrid, dual luciferase
or electrophoretic mobility shift assays to reveal the regulatory
mechanism of CsRPM1 and their roles in disease resistance.

JAs are important phytohormones that regulate a wide range
of  physiological  processes  in  plant  growth  and  development,
and  especially  the  mediation  of  responses  to  various
stresses[44]. After plants are infected by pathogens, JA and other

a
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Fig.  5    Connection network  between CsRPM1 and candidate  TFs.  (a)  Predicted interaction  relationship  between CsRPM1 and TFs.  (b)  Heat
map of the expression of candidate TFs in LJ43 at 12 h, 24 h, and 72 h after inoculation with ddH2O (Control) or C. camelliae (Treated).

CsRPM1 is required for disease resistance
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signaling pathways are activated, which leads to the activation
of plant disease resistance[45]. For example, JA biosynthesis and
signaling  genes  in  rice  can  be  effectively  induced  by  the  rice
blast fungus M. oryzae at the warm temperature, which leads to
enhanced  blast  resistance[46].  The  JA  signaling  pathway  is
involved  in  PTI  and  ETI  activation,  thereby  stimulating  down-
stream  transcription  factors  and  initiating  plant  defense
responses to pathogen infections[45]. NLRs as the key pathogen
effectors activate ETI, many studies have shown that phytohor-
mone pathways including JA signaling pathway are correlated
with  the  resistance  mediated  by  NLRs.  In  rice,  Gene  Ontology
(GO) analysis revealed strong correlation of hormone pathways,
especially  salicylic  acid  (SA)  and  JA,  with  the  resistance  to
brown planthopper (BPH) mediated by an NLR gene BPH9[47]. JA
and  its  conjugate  JA-Ile  rapidly  increased  after  BPH
infestation[47].  In  tea  plant,  JA  content  was  also  significantly
increased in the diseased leaves infected by C. camelliae at 72 h
post  inoculation[19].  In  this  study,  we  have  confirmed  that  the
level of CsRPM1 transcripts was significantly up-regulated at 48
h  after  MeJA  treatment  (Fig.  4b).  These  results  imply  that
CsRPM1 may  combine  with  JA  signaling  pathway  to  regulate
the disease resistance to C. camelliae in tea plant. In cucumber,
the  transcript  levels  of  two  NBS-LRR  genes CsRSF1 and CsRSF2
were  also  upregulated  after  exogenous  treatment  with  MeJA
and  correlated  with  plant  defense  response  against  powdery
mildew  caused  by Sphaerotheca  fuliginea[9].  The  pepper  NLR
Tsw  can  recognize  pathogen  interference  of  phytohormone
signaling  as  a  counter-virulence  strategy,  thereby  activating
plant  immunity[48].  Therefore,  the  underlying  mechanism  of
CsRPM1  regulating  the  defense  response  to C.  camelliae in
combination  with  JA  signaling  pathway  needs  to  be  further
explored. 

Conclusions

NBS-LRR proteins play important roles in plant disease resis-
tance. An NBS-LRR-encoding gene CsRPM1 was identified from
tea plant  cultivar  LJ43.  RNA-Seq and qRT-PCR analysis  showed
that the transcript level of CsRPM1 was up-regulated after inoc-
ulation with C. camelliae LS_19 strain. The transient silencing of
CsRPM1 in LJ43 leaves comprised the resistance to C. camelliae.
The  subcellular  localization  showed  that  CsRPM1  protein  was
localized  in  the  nucleus,  cytoplasm,  and  cell  membrane.  The
expression  of CsRPM1 was  induced  by  exogenous  MeJA.  We
also  predicated  the  candidate  TFs  regulating  the CsRPM1
expression.  Our  data  indicates  that CsRPM1 is  required for  dis-
ease resistance to C. camelliae in tea plant. Further research on
the mechanism of CsRPM1 regulating the defense response to
C. camelliae in combination with JA signaling pathway and TFs
will broaden our comprehension of NLRs in tea plant.
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