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Abstract

The volatiles in the young shoots of tea cultivars are the important material basis for the formation of tea aroma, but the cultivar-specific aroma
and its molecular regulation are still lacking in research. In this study, the characteristic volatiles of seven tea cultivars in China were detected, and
the results showed that the green tea cultivars 'Fuding Dabaicha' (FDDB), 'Longjing43' (LJ43), 'Shuchazao' (5CZ), and 'Baihaozao' (BHZ) were rich
in (E)-3-hexenol, phenylethyl alcohol, phenylacetaldehyde, and S-ionone. For oolong tea cultivars, the characteristic volatiles of 'Tieguanyin' (TGY)
were heptanal and eugenol, while the contents of (E)-f-ocimene, geraniol, and methyl salicylate were significantly increased in 'Jinxuan' (JX). In
addition, 'Fujian Shuixian' (FJSX) has the highest content of esters, mainly jasmonolactone and dihydrojasmonolactone. Transcriptomic analysis
showed that the different tea cultivars were significantly enriched in different levels of gene transcription in the three pathways related to aroma
biosynthesis. Potential regulatory modules and genes of several characteristic volatiles were identified by WGCNA, among which CsbHLH
(CsTGY12G0001520) may regulate the expression of CsTPS (CsTGY05G0001285) to directly affect the accumulation of S-caryophyllene in young
shoots, while CsMYB (CsTGY01G0001203, CsTGY04G0001918, CsTGY06G0002545) may affect the synthesis of (2)-3-hexenol and (E)-3-hexen-1-ol
acetate by regulating the CsADH (CsTGY09G0001879). In addition, the transcription factors bHLH, WRKY, ERF, and MYB may be involved in the
biosynthesis of linalool by regulating the expression of CsLIS/NES (CsTGY08G0001704, CsTGY08G0000359) genes individually or through
interaction. These results revealed the characteristic volatiles and their key regulatory genes of seven tea cultivars, which will provide a theoretical
basis for breeding and suitability research of tea cultivars.
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Introduction

Tea aroma is affected by the tea cultivars, growing environ-
ment, and manufacturing process, and is an essential factor in
determining the quality of teal'l. As a high-weight trait in tea
plant breeding, the volatile content of tea cultivars with differ-
ent adaptability is usually different(231, Studies have shown that
the contents and ratios of linalool and geraniol are genetically
specific and stable in tea cultivarsi“. The aroma quality of
oolong tea is related to the release of aroma glycosides in the
leaves of cultivars during the shaking process’®. The major
volatiles in tea are derived from either the terpenoid and
shikimate pathways or by the oxidation of fatty acids and
carotenoidsl®. It was found that aroma components can be
synthesized by a single gene or multiple gene interactions’.
Moreover, many transcription factor (TFs) can also participate in
the formation of volatiles by regulating the expression of
aroma synthesis pathway genest®. In summary, the formation
and regulation of tea aroma is a complex process.

Oolong tea, which is a semifermented tea, possesses an
elegant floral odour and is gaining popularity in China due to
its distinct and characteristic aromas. Furthermore, the aroma
quality of oolong tea can vary greatly because of cultivars, tea
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manufacturing process, regions, climate conditions, season of
harvest, and quality of fresh tea leaves, with the cultivar being
the most important factori23l. 'Tieguanyin' (TGY, Registration
No. GS13007-1985) tea is a typical cultivar of Chinese oolong
tea, which is famous for its unique rich flavour and orchid-like
aromal22191 'Jinxuan' (JX, Registration No. MS2011002) is one of
the main cultivated tea cultivars in Fujian Province, China.
Oolong tea processed from JX is popular among tea drinkers
due to its unique floral and creamy aromal'"l. 'Fujian Shuixian'
(FJSX, Registration No. GS13009-1985) is considered to be one
of the most suitable cultivars for producing oolong teal'2.
Oolong tea processed from 'Shuixian' is popular among tea
drinkers due to its sharp and typical floral odourl'3l. White tea is
a lightly fermented tea popular for its sweetness, clear
fragrance, mellow aroma and outstanding health benefits, and
it is rich in volatile compounds inherent to fresh leaves, such as
aldehydes and alcohols!'#%], 'Fuding Dabaicha' (FDDB, Regis-
tration No. GS13001-1985) is a major cultivar suitable for
making white tea and an important parent for breeding green
and black tea cultivars, which played important roles in the
Chinese tea breeding history['®l, Chinese green tea, the most
popular tea in China, presents different characteristic aroma
types according to its sensory quality, such as floral, green, and
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delicate aromasl'’l. For instance, the representative green tea
cultivars 'Longjing43' (LJ43, Registration No. GS 13037-1987),
'‘Baihaozao' (BHZ, Registration No. GS13017-1994), and 'Shu-
chazao' (SCZ, Registration No GS2002008), which come from
Fujian, Zhejiang, Hunan, and Anhui Provinces, respectively,
were identified as Chinese national improved cultivars.

In our previous study!'8], we have analyzed the characteristic
metabolites of seven tea cultivars using targeted metabolomics
and widely targeted metabolomics, and combined transcrip-
tome data to construct transcriptional regulatory networks for
the characteristic metabolites of different cultivars. In addition
to non-volatile metabolites, tea cultivars also affect the content
of aromatic substances in its fresh leaves, which are the mate-
rial basis for the formation of tea aroma. Although there have
been many studies on the volatile components of tea, most of
them have focused on tea processing and finished teal’9-21],
and the influence of tea cultivars on aroma formation has
received little attention. In this study, volatile metabolomics
and transcriptomics were used to analyze the characteristic
aroma components and differential genes of seven tea culti-
vars. Then the transcriptome data and aroma components were
correlated by weighted gene co-expression network analysis
(WGCNA), and co-expressed gene modules were screened to
construct transcriptional regulatory networks of characteristic
aroma components. These data and results will provide a theo-
retical basis for the production adaptability of tea cultivars at
the aroma component and molecular level.

Materials and methods

Tea plant materials

In April 2021, the young shoots (one bud and two leaves) of
the tea plants of Camellia sinensis (L) O. Kuntze 'Tieguanyin'
(TGY), Jinxuan' (JX), 'Fujian Shuixian' (FJSX), 'Fuding Dabaicha'
(FDDB), 'Baihaozao' (BHZ), 'Longjing 43' (LJ43), and 'Shuchazao'
(SCZ) were collected from the tea germplasm plantation of
Wuyi University (Wuyishan City, Fujian, China; 27°73'17"N,
118°00'18" E) for detection of released volatiles and transcrip-
tome analysis. Indeed, all tea plants were grown under the
same cultivation practices. Three independent biological repli-
cates were set up. The collected samples were immediately
frozen with liquid nitrogen and stored in a freezer at —80 °C.

Analysis of volatile metabolites

The method for determining and analysing volatile metabo-
lites was consistent with our previous reportl?l. In brief, the
samples were ground into powder in liquid nitrogen, and then
1 g of the powder was immediately transferred to a 20 mL
Agilent headspace vial (CA, USA) containing saturated NaCl and
10 pL (50 pg/mL) [2H3]-B-ionone internal standard solution.
After 5 min of constant temperature at 100 °C, 120 um DVB/
CAR/PDMS extraction head was inserted into the headspace
bottle, and the headspace extraction was carried out for 15
min, and the sample was analyzed at 250 °C for 5 min. The
volatile metabolites were detected using an Agilent Model
8890 GC and a 5977B mass spectrometer (Agilent). The analyti-
cal conditions were set as follows: desorption of the volatiles
from the fibre coating at 250 °C for 5 min in the splitless mode.
The carrier gas was helium, and the linear velocity was 1.0
mL/min. The temperature of the injector was kept at 250 °C,
and the temperature of the detector was kept at 280 °C. Mass
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spectra were recorded in electron impact ionization mode at 70
eV. The quadrupole mass detector, ion source, and transfer line
temperatures were set at 150, 230, and 280 °C, respectively.
Mass spectra were scanned in the range m/z 50-500 amu at 1 s
intervals.

Detection of volatile compounds

Volatile metabolites were identified by comparing the mass
spectra with the data system library (MWGC or NIST) and the
linear retention index. Each sample was repeated three times,
and the data are expressed as the mean = standard deviation.
The concentrations of volatile compounds in tea plants were
quantified based on their peak areas and the peak area of the
internal standard compound. The bar charts were made by
Excel, and the line charts were made by GraphPad Prism 9.0.
Analysis of variance and significant difference analysis were
performed by SPSS 26.0. Principal component analysis (PCA) of
the identified metabolites was performed using the R package
(www.r-project.org). Based on the variable importance in
project (VIP) score obtained by the OPLS-DA model, metabo-
lites with VIP = 1.0 and fold change (FC) = 1.5 or FC <0.67 were
defined as significantly changed metabolites (SCMs). The calcu-
lation method for the odour activity values (OAVs) was the
same as that used in a previous study. OAV = C/OT, where C is
the concentration of the volatile compound and OT is its odour
threshold?2. Compounds with OAV =1 were considered
potential contributors to the tea aroma profile.

Transcriptome-based analysis of aroma component-
related pathways and differentially expressed genes

The transcriptome data was based on contemporaneous
data that we previously published!8l. All RNA-seq data are
publicly available in the BIG Data Center (https://bigd.big.ac.cn)
under project number PRJCA009753. Differential expression
analysis with DESeq2 software. Genes with |log,FC| 21 and p-
value < 0.05 were considered to be differentially expressed
genes (DEGs) by the DESeq2 R packagel?3!. All the genes assem-
bled by the transcriptome were compared with six databases
(NR, Swiss-Prot, Pfam, EggNOG, GO, and KEGG) to obtain the
functional information of genes, and the annotation of each
database was statistically analysed. Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses were
performed using the ClusterProfiler v4.0.0 R packagel? and
BLAST was set to e-value <10 5. For TPS gene, the hidden
Markov models of PF01397 and PF03936 were downloaded
from Pfam (http://pfam.xfam.org/) database, and HMMER soft-
ware was used to search the TPS gene family sequence. The
BLASTP of NCBI and Swiss-Prot was used to predict the possi-
ble function of CsTPS gene, and the threshold was set as E-value
< 1075 and identity > 90%. For transcription factors (TFs), all the
genes were annotated in the Plant Transcription Factor
Database (PlantTFDB v5.0) to determine whether they are TFs.
TBtools software was used to make a heatmap for visualization
of DEGs.

Gene coexpression analysis

Weighted gene coexpression network analysis (WGCNA) was
performed using the WGCNA R package. Genes with TPM > 1
and coefficient of variation (cv) > 0.1 were used to construct the
coexpression network. After filtering, the abundance of 11,222
genes and 20 metabolites was used to build a signed coex-
pression network by calculating Pearson correlations. The soft-
thresholding power of the correlation network was set to 14,
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the minimum module size was equal to 30, and the minimum
height for merging modules was set to 0.5. The module
networks were visualized using Gephi software.

Quantitative real-time PCR verification

cDNA synthesis and qRT—PCR tests were performed to verify
the reliability of the RNA-Seq data according to previous meth-
ods!?l. CsGAPDH (GE651107) was used as a reference control,
and the primers of validated genes were designed using
Primer3Plus (www.primer3plus.com). The primer information is
listed in Supplemental Table S1. All samples were analysed in
three biological replicates. The relative expression level was
calculated using the 2-24ACT method(26],

Results

The volatile components of seven tea cultivars

In total, 88 volatiles were identified by GC-MS in the seven
tea cultivars (Table 1), including alcohols (22), phenols (3), alde-
hydes (12), acids (5), terpenoids (13), ketones (7), hydrocarbons
(3), heterocyclic compounds (3) and esters (20). Alcohols and
esters accounted for 47.72% of the total aroma content, among
which geraniol, linalool, methyl salicylate and (E)-3-hexen-1-ol
acetate had higher contents. There were 19 volatiles with rela-
tive contents greater than 100 pg/kg. Geraniol and linalool
contain more than 1,000 ng/kg, accounting for 1%—-5% of the
total content. The total contents of volatiles in the seven tea
cultivars were in the following order: JX > FDDB > SCZ > FJSX >
LJ43 > TGY > BHZ.

The phenotypes of seven tea cultivars are shown in Fig. 1a.
The PCA score plot of the main chemical components indi-
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cated that the first two principal components explained 27.5%
and 21.3% of the total variance, respectively, and the cumula-
tive variance contribution reached 49.8% (Fig. 1b), which indi-
cated that PC1 and PC2 were selected to analyze the samples
with good reliability. The seven tea cultivars showed different
distribution characteristics in the PCA score plot: JX, BHZ, and
TGY were far away from other cultivars; FDDB and FJSX were
relatively close; and LJ43 and SCZ were relatively close.

The comparative analysis identified differences in the rela-
tive content of volatiles in the seven tea cultivars (Fig. 1c, d).
The volatile aroma substances with the highest contents in TGY
were mainly phenols. In particular, eugenol had the highest
levels of contents in TGY as compared to other cultivars.
Among these compounds, alcohols and esters were present in
the greatest numbers, indicating major contributions to aroma.
The content of alcohols and esters in JX were higher than in
other cultivar aroma types, nerol, geraniol, myrcene, (E)-f-
ocimene, J-cadinene and d-limonene had higher concentra-
tions in JX than other cultivars. Compared with other cultivars,
these aroma categories varied in FJSX was not abundant. Inter-
estingly, Jasmine lactone had the highest concentrations in
FJSX. The representative green tea cultivars showed higher
contents of alcohol and aldehyde. In the alcohol group, linalool
had the highest concentrations in FDDB than other cultivars,
(E)-nerolidol and (2)-3-hexenol had the highest concentrations
in SCZ than other cultivars. The content of aldehydes in FDDB
and SCZ than other cultivars, for example, phenylacetaldehyde
had higher concentrations than other cultivars. In the aldehyde
group, hexanal and butanal had the highest concentrations in
LJ43. It is worth noting that indole had the highest concentra-
tions in BHZ than other cultivars.
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Multivariate statistical analysis of volatile components of seven tea cultivars. (a) Phenotypes of one bud and two leaves and their

suitability. (b) PCA principal component analysis. (c) Types and relative contents of volatile components. (d) Proportions of volatile

components.

Gao et al. Beverage Plant Research 2023, 3:17

Page 30of 15


https://www.primer3plus.com/

Seven major tea cultivars in China

(PanuRUOd 3q 03)

17

Gao et al. Beverage Plant Research 2023, 3

Beverage Plant
Research

qe85°L ¥ 9'CC eVS'EF LV'6C e£0'9 +89°LC xqllCTF€98L pEEL F8YCL g€V € F ¥'SL p6l’L FE€8°L |euexsH St'S 1-G2-99 149
qll’'0F 060 qll'0F60°L g6l 0FSL'L q?C0F09°L ql¥’0F9lC q?C0F8L°C 0LV FCLEVL |eueidsH L9°L L-LL-LLL €€
q70'0+ 180 eCl'0OF6LL q71’0 980 qll’'0F ¢80 q£0'0 ¥ 690 qSL'0F 90 qL0'0 F 650 |eueda ov'ElL ¢lecil e

q66'0€ + 80°00£ p60¥L F 0'9S€ 5859+ 00°SEY eCECL F699V/ ,07°0 F £8'8L O L+FELLCL 8CLF LV66 apAyspjeiede|fusyd 69°LL 1-8/-CCl L€
0ECTF98CL qe€L0F LO'LL »qlTLF006 qlTLFTULS >80°'L ¥ /£1'9 »qLE0F0C'8 qe0L'0 786 apAyaplezuag /88 £-TS-001L  O€f
p>q9€0F LOY pLEOFILE 2CL0FE6'L qlE0FOLY g6l 0F 8EY 850 F66'S p>8Y'0 F STE |[eusxaH-z-(3) o'yl €-97-87/9 6C
elL'OFOL'L qeC00F L0°L >qCL’'0 ¥98°0 p>L0'0 F0L°0 5500 F ¢¥'0 pC0'0 F 290 p>L0'0F 590 apAyaplezuaqiAyia-¢ L9TL  €VS-9VTYE 8T
xqll'0FSL9 q98°0 F LT9 plC0F06°€ p>qS¥'0 F8C'S 0E€CF91°0L sLL'OF VL0 p8T'0 FSTE 69°€l G-ge-lecl Lc
q78'9 ¥ 69'6S 590°'L ¥8/°LE pS6'0 ¥ 0€°S qC6'L F0L°59 qC6'L ¥ 8709 eSCEF8E6 S9€°L FVE'ST sSSPl S-LT-lvl  9C
56C°0 F88°C SPL'0F €6'C SPLOF LLL 59600 ¥ 6°€ ql 'L ¥96'% 5CL'0F9L'L eS8l ¥ €98 (2) slousayd
JjouaydjAdoidosi
>8L'0F £80 5S1'0F 660 5CL'0F9L40 5qL0°0 ¥ ¢8'L q890F L€ 5LL'0F€0°L e8E'L FOV'S -p-AYIBN-€ eLsl ¢-C0-8Tce  S¢C
ql’0F 10C qt0'0 F16°L 5S0'0 ¥ §6°0 q€L'0F L9°L qt7’0F 8L 5l0'0F €£°0 e8S0FLL'E |ousbng Lol 0-€5-L6 144
OL€ESTF6'LE]'S pSTOSFOEVOL'Y  TOBY FLT900'T VL L6CF 8V VIY'L SVSE0CFITLI8Y olS6VLFLOBLY'L SLEVLFESTEO'E (€2) sjoyodly
jouelAd
>qC8'L FC¢L9€E S0€°L ¥ L9VE qSSCF LE6E 2660 ¥ ¥9'69 pS6'0F L6°CL q8SCFELOY p9€0F8LGL wv_vmw_oo_mc_.v_.@v ¥8'ClL G-8G-8C06€ €C
jouein
SLULTF LL66T q60'LE F61°801 pSSTL ¥ 968l 867 F 69999 SLL'SFOTLS 5SL'6L FSYLE SSEVFBELS mv_hm._oo_mh_w_-@ 0T'LL  T-LL-S66VE TT
(p1oueuny)
599°LL F €ECOEL q96'€l F69C0C pEL'9OF 6L V8 e89°€l +86'GSC STV F SYEY pCL'S ¥88°L6 280°L #659C 9pIX0 [00jeulT-(7) 060l €-€€-686S 1T
;0000 7000 ;0000 F00°0 5LLI0FC0'L sC0'0F 610 p70'0 F6£°0 q900F L9°L eCL'0OF¥ST [09A1B201PAYIPOSN-(+) 6C'SGL  L-€€-G/98l 0T
6C0F6L°L qEL0OFEVL qel'0F9L'L 3900 F99°0 pOL0OFELL 2p60°'0 F 060 p0L'0F60'L |[owsapn3-6-1da €6l £-18-1S0SL 61
ql6'LL F8L¥¥T eCSV F LEGOT 4009 F ¥6'EVT qe€L L F 16°LST qelt'8 FT8'LST Ll FOV'TVT qLTTF LY'IVT [oyodje Ajjiuep 60l 0-00-86% 8L
bV L FVL YL 2660 + 0€°0¢ pl80F86°LL 56L°L F €091 q08'C F S¥'EC 9C0+6lL slC0FSL°S |oluesab0s| €8°¢€l L-0C-vP6S L1
L0FL9L 5600 F8L°C 9OL0FL6°S 2EL'0F68L 580+ 0€Y e VOFCZELL p80°0 ¥ 80°€ |oulpe)-o 8L'Le S-¥E-187 9l
5qC00F L6°L >C00F¥9°L qeZ0°0F S0C 5800 F €9°L >qS€0FS8°L pll'0OFCCL 2S00 F CC'C |ouedap- | -|AxaH-Z €L1'ee 9-L[-ST¥vT Sl
qlTOFSL'L eLL'OFYET p>S0°0 F LT'L 2600 +9C'C 9L 0FTCL qCL'0F YL pEL'0F £L60 |O-1-USUON-€£-(2) €v'elL S-€T-0vc0l ¥l

SL8LF LS PL plZ’0+880L €S0+ LC9 eCC L F6LVC aqt¥’'L FGE'61 9T’ L F18°9¢C eC’0 +99°9¢C |osuidia]-» veel 1-9G-78¥0L €1

qCl'CFSLEL 5670 + 8901 0L LFSLLL e86'L F €061 plSOFLLE plT0+88'S plT0F €S9 joueldaH-1 €0'6 9-04-LLL ¢l

V0T F LTLE e80°'L +8S°LE ql€LFSLLT elL'0F 6C6C p9S°0 ¥ 659 650 F €E8 >E€'0F 00l |OUBUON-| 1744} 8-80-¢vL LL
q96'0 ¥ 98°C q€6'0F €L°L eE8'L F €SS q€90F LL'L qe€0'L F9€°€ q6€0F €8°L qlL’0FE€LT |oykydosioipAyag LLYT l-€Z-LL16C Ol

qel0'6 ¥ 0TSl qSV'7 F9€°9 e8€'8L F680€ qlEEF6CL qe82'9 F 0081 qe€8’L ¥ 796 qeP’EFGOLL 1034yd €9'1¢C £-98-06G1 6

qe96'E F8EVL qV8'EF €T8 eCL'8FTEYT €V TF VL q06'TFSSTL qCS'L F8T6 qlS'TFOE0L [o3kydos| 8L°€C 8-7€-S0S 8

q91'9€ + ¥€'689 pEL’'S F GT'BEE S99 L F oYLy elSLL F6L6EL 1600 F 617Gl 2lTLF961LL 2l89+1¥0'S6 [oyod|e |AyisjAuayd 69°L1L 8-Cl-09 L

p>qCO0F LL'0 5000 ¥ L0 plO0OFCL0 qe€0'0 FCC0 p>q€0'0F9L°0 €00 F9L°0 eC0'0 820 [oyodje |Aizusg 0sclL 9-16-00L 9

eL69C F ¥T'6CC q0Cy F10°0LL SEL'6 F6LEL q?8 0L F¥6'LL1L SCO'LLF LL6L V'L FT8EE p79°0 ¥ 06’V € |oUSXaH-€-(2) £99 1-96-8¢6 S
qOL'€ F6C°09 pb6L’0 F L8'SE JLE0F6TLL qSL'L F€L09 L0V F SV'61 ¥ L + 6GCTCL (90 F C¥'Ce |0JoN SLEL ¢-ST-901 14
e96'G F LOGLL q8C’€ ¥80£9 eV F6£/£01L p6S’L F90'vE qlL'SFL9CL 5980 F LLVS SSCCFELYS |Op!J0IaN-(3) 9/'61 €-99-91/0v €
PV TEL F LT8OV L  pg69'8L F96°TLT'L 2C6'VY F LO'8LY el9LOL F 60T pELLFTEILL OV VL F6E£8STL  pl8OLFO9CLOL loojeur 'Ll 9-0£-8L 4
58L'T9F8L0LST pbY LT F8LLTEL o7'0L +CL6ET SLV69 F L6'ELS'T  qLE08F VL LLOE e6'G8 F9€°€0LS p69'6v ¥ 06'8SE’L |oluelsn LTYL L-¥Z-901 l

Z0S a4l ZH4 gaa4d XSrd Xr ADL
spunodwo) uiwy 1y SYD al

(6/6M) spus1u0d SAnERY

"SIBAI}ND B3] USASS JO Syusuodwiod 3[11e[oA Y]  *| djqel

Page4of 15



Beverage Plant
Research

(Panunuod 3q 03)

Page 50f 15

17

Seven major tea cultivars in China

s L'L F6¥°L p6L’0 F 667 2ET0F 160 V'L ¥96'8 q66'0 97’8 eCVOF6LVL p>8€°0 ¥ 8E'S susuowri-p 6LCL S-/T-686S 89
3¢90 F8E¢E q86'0 F C09L p>0L'0 F 9¥'S apCl'0F 99V ap67'0 F 9LV 0L FE'19 5SL'0F LS9 sususwejed a6l CLL-E8Y L9
2p6S’0 F €G°G g7’ 0F L'0L 50£0+CL'8 2lC0F S99V p€S0F8599 V90 F €LY qOl'0F L0l ousJode[ed-v LS61L L-66-L6€ELC 99
2590849 q0L'0F66°LL pl¥’0 ¥ 61°6 alFOFCL9 apl60F8L°L eEL'CFLTEL SEL0OF66CL susulpe)-¢ oL'el 1-9/-€8%7  S9
SLECTFELYL pP9 L F¥E0L 307’0 F99°¢C q99°'L ¥ L8°/LL q90°L ¥ VL YL elS'0F EEEC pC60F 0L suale)- 166 £-€€-0S06C V9
YAAVED 2R p9L'0F €8S e€6'L FL8/LL SLTCLF 198 ql0C+80¢Cl p90'0 F Vv pLl'0OF S8V suauoaqunog-g 8,91 €-69-80¢S €9
70T F 6T LL 50€°L ¥5C'8 pOE0F TY'C qEEL F6LEL q890F9LCL elSO0F0CLL qCl'LFCCLL auduidia -4 8901 ¥-98-66 79
q86'CF £L10C S5CCTFT6CL V€0 F EV'C ql6'CFS8'EC q0SCTFLL'LC eS9°0 F LS'LE 500°L F9LvL UBWINO-0||Y S6'LL 0-96-91LZZ 19
q8CSTF ¥'SSL SVL'EL F ST66 plt' Y F T6'ET q€SLLF LVLL q9C’SL +86'LYL e8GE F L6'€9C 5C6'GF+9¢/0L UBWIO-9-(3) ol 1-19-6£.€ 09
q7£'0S F ¥6'€9€ 5§ EEF 650ET pLL'9F LYY qCSYr F Y19ty 8Ll LY FT8VLE VS LF L1699 SLUSLF YT QUIAN 6€'6 €-GE-€Cl 69
pl6’l FCOVC 2690 ¥ 09°CL eSL'L F98°EY SSEL ¥867L 95 LFSLCL q?S' 0 F6LVE 5C9°0 +8C'8C suasauieq-v 6,8l ¥-19-70S 89
p9C0F 9L 5610+ 050 q87'0 ¥ 678 SELOF VS Y p8C0 F¥0'C 0€0F L6VL V0 F0EVL aua|jAydoLied-¢ eV/LL S-vv-£8 LS
>CP'0F89°€ s¥0'0 ¥ 98°0 plT0F90°€E 2L00F61°L P00 FOL'L qll’'0OF €9F 20’0 859 [usINwnNH-v 908l 9-86-€5/9 9§
,LLT T 816€E s0L°0F LEST qC6'0 F £5'8S pCETTF LOLE 6L L FYTTT ¢86°0 T 7L'S9 LY LFEL0T (€) spunodwiod d112A>04330H
PO+ €TV q6l'0F0L'6 >¥C’0 +88'S eS6°L F LEVL 5670 F LSV qC6'0 F860L 5S00+C6'E sueuidseay| (44} 8-CL-LEV9E  SS
ql9'0F 050l BV 0FEVLL 9850 F8C0L q€S0FSLL VS L FL9LL e7€°0 + 8E'8L eSY'L F 1891 ulewnod ULl S-v9-16 S
SOV CF SL YT 2C90+8LL 9L F LYY p8L0F8LL ;0000 ¥ 000 q€C'L F9€°9¢€ ;0000 ¥ 000 Sopu| S0'SlL 6-¢L-0Cl €S
66'CF LT qel L F¢2L0C eE0CFVLLC qe9S'CF+6'81L qel9€F PS5Ol q60'L F¥0'SL qe6S0F £0°LL (€) suoqued0IpAH
e09'L ¥ /96 9L’ 0F LT'8 qe99'0 ¥ 05°8 >q05°0 F9€°9 >qelETF 169 SCLOFEL'S 5CLOF LG9 duedspuykyldwnl-0L'9'c €08l +-66-168€ S
qe8'0 F LTL 0L0F V'8 qeS6'0 F 8L qeO¥'L F¢8'L OV 0F LC9 qvS'0 F £8'S qe€¥'00 ¥ 0€°2 auedopens] L6991 ¥-65-6¢9 LS
950 +9Ct eVSOF LY e89°0 + C8Y EELFELY 06’0 F L¥'E 80+ 0V V€0 F GCE suedspexsH L¥'0C €9/¥¥S 0§
Y F EEL0L >qCL’0 F S961L xqEL’LF LOLSL qe9C9 FC0CSL sl ¢l F€S0SL qe6C’ € F L¥'SSL SOV FCLSEL (£) ssuoi1ay
>LE0F C0'6 pPL'0OF LL9 VCTOF 8L pEL'0F8SL q09'L F9Cvl eSZ'0FS08L SSL0OFLOL auouddseweq-g €99l ¥-€6-9CLET 6V
e6E0F EVCL SESOF V8L qlV0F €S°6 9C0+8L'S 8COF VY al90F6LY pSE0F¥9°9 suowser 7891 8-01L-887y 8¥
qP¥’0 F 590 QS LF8LT qllvFT6' qvE0 F 80 qel6'T F 959 q89'L F 6L ELEFSSLL suolnyl-¢ 9Ll 8-Sl-LLy LY
pl90F LSS SLCOFLLY 0L'0FSL6 a0+ S0°L ql9'0+ 0,9 pLE0F 8P xqlC0F 109 auolly 0L'€c ¢-69-70S 9
qe6l0F EV'LL >q50°0 +85°0L qe6l’'0F6L°LL 5LS0F £L00L 5qel0'L FGL°LL 67’0+ LOCL >q0€'0F £9°0L suoidejfuessn 6LLL 8-/9-689 S¥
eCSCFBLYLL qeSOC F €7'801 qe8CY FSTLLL q95'G F8¥'€0L SVELF E6'C6 >L8'0F L6'06 VL FTL8 auouol-¢ 6€'8L 9-LL-6L 144
OCCF LLYL pP9'L F¥E0L EV'0F09°C q99°'L ¥ L8°/LL q90°L F L 7L eS'0 F 8C'EC 880 F S0°CL SUouo|-» 6’6 3l A VA4 . 3 4
eEV'TEFVOOLE 6591 F £1790C q€9'0C ¥ C€981L ql1'0C ¥ #8061 qel 'LV +9°08C e€G'LL ¥ 6580€ qe80'LE F L¥'0€C () spPY
eLLVCF LLLY eEE8L F 6619 e6V'€C F95°59 e€9' LT F LE0S e/S'8TF61°68 el LEFT86L eCL 9T F EL°S9 pioe djouedoud soclL 7-60-6L ¥
qeSY'0F LS'L qe?S'0 ¥ 559 0Ll FCL'8 e/l +00'8 eC0'L 408 qeSY' L F¥L'L q€90F 6’ pioe dloueluad 8yl -¢S-601 Ly
p>qC8'9 F #8701 >qebV CF 1 LLL p87'S ¥ LE'B6 pqSSEF LTLOL qe88'G F L8'GLL p0E'S F69°10L e86'0 F68°6L1L pe djoueiday 69°ClL 8-vL-LLL OF
qe07’0 ¥ ¥9'v b7’ 0F LGE elVOF LSS qel90F 6EY qeS9°0 ¥ 087 qell L FSVY 599'0 +8S°¢C pioe SloueuoN 8yl 0-S0-¢Ll  6€
eS6'L1 F8BLEL 6V CF 6961 5$8'CF 88 xqlS€F18°0C ql8'E€ECFVLC9 elO'EEF OV GLL >q8C'6 F¥6'LE pidedlueisn 09l €-08-6S% 8¢
¢80'9S ¥ 66'806 ql8'8 F65°TSS qS9'8C ¥ L1°08S eLV'TL ¥96'6C6 p96'€ ¥ LOVLL >€6'8 F SLV0E >CV'6 FGL°E9€E (¢1) sepAyaply
eS6'LL FSL'6E e60°L F S9°SY qe68'8 F 8E'VE qe9'S ¥ 00°LE IV'SF6LEE 69 L F LL'LT eSY'L ¥ 88'8Y apAyap|esa|enos| €0'S €-98-065 L€
eSLSFSLOY qCCLFELLE RS TFCSEE 599'L F LTYT 9LTFIVEL po88°L F¥8°0C pELLF LY YL apAysp|esafen €8y €-79-0LL  9¢
99T F £9°LT e8E'E F 8E'8C eCE'S F 99T 5qL9L F E€S9L pESLF6SLL p2q99°€E F LOPL pOE’L ¥ 659 |eueing St's 8-7/-€TL  SE
Z0S €vr ZHg 4aa4 XSrd Xr ADL
spunodwiod uiwy/ 1y SYD al
(B3/6M) s3ua3U0d dANERIRY
(PeNuUnUOd) *L 3jqelL

Gao et al. Beverage Plant Research 2023, 3



Seven major tea cultivars in China

*3WI} UONUDIDI :1Y “(S0'0 > d) SI9N13] JUIBHIP Aq paiuasaldal aie sdnolb snotiea Buowe sadUBIBHIP JURDLIUBIS *(S) UOIIRIASP pIepuRlS F UBSW Sy} Se UMOYS dJe Blep ||y

17

Gao et al. Beverage Plant Research 2023, 3

Beverage Plant

Research

5qSTYOTF LOL6S' L LELIOFTVS6Y' L  SETEOL FLTTYE L STEVLLFSOLGE'L oSYEBLFEVOVLL o8ELSL F LSVLY'T plLl’LCF SCTY0S (07) s19153
SLE9Y F G9°E8Y 59C0EF9L9LS qlS Ty F CTYIL 5EG°SL F £9'861 pEC9E F¥1'L0€E eE8'LEL F£°680°C pCL'TT + L8'16C a1e|Aoyjes Ayisy 6L€EL 8-9¢-6L1 88
ql9'L F6L°SL ql¥'v ¥ 39801 6V F 10°LC q68'L ¥ €£'8 qll’LF0SClL ql0CF9CEL q90CF L8ClL aeuowsef Ayl vCee 9-6C-LLCL /8
5L6'CF L'9E €€ L FVLEY pP8L F9L°CC p¥6’L F LT9C eLS°9 F99°9L pC6'0 F EC'EC sLL'OF PE'S ouojoe| sulwisef L5791 ¢-S6-¥CSST 98
pll'OFCS'L pC0'0F9€°L q9€0F L' p8L'0FS9°L 9ELF09L1L SLI0OFLE 5000 ¥ 000 auoe| suowseloipAyig /L9l 8-€8-110L S8
5SSO0 F 20 pC0'0 F 640 pC0'0 F8E0 SLO0OFEL0 4610 F £0'L OO F 'L qL0'0F L60 a1e1ade|fuayd |Azuag verL  6-91-20L  ¥8
91e0zUagAXOYIBW
plL'0F £60 pC00F LOL 200 F V0 >80°0 ¥ ¢0'C q9C'0F00°€ 200 7950 e0T'0 F0€'L -z 1Ay LLSL L-G¥-909 €8
900 F 'L pEO0F 0L pL00F VL'L 5qZ00 F¥EL qCL'OFSEL e8L'0FSST 2l0'0 %900 a1eisuAw [Adoados 96'CC 0-£z-0LL 8
pLT0FTST p8L'0F96°L ql¥'0F S8°€ 5qS7’0 + 00°€ q€S0FS6'C €S0 F OV pCL'0OF LLT d1eozudq [Azuag 95°C¢C -15-0Cl 18
SPS0F 6L 5qLLl'0F65°C q90°'L F 6EY 5q67'0 F6£L°C e87'l ¥ 988 pLCTO0F LS p000 ¥ 00°0 a1e1ade |AxaH 8.6 [-Ct6cyl 08
5p80°0 F8L°L 2pS0'0 ¥ £60 q6€0F L6V p6L°0F9S°L eECL FVV6 SSL0F LLT 500'0 ¥ 000 d1eouexay |AxaH cL9l -6¥-150C 6L
o789 ¥ G8'C€E >qS6°L F¥8'8L e66°CL F €5°05 >0V F8€E'GL 5q6L"L F LEVT >q99°€ ¥ 98'CC €8V F £C°9C 811908 |A|[pU0NID LO'EC S-¥8-0S1L 8L
>LL0F 6901 FCOF8YL 2p60'0 ¥ CO'E pl00F O’ 89 CF eEC e80°'L +9£°8C p8L'0FELE a1euessb |Ay1sy 1SSl 6-60-68LL /L
pEL0FSO'L >S00FGLC qlS0FCEE pCE0F 68°L 2680 ¥ 0€'S 0L'0F 190 5500 F €C°0 a1es3(en |[AUSXaH-€-(7) 06'€l  L-9¥-7S8SE 9/
BTN L [TATAETTY]
5800 F €S0 q90°0 ¥ £8°0 pC00F 870 pC00F LC0 eSLOFECL pC0'0FCC0 500'0 ¥ 000 -7 |AuaxaH-¢-(2) (4254} 6-98-86€€S S/
q€SV F LSVE ql9'L FSL'6€ (8L F 18Tl pEY’L FEOTL e¥S'8 ¥ 86'€8 Shr'L F0v'0¢ pl¥’'0F0C6 a1eifinqos! [AusxaH-¢-(z)  66CL L-€T6LSLY YL
plC0FCCC 9OL'0F8LE qlE0F8CY >CE0FOP'T €S0 F S5V /00 + 09 plO0OFCL0 alejfdijes |[AuaxaH-¢-(7) ¥8C¢  8-L/-S0vS9 €L
ql6'0F ETE >00'0 ¥ 000 e€8'L F£0L 5q07'0 F V€T eCV'L ¥86'8 qSL0F 8L 500'0 000 91e1938 [AUSXSH-Z-(3) 86 6-8L-L6VC TL
5L6'CF 109€ q9C L F L9EY p98°L ¥ ¥0°CC p80°C ¥ 00'9¢C 999 FGL'9L p980 FSL'EC 0L0F LTS 91eouexay |Aua-g-xay-(3) 1591 8-11-1L0SLE L
91e0UIXAY

eGS'E F80'VS SE0'L FLL'ET p€E0F€0L qtC’€ +85°8Y a8V’ CF €69 p0S'0F9L°0L p80°0 ¥ 0601 -€-(2) 1AuaxaH-€-(2) 7991 0-8€-¥¥l9 0L
S TLLFLTLLS eCL'TY ¥79°186 >C'6L F T'86€E ql9T6 ¥ 51°069 e6LL F €6'0€01L p>06'SL FT8'ETT pSY L F80'GTL  91e13E [O- | -UdXIH-E-(T) 96 1-78-189¢ 69

qlC’68 F86'0¢9 5¥0'9S F ¥1'0EY pELL FEBTLL q6S'L9 ¥ 67°60L q€l’LS F£0°ST9 e€0'GL FCE'L8CL S8 VYT F 'Sy (€1) sprouadia

Z0S 1340 ZHda aaa4d XSfd Xr ADL
spunodwiod uiwy/ 1y SYD al
(B3/6M) s3ua3U0d dANERIRY
(PeNuUnUOd) *L 3jqelL

Page6of 15



Seven major tea cultivars in China

Analysis of differential volatile components of seven
tea cultivars

A total of 54 significantly changed metabolites (SCMs) were
identified in seven tea cultivars (Fig. 2). Specifically, the study
found that the proportion of up-regulated terpenoids was
highest in JX, while the proportion of down-regulated
terpenoids was highest in BHZ. Among the esters, the propor-
tion of up-regulated compounds was highest in FJSX, while the
proportion of down-regulated compounds was highest in TGY.
Additionally, the content of three phenolic compounds was
significantly up-regulated in TGY, and the content of alcohol
compounds was significantly up-regulated in FDDB.

Furthermore, the study conducted a more detailed analysis
of the compounds with significantly increased content in each
tea variety. In TGY and JX, the content of f-caryophyllene and
a-caryophyllene was significantly higher than in other cultivars.
The highest proportion of eight ester compounds was found in
FJSX. Phenylethyl alcohol and phenylacetaldehyde levels
showed significant variation in seven cultivars, with the high-
est levels found in FDDB. In SCZ, LJ43, and BHZ, the content of
(2)-3-hexenol was significantly up-regulated. In SCZ and BHZ,
the levels of (E)-nerolidol and jasmone were significantly up-
regulated. Finally, the content of indole was significantly accu-
mulated in JX and BHZ, while the levels of a-farnesene and
methyl jasmonate were significantly higher in BHZ than in
other cultivars.

OAV value of differential volatile components in seven
tea cultivars

The odor activity values (OAVs) of the identified volatiles are
shown in Table 2. A total of 26 volatiles were determined to
have OAV > 1 in tea samples, of which two volatiles had OAVs =
1000. The OAVs of p-damascenone (OAV: 503.45-9026.77), f-
ionone (OAV: 1245.71-1631.16), geraniol (OAV: 31.96-680.45),
linalool (OAV: 79.68-410.85) and phenylacetaldehyde (OAV:
4.74-186.67) were higher than those of other compounds, indi-
cating that they played significant roles in the aroma of the
seven tea cultivars.

There were 21 volatiles with 1 < OAV < 100 in tea samples, of
which eight volatiles (phenylethyl alcohol, heptanal, decanal,
isovaleraldehyde, a-ionone, myrcene, (E)-3-hexen-1-ol acetate,
methyl salicylate) had OAVs =10. Importantly, we found that
heptanal was abundant in TGY with OAV > 1. In total, 13 volatile
compounds had OAVs > 1 in tea samples, of which (2)-3-
hexenol (SCZ, FDDB, LJ43), (2)-linalool oxide (FDDB, LJ43), and
jasmone (SCZ, BHZ, LJ43) had OAVs = 1. In addition, indole was
determined to have OAVs > 1 in BHZ.

Differentially expressed genes (DEGs) related to three
volatile synthesis pathways

Terpenoids, unsaturated aliphatic compounds and aromatic
compounds are the main aroma components of tea. To explain
the mechanism of up- or downregulation of SCMs in seven tea
cultivars at the molecular level, we identified DEGs in relevant
biosynthetic pathways.

For the terpenoid volatiles synthesis pathway, a total of 20
DEGs and 40 TPS genes were involved in Mevalonate pathway
(MVA) and 2-methyl-D-erythritol-4-phosphate pathway (MEP),
and six DEGs were involved in the carotenoid metabolic path-
way (Fig. 3). Among them, HMGR (CsTGY05G0000313) and
HMGS (CsTGY01G0002862) were significantly upregulated 5.55-
and 5.46-fold in JX and SCZ, respectively. CsHMGR (3-hydroxy-3-
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Fig. 2 Analysis of differential volatile components of seven tea
cultivars.

methylglutaryl coenzyme A reductase) and HMGS (3-hydroxy-3-
methylglutaryl-CoA synthase) are key rate-limiting enzymes in
the MVA of the terpene derivative pathwayB'. LIS/NES
(CsTGY08G0001704) and NES/GIS (CsTGY08G0001826) were
significantly upregulated 3.09- and 4.7-fold in FDDB and BHZ,
respectively. LIS/NES (linalool/nerolidol synthase) and NES/GIS
(nerolidol/geranyl linalool synthase) are the key enzyme in the
biosynthesis of linalool and nerolidol. (E)-nerolidol has clean
and floral aromas, linalool has the fragrance of rose and fruit,
and its oxidized products have woody, floral, and camphor
odours, which are the main aroma components of teal®l.

For the a-linolenic acid metabolism pathway, 29 DEGs were
involved in the a-linolenic acid metabolism pathway (Fig. 4),
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Table 2. OAV values of differential volatile components in seven tea cultivars.

Seven major tea cultivars in China

Relative OAV value

Volatile Aroma Aroma thresholdst*?7~3

components characteristics (ng/kg) TGY X FJSX FDDB BHZ LJ43 sCz
Geraniol Rosy, sweet 7.5 181.19 68045 40237 343.19  31.96 176.24  334.77
Linalool Floral, fruity 6 168.78  209.73 18439  410.85 79.68 202.16  234.71
(E)-Nerolidol Floral, citrus 15 3.65 3.65 4.84 2.27 7.16 4.47 7.67
Nerol Rosy, orange 49 0.46 1.47 1.01 1.24 0.23 0.73 1.23
(2)-3-Hexenol Fresh, grassy 110 0.32 0.31 0.72 1.62 0.67 1.55 2.08
Phenylethyl alcohol Floral, rosy 45 2.11 2.55 0.34 16.44 9.21 7.52 15.32
(2)-Linalool oxide Sweet, floral 190 0.14 0.52 0.23 1.35 0.45 1.07 0.69
(furanoid)
(E)-Linalool oxide Sweet, floral 190 0.43 1.66 0.43 3.51 1.00 2.15 1.57
(furanoid)
Neral Sweet, fruity 53 0.48 1.77 1.14 1.24 0.10 0.71 1.13
Decanal Sweet, citrus 0.1 5.90 6.38 6.93 8.20 8.60 11.89 8.13
Heptanal Fatty, citrus 10 14.31 0.22 0.22 0.16 0.12 0.11 0.09
Benzaldehyde Almond, nutty 3 3.27 273 2.06 2.91 3.00 3.69 4.29
Phenylacetaldehyde Woody, sweet 4 24.85 30.28 4.72 186.67 108.75 89.10 175.02
Hexanal Fresh, fruity, fatty 4.5 1.74 343 277 4.14 6.13 6.55 4.99
Valeraldehyde Almond, malty 12 1.20 1.74 1.12 2.02 2.79 2.59 335
Isovaleraldehyde Fruity 4 12.22 5.28 8.30 9.25 8.59 11.41 9.79
a-lonone Violet, woody 0.4 30.13 58.20 36.75 44.53 6.50 25.85 35.27
p-lonone Violet, floral 0.07 1,245.71 1,299.60 1,327.56 1,478.32 1,589.21 1,549.00 1,631.16
Jasmone Jasmine 7 0.95 0.68 0.61 0.74 136 1.12 1.78
p-Damascenone Rosy 0.002 503.45 9,026.77 7,127.53 3,791.88 91192 3,053.12 4,509.23
Indole Floral 40 - 0.91 - 0.29 1.06 0.19 0.62
(E)-p-Ocimene Floral, grassy 34 3.16 7.76 435 5.12 0.70 2.92 4,57
Myrcene Fruity, balsamic 15 16.10 44.61 24.99 2841 294 1537 24.26
(E)-3-Hexen-1-ol acetate Fruity, grassy 31 4.03 7.22 33.26 22.26 12.85 31.67 28.10
Methyl salicylate Herbal, minty 40 7.37 52.14 7.68 12.47 19.11 12.90 12.09
Methyl jasmonate Jasmine 3 4.27 4.42 4.17 291 9.00 3.62 5.06

'~'indicates that the OAV value cannot be calculated.

mainly including acyl-CoA oxidase (ACX), OPC-8:0 CoA ligase
(OPCL), allene oxide cyclase (AOC), lipoxygenase (LOX), and
alcohol dehydrogenase (ADH). Among these genes, ACX
(CsTGY04G0002749) was significantly upregulated 3.76-fold in
FDDB. OPCL (CsTGY07G0001858) was only expressed in SCZ.
AOC (CsTGY01G0003195) was significantly downregulated
2.35-fold in FJSX, and ADH (CsTGY09G0001886) showed higher
expression in TGY and FJSX than in the other tea cultivars. ADH
(alcohol dehydrogenase) is a key enzyme responsible for the
biosynthesis of the key volatile C6-compounds in green tea
leaves, which are important precursors of tea aromalBZ. In
particular, (2)-3-hexenol has grassy odor, (E)-3-hexen-1-ol
acetate has grassy and fruity aroma, among which the former is
considered to be the main source of green tea aromal®3l,

To deeply investigate the mechanisms that regulate the
biosynthesis of phenylpropanoid/benzenoids in tea plants, we
thoroughly studied the DEGs in the pathways (Fig. 5). In total,
11 DEGs were involved in the phenylpropanoid/benzenoid
synthesis pathway, mainly including catechol-O-methyltrans-
ferase (COMT), caffeoyl-coenzyme A O-methyltransferase
(CCoCOMT), alcohol dehydrogenase (CAD), eugenol synthase
(EGS), and benzoic acid carboxyl methyltransferases (BAMT).
Among these DEGs, COMT (CsTGY08G0002131), CCoCOMT
(CsTGY06G0000958), and CAD (CsTGY04G0002121) showed the
highest expression in TGY and were significantly upregulated
3.77-, 7.75-, and 4.63-fold, respectively. COMT, CCoCOMT, and
CAD are involved in the biosynthesis of eugenol, which is the
main aromatic component of cloves and orchids, with clove
aromalB4. In addition, EGS (CsTGY01G0002412) was signifi-
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cantly upregulated 3.93-fold in JX; BAMT (CsTGY03G0002449,
CsTGY03G0002452) was significantly upregulated 3.99- and
52.52-fold in BHZ.

Coexpression network related to key aroma compound
formation

To understand the gene regulation mechanism of aroma
biosynthesis, we correlated 11,222 genes and 20 SCMs were
used for WGCNA. After merging similar modules, 14 modules
were generated, which comprised 95 to 2,503 genes. Figure 6
showed the correlation between 14 modules and 20 character-
istic volatiles. Modules with larger correlation coefficients and
smaller p-values are highly correlated phenotypes (r 20.7,
p-value < 0.05). Among these volatiles, the brown module was
significantly correlated with (2)-3-hexenol and (E)-3-hexen-1-ol
acetate (r = 0.825, 0.755); the blue module was significantly
correlated with S-caryophyllene (r = 0.81); the pink module was
significantly correlated with linalool (r = 0.793). The results indi-
cated that these modules play an important role in aroma
biosynthesis in fresh leaves of tea plants.

To reveal the complex transcriptional regulatory network of
aroma formation, genes from four modules were analysed,
resulting in the identification of CsSHMGR (CsTGY04G0000045),
CsDXS (CsTGY02G0002953), and CsTPS (CsTGY05G0001285)
genes in the blue module, two CsLIS/NES genes
(CsTGY08G0001704, CsTGY08G0000359) in the pink module,
and CsMVK (CsTGY05G0001238) and CsADH
(CsTGY09G0001879) genes in the brown module. When r > 0.8,
there may be a strong relationship between the two nodes.
Therefore, transcription factors (TFs) were screened from blue,
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pink and brown modules. Transcriptional regulatory networks
were constructed with the above genes (Fig. 7).

In the blue module, there were 23, 9, and 19 TFs that were
significantly correlated with CsHMGR, CsDXS, and CsTPS, respec-
tively. These TFs may be directly or indirectly involved in gene
expression and f-caryophyllene biosynthesis in fresh leaves.

MYB (CsTGY01G0002788, CsTGY02G0001042,
CsTGY04G0002761, CsTGY06G0001034, CsTGY14G0000893),
bHLH (CsTGY03G0003180), and NAC (CsTGY07G0002415)

showed the strongest relationship to CsHMGR (r > 0.9); TCP
(CsTGY04G0003490) and HB-other (CsTGY07G0002073) showed
the strongest relationship to CsDXS (r > 0.9); TCP
(CsTGY04G0003490) and HB-other (CsTGY07G0002073) showed
the strongest relationship to CsDXS (r > 0.9); NAC
(CsTGY13G0001061), HB-other (CsTGY01G0003094), and bHLH
(CsTGY12G0001520) showed the strongest relationship to
CsTPS (r>0.9).

In the pink module, three and eight TFs were significantly
correlated with CsLIS/NES, respectively. Among them, bHLH
(CsTGY06G0000306) and WRKY (CsTGY10G0000752) showed
the strongest relationship to CsLIS/NEST (r > 0.9); MYB
(CsTGY15G0001797), ERF (CsTGY12G0001243), bHLH

Gao et al. Beverage Plant Research 2023, 3:17

(CsTGY12G0001940) and bZIP (CsTGY09G0000052) showed a
significant positive correlation with CsLIS/NES2 (r > 0.8).

The brown module identified seven TFs, and these TFs may
be involved in the regulation of CsMVK and CsADH genes. B3
(CsTGY07G0001850) and NAC (CsTGY07G0000158) showed a
significant positive correlation with CsMVK (r > 0.8); MYB
(CsTGY01G0001203, CsTGY04G0001918, CsTGY06G0002545),
C3H (CsTGY15G0000151) and GRAS (CsTGY14G0002018)
showed a significant correlation with CsADH (r > 0.8). These
results suggested that the TFs above may be involved in regu-
lating the characteristic volatile components and their key
genes in fresh leaves of tea cultivars.

Analysis of DEG expression level by PCR

To verify the accuracy of the transcriptome data, the tran-
script abundances of eight selected DEGs were analysed by
gRT-PCR. In total, four DEGs in the terpene synthesis pathway,
two DEGs, and two TFs in the LOX pathway were identified
(Fig. 8). The relative expression of gRT-PCR was consistent with
the trend of RNA-Seq, indicating that the transcriptome
sequencing results could be reliable.

Page 9of 15



Beverage Plant
Research

Seven major tea cultivars in China

o-Linolenic acid metabolism pathway

(a-Linolenic acid)

[ | [ | CsTGY08G0000712
[ B GsTGY1IG0000335
CsTGY11G0000449
- 13-LOX --

[ ] [ GsTGY1IG0000450
20-15-10-0.5 0.0 05 10 15 2.0 2.5 -- CsTGY11G0000451
[TTTTTT] 13S-Hydroperoxylinolenic acid
& \‘\'Q\%“;Qo@ SR I

A0S l- CsTGY03G0000213
HPL
12,13-EOT
CsTGY01G0003195
D <«—> (E)-3-Hexenal <—> (Z)-3-Hexenal A0C L
(E)-2-Hexenal () @) [ | | CsTGY02G0000431
| 4DH PODA
B CsTGY08G0001877 [ CsTGY03G0000845
[ | CsTGY09G0001878 OFR N CsTGY03G0000846
ADH || CsTGY09G0001879 ADH [ CsTGY09G0001540
-- CsTGY09G0001883 - - CsTGY09G0001542
- CsTGY09G0001886 . CsTGY09G0001542
CsTGY09G0001887
- l’ OPC-8:
- CsTGY07G0001858
(E)-2-Hexenol (E)-3-Hexenol (Z) -3-Hexenol orcL! | IR CsTGY11G0000579
AAT AAT CHAT OPC8 CoA

B CsTGY04G0002749
Other 6-C ester (E)-3-Hexen-1-ol acetate  (Z) -3-Hexenyl ester = --- ?;gi zjzgzzzjjz

ACX S
| CsTGY07G0001244
[ | CsTGY10G0001886
|| CsTGY12G0001693

Jasmonic acid

Jmr | B CsTGY04G0000285

Methyl Jasmonate

Fig.4 Expression profiles of genes related to the a-linolenic acid metabolism pathway.

Discussion

Tea plant cultivars possess distinct genetic and biochemical
characteristics, which largely determine their suitable tea
species and quality3. In previous studies!'8], we have found
that the contents of catechin and purine alkaloids in TGY, JX,
and FJSX were higher, the contents of sweet amino acids and
sugars in FDDB were higher, and the contents of free amino
acids and nucleotides in suitable green tea cultivars were
higher. In addition to non-volatile metabolites, volatiles are also
particularly important for the formation of tea quality. Aromatic
substances in fresh leaves are the material basis for the forma-
tion of tea aromal3¢l, Tea cultivars play an important role in the
chemical compositions of fresh tea leaves and the enzymatic
activities of aroma volatile-related enzymes37.. Therefore, we
further analyzed the volatile components of these seven tea
cultivars to explore the reasons for their unique flavor from the
raw materials of fresh leaves.

Each tea cultivar possesses its own phenotype and charac-
teristic metabolites, some suitable for processing green tea,
white, black, or oolong tea. The abundance of terpenes in fresh
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leaves plays an important role in the aroma quality of tea,
which usually has an attractive floral and fruity aromal®8l. High
ratio of terpenoid volatiles to green leaf volatiles could be
regarded as a good indicator in screening cultivar for suitably
producing high quality oolong teall. The terpenoids in TGY and
JX accounted for about 72% of the total contents, we specu-
lated that this may be one of the reasons for their suitable
preparation of oolong tea. Furthermore, the eugenol®4 and
heptanal28! may contribute to the fruity and flower characteris-
tics of TGY, and methyl salicylateB], (E)-f-ocimenel3], and
geraniol?”l may be beneficial to JX tea aroma. During process-
ing, Zeng et al.B% found the GLVs and monoterpenes have rela-
tively large changes in JX, the content of homoterpenes
changed sharply in TGY. The differences in in gene expression
regulation may all affect the production and concentration of
terpenes in plantst“9l. The content of esters in the fresh leaves
of tea plants was only lower than that of alcohols, among which
jasmine lactone is the key volatile component that gives
oolong tea its fatty, dairy and floral characteristics®], which may
play an important role in the aroma formation of FJSX. Tea
aroma intensity was significantly related to the contents of

Gao et al. Beverage Plant Research 2023, 3:17
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Fig.8 Verification of the expression levels of eight differentially expressed genes.

esters in tea leaves, and the higher the content, the better the
quality. The triploid tea plants increase the gene dose due to
the doubling of chromosomes, and the amount of transcrip-
tion and expression products will inevitably change accord-
ingly®’l. The doubling of chromosomes first leads to changes in
the genomic structure, resulting in the re-regulation of gene
expression and changes in gene expression levels. The results
may be related to the fact that FJSX is the triploid tea resource.
Phenylethyl alcohol, phenylacetaldehyde, linalool, and its
oxidized products were the main volatiles of white teal*?, we

Page 12 0f 15

speculated that the significant accumulation of linalool and
linalool oxide content in FDDB may contribute to the clear and
fresh characteristics of the white tea. Aromatic alcohols with
floral and fruit aromas were not abundant in the fresh leaves of
tea plantsl', among which phenylethyl alcohol and phenylac-
etaldehyde may be the main material basis for white tea and
green tea to have mellow aroma quality®®. Green tea has a va-
riety of flavour characteristics, such as scent types of floral,
fruity, nutty, chestnut-like fragrances, and so onl3l. (2)-3-
hexenol could play a determining role in the 'raw grass' odour

Gao et al. Beverage Plant Research 2023, 3:17
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of finished green tea due to its overly strong and sharp green
aromal*¥, and (E)-3-Hexen-1-ol acetate has a grassy and fruity
flavorBY, The contents of these aroma components were
higher in cultivars suitable for green tea, which may be closely
related to the aroma formation.

The biosynthesis of terpenes with floral and fruit aromas is
catalyzed by TPS enzymes via either the MVA or MEP
pathway™l. Our previous study®3% showed that CsTPS have
different functions in the synthesis of terpenoids. Studies have
found that CsLIS might be involved in the regulation of linalool
accumulation in the tea manufacturing processB%, and CsNES
were highly expressed in oolong tea during tea turning (E)-
nerolidol  accumulation®®. In  this study, CsLIS/NES
(CsTGY08G0001704) might be the key gene affecting the accu-
mulation of linalool in FDDB fresh leaves, and CsNES/GIS
(CsTGY08G0001826) were significantly upregulated in BHZ
which might be related to the higher content of (E)-nerolidol.
Volatile aliphatic components were biosynthesized from
linoleic acid and linolenic acid via the lipoxygenase (LOX) path-
way371, Studies have confirmed that COMT, CCoCOMT, CCR, and
CAD are involved in the biosynthesis of eugenol“-5%, Qur
results showed that the expression levels of CsCOMT
(CsTGY08G0002131), CsCCoCOMT (CsTGY06G0000958), and
CsCAD (CsTGY04G0002121) may be closely related to the
biosynthesis of eugenol in TGY.

AP2/ERF, bHLH, WRKY, MYB, NAC, and bZIP were the
common TF families that regulate terpenoid synthesis'l. Based
on WGCNA study, we speculated that bHLH, MYB, WRKY, and
NAC TFs may play an important role in inducing the synthesis
of B-caryophyllene by regulating CsHMGR (CsTGY04G0000045),
CsDXS (CsTGY02G0002953), and CsTPS (CsTGY05G0001285). In
Arabidopsis thaliana, the induction of TPS27 and TPS117 results in
increased emission of sesquiterpenes, especially (E)-f-
caryophyllenel®2l, Overexpression of CoMYC2 and CpbHLH13 in
Arabidopsis thaliana and tobacco can promote the synthesis of
linalool and B-caryophyllenel>3:54, Our study also identified that
CsbHLH (CsTGY12G0001520) was annotated as MYC2, which
may related to S-caryophyllene accumulation in fresh leaves by
regulating the expression of the CsTPS (CsTGY05G0001285). In
grape berries, VINAC, VtC2C2-GATA, and VtbHLH were involved
in the synthesis of linalool by regulating TPS genesl’l. TFs such
as bHLH, WRKY, NAC, and ERF were directly involved in the
regulation of linalool synthesis by binding with promoters of
CsLINBOL Transcription factors play an essential regulatory role
in the growth and development of tea plants and complex with
other transcription factors to regulate plant secondary
metabolism[5l. In Freesia hybrida and Arabidopsis thaliana,
AtMYB21 and AtMYC2 were confirmed to participate in linalool
synthesis by interacting with each other to form MYB-bHLH
complex to control the expression of linalool synthase genest®!.
In this study, bHLH, WRKY, ERF, and MYB were involved in the
biosynthesis of linalool in fresh leaves by regulating CsLIS/NES1
(CsTGY08G0000359) and CsLIS/NES2 (CsTGY08G0001704), espe-
cially ERF (CsTGY02G0001232) may be the key transcription
factor affecting linalool synthesis. In tea plant, CsMYB is a key
gene in lipid metabolism, and it mainly affects lipid metabolism
by regulating CsADH to participate in aroma biosynthesis[25l,
And CsMYB is involved in the biosynthesis of fatty acid deriva-
tives by regulating the LOX pathway in green teal*¢l. In the
present study, we speculated that CsMYB (CsTGY01G0001203,
CsTGY04G0001918, CsTGY06G0002545) may play an important
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role in regulating the expression of CSADH (CsTGY09G0001879)
and the accumulation of (2)-3-hexenol and (E)-3-hexene-1-ol
acetate in fresh leaves.

Conclusions

In this study, we conducted a comprehensive metabolomic
and transcriptomic analysis of seven tea plant cultivars to inves-
tigate the cultivar characteristic volatile components of differ-
ent tea plants and their possible molecular mechanisms lead-
ing to volatile component accumulation. Overall, terpenes
accounted for a large proportion of the fresh leaves of oolong
tea cultivars. The aroma compositions of white and green tea
cultivars were similar, and the contents of (2)-3-hexenol,
phenylethyl alcohol, phenylacetaldehyde, linalool, and its
oxides were higher. The accumulation of volatile components is
not only controlled by the expression of structural genes but
also involved in the regulation of many transcription factors.
Our study revealed the characteristic volatile components and
their key regulatory genes of seven tea cultivars, which will
provide a theoretical basis for breeding and suitability research
of tea cultivars.
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