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Abstract
The tea plant is abundant in bioactive compounds, including flavonoids, amino acids, alkaloids, terpenoids, and lipids, which greatly affect tea

quality and flavors. Despite there are many studies of metabolites about different tea cultivars, the composition differences of their biosynthesis

and regulation still largely unknown. In this study, 505 metabolites were detected from the apical bud and 1st leaf of 'Shuchazao' (SCZ), 'Huangkui'

(HK)  and  'Zijuan'  (ZJ)  using  widely-targeted  metabolomics,  including  192  flavonoids,  45  lipids,  59  amino  acids  and  derivatives,  and  28

phenolamides. Metabolite analysis showed that flavonols and anthocyanins are mainly distributed in the form of glycosides in three cultivars.

Notably, anthocyanins and their glycosides are mainly accumulated in 'ZJ', indicating a correlation with the color attributes. EGCG emerged as the

most  abundant  flavan-3-ols  compound among the three  cultivars.  Simultaneously,  L-theanine represented the predominant  free  amino acid,

mainly concentrated in the apical bud compared to the 1st leaf. Similarly, lipids, akin to free amino acids, predominantly accumulated in the apical

buds of all three cultivars. These findings offer valuable insights into the genetic and metabolite diversity, augmenting our understanding of the

biosynthesis of specialized metabolites in tea plants.
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Introduction

The  tea  plant  (Camellia  sinensis)  is  an  important  global
commercial  crop and tea is  primarily consumed as a non-alco-
holic beverage made from processed leaves[1,2]. The tea plant is
abundant in secondary metabolites, including, flavonoids, alka-
loids,  amino  acids,  and  terpenoids[3−5],  and  various  health-
promoting  functions  of  teas  are  largely  attributable  to  these
bioactive  natural  products.  Flavonoids  are  one  of  the  main
secondary  metabolites  in  tea,  including  chalcones,  flavones,
flavonols, flavanols, anthocyanins, condensed tannins or proan-
thocyanidins (PAs), and other specialized forms of flavonoids[6].
Of these, catechins (flavan-3-ols) are best characterized molecu-
larly  and  biochemically[7−9].  The  six  main  types  of  flavan-3-ols
include  epicatechin  (EC),  catechin  (C),  epigallocatechin  (EGC),
gallocatechin  (GC),  epicatechin-3-gallate  (ECG),  and  epigallo-
catechin-3-gallate (EGCG),  with EGCG being the representative
catechin with the highest content in tea plants,  playing essen-
tial  roles  in  imparting  bitterness  and  astringency[10−14].  Along-
side  flavan-3-ols,  flavones,  flavonols,  and  flavonol  glycosides
are also important secondary metabolites that affect the bitter-
ness and astringency of tea soup[15−17].  Several typical flavones
and  flavonols  in  tea  soup  are  apigenin,  luteolin,  kaempferol,
quercetin,  and myricetin[10].  Anthocyanins are also a branch of
flavonoids, which mainly have protective effects such as antiox-
idant,  anti-inflammatory,  and  anti-cancer  properties,  and  they
are mainly present in the form of glycosylation or acylation, and
are generally abundant in purple plants[18].

Free  amino  acids  constitute  the  principal  chemical  compo-
nents  in  tea,  playing  a  pivotal  role  in  enhancing  its  pleasant

flavor.  Among  these  amino  acids,  L-Theanine  (γ-glutamyl-L-
ethylamide) a non-protein amino acid, is particularly important
in affecting tea flavor[19,20]. Concomitantly, L-theanine was veri-
fied to promote the umami taste of  tea infusions by neutraliz-
ing  catechins,  flavonol  glucosides,  and  caffeine[21].  To  date,
about  26  free  amino  acids  have  been  identified  in  tea
plants[22−26],  wherein  L-theanine  is  highly  accumulated  in  tea
plants[27−28].  L-theanine  can  be  produced  by β- Oxoglutamate
synthesized  through  GOGAT,  which  catalyzes  the β-Oxogluta-
mate  production  of  L-Glutamate,  followed  by  L-Glutamate
being catalyzed by TS to produce L-theanine[5].

The aroma of tea is  also one of the important factors affect-
ing  its  quality,  among  which  lipid  substances  play  an  impor-
tant role in the volatile[29].  Several important volatiles, jasmine,
cis-jasmone,  methyl  jasmonate,  hexanal,  pentanal,  nonanal,
heptanal, (E)-2-hexenal, (E, E)-2,4-hexadienal, 1-penten-3-ol, (Z)-
3-hexen-1-ol,  (E)-2-Hexen-1-ol,  and  nerolidol,  are  lipid-deriva-
tive aroma compounds[30].  Furthermore, during the processing
of oolong tea,  extracellular  lipids can also be transformed into
aromatic substances and released[29].  Lipids mainly exist in the
forms of fatty acyls, glycerolipids, glycerophospholipids, sphin-
golipids,  sterol  lipids,  prenol  lipids,  saccharolipids,  and polyke-
tides  in  plants[31].  To  date,  about  170  lipids  and  their  deriva-
tives have been identified in tea plants[32].

China  possesses  abundant  germplasm  resources,  and  the
genetic  and  metabolite  diversity  within  its  tea  population
significantly  mirrors  the  global  tea  diversity[33].  Nevertheless,
different  types  of  secondary  metabolites  vary  greatly  in  differ-
ent  tea  cultivars[10].  Notably,  'ZJ'  and  'P113'  are  abundant  in
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anthocyanins[34,35],  and  the  theanine  concentration  in  the
yellow  cultivar  was  significantly  higher  than  that  in  the  green
cultivar[36−38].  To  better  regulate  and  improve  tea  quality,  it  is
very  important  to  study  the  composition  differences  of  differ-
ent  tea  cultivars.  Here,  we  integrate  metabolomic  analyses  to
study the apical bud and the 1st leaf of 'SCZ', 'HK', and 'ZJ', and
the  results  provide  metabolic  markers  for  tea  breeding,  and
advance  our  understanding  of  the  biosynthesis  of  specific
metabolites in tea plants. 

Materials and methods
 

Plant materials
Tea  cultivars  'Shuchazao'  (SCZ),  'Huangkui'  (HK)  and  'Zijuan'

(ZJ) were grown in the experimental tea garden of Anhui Agri-
cultural University (31°55' North, 117°12′ East; Hefei City, Anhui
Province, China). The apical bud and the 1st leaf of five-year-old
tea plants were sampled in April. 

Sample preparation and extraction
Fresh  tea  samples  were  collected,  ground  into  powder  in

liquid nitrogen, extracted with a solution of methanol, acetoni-
trile,  and  water  (2:2:1),  and  vortexed  and  mixed  for  30  s.  Steel
balls were added to the mixture, and then treated with a 45-Hz
grinder for 10 min, sonicated for 10 min (in an ice water bath),
and left for 1 h at −20 °C. After centrifugation at 12,000 rpm for
15  min,  500 μL  of  the  supernatant  was  transferred  to  a  new
centrifuge tube. The extraction solution was dried in a vacuum
concentrator,  and 160 μL of  solution (acetonitrile  :  water  =1:1)
was  added  to  the  metabolite  extraction  solution  after  drying
and  then  redissolved  in  a  whirlpool  bath  for  30  s  and  an  ice
water  bath  for  10  min.  After  centrifugation  at  12,000  rpm  for
15  min,  120 μL  of  supernatant  was  placed  in  an  injection
bottle[39].  Additionally,  lidocaine  was  used  as  the  internal
standard. 

Instrument platform and chemicals
Metabolites  detection  by  Waters  UPLC  Acquity  I-Class  PLUS

and  Waters  UPLC  Xevo  G2-XS  QTof.  Acquity  UPLC  HSS  T3  1.8
um  2.1  *  100  mm,  Waters;  Methanol,  acetonitrile,  and  acetic
acid  were  purchased  from  Shanghai  Guo  Mei  Pharmaceutical
Co. UPLC-grade water was prepared from distilled water using
a Milli-Q system (Millipore Laboratory, Bedford, MA, USA). 

Metabolite detection parameters
The liquid chromatography-mass  spectrometry  system used

for  metabolomics  analysis  was  composed  of  a  Worth  Equity  I-
Class  PLUS  ultra-high  performance  liquid  chromatograph  in
series  with  a  Worth  Xevo  G2-XS  QTof  high-resolution  mass
spectrometer.  The  chromatographic  column  used  was  the
purchased Waters Equity UPLC HSS T3 column (1.8 μm 2.1 mm
×  100  mm).  Positive  ion  mode:  mobile  phase  A:  0.1%  formic
acid  aqueous  solution;  Mobile  phase  B:  0.1%  formic  acid
acetonitrile.  Negative  ion  mode:  mobile  phase  A:  0.1%  formic
acid  aqueous  solution;  Mobile  phase  B:  0.1%  formic  acid
acetonitrile.  The  samples  (2 μL  injection  volume)  were  loaded
on  a  UPLC  HSS  T3  column  and  eluted  at  a  flow  rate  of  400
μL/min. The elution program was as follows: starting with 95%
and 5%, a linear gradient from 0−5.5 min, from 5% to 50%, B for
5.5−9.0  min,  from  50%  to  95%,  B  for  9.0−12  min,  and  B  from
95% to 5% were performed, followed by washing and equilibra-
tion of the column. 

Metabolome data analysis
Simca-P  software  (version  13.0)  was  used  for  unsupervised

principal  component analysis  (PCA)[40],  and orthogonal  projec-
tions  to  latent  structure-discriminant  analysis  (OPLS-DA)  as
previously described[41].  The heatmaps for  metabolites relative
content  were  conducted  using  the  'heatmap'  package  imple-
mented in R. 

Results
 

Construction of a metabolomic database in tea
plants

To assess variations in metabolites among three tea cultivars,
we collected the apical bud and 1st leaf from three tea cultivars,
including the green cultivar  'SCZ',  the  yellow cultivar  'HK',  and
the purple cultivar  'ZJ',  as  shown in Fig.  1a.  Clustering analysis
of  all  metabolites  showed  significant  differences  in  the  chro-
matograms of different tissues and cultivars (Fig. 1b). A total of
505  metabolites  were  identified  in  tea  plants  (Supplemental
Table  S1).  The  identified  metabolites  can  be  divided  into  ten
main  categories,  including  flavonoids  (38.03%),  terpenoids
(1.39%),  alkaloids  (2.57%),  phenolamides  (5.54%),  vitamins
(2.57%), amino acids and derivatives (11.68%), nucleotides and
derivatives  (9.51%),  Organic  acid  (3.56%),  lipids  (8.91%),  and
others (16.24%) (Fig. 1c).  In the PCA score plot,  the cumulative
contribution rate of two principal components (t1 59.5% and t
20.2%)  reached  79.7%  (Fig.  1d).  PCA  analysis  results  showed
that  variance  and  distinguished  samples  according  to  the
different apical bud and 1st leaf of three tea cultivars, and were
appropriate  for  further  difference  assessments.  The  current
results further revealed that the tea plants are rich in secondary
metabolites,  and the compositions differences between differ-
ent cultivars and tissues. 

Multivariate analysis of differential metabolites
To  further  elucidate  the  variances  in  metabolites  among

different  cultivars,  multivariate  statistical  methods  were
adopted  to  analyze  metabolic  differences.  Pairwise  compa-
risons were performed among SB vs HB, ZB vs SB, ZB vs HB, SL
vs  HL,  ZL  vs  SL,  and  ZL  vs  HL  of  the  three  tea  cultivars  by  the
OPLS-DA model to identify the metabolites responsible for the
observed  differences  (Fig.  2a, b).  Consequently,  high  predic-
tability (Q2Y) and strong goodness of fit (R2X, R2Y) of the OPLS-
DA models were observed in the comparison between SB vs HB
(R2X = 0.956, R2Y = 0.999, Q2Y = 0.995), as well as between ZB
vs SB (R2X = 0.954, R2Y = 1, Q2Y = 0.999), ZB vs HB (R2X = 0.811,
R2Y = 1, Q2Y = 0.997), and SL vs HL (R2X = 0.955, R2Y = 1, Q2Y =
0.998),  ZL vs SL (R2X = 0.987, R2Y = 1,  Q2Y = 1 ),  and ZL vs HL
(R2X  =  0.973,  R2Y  =  1,  Q2Y  =  0.999).  These  parameters  under-
score  the  stability  and  appropriateness  of  the  models,  signify-
ing distinct metabolic profiles among the three tea cultivars. To
gain more insight into the metabolic differences between SB vs
HB, ZB vs SB,  ZB vs HB,  SL vs HL,  ZL vs SL,  and ZL vs HL of the
three tea cultivars, respectively, differential metabolites screen-
ing was performed by Volcano plots, and the screening results
are shown in Fig. 3 and Supplemental Table S2. Approximately
505  differential  metabolites  were  analyzed  through  Volcano
plots, revealing 91 up-regulated and 42 down-regulated meta-
bolites between SB and HB (Fig. 3a, Supplemental Table S3), 68
up-regulated  and  52  down-regulated  metabolites  between  SB
and  ZB  (Fig.  3b, Supplemental  Table  S3),  and  82  up-regulated
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and  61  down-regulated  metabolites  between  ZB  and  HB  (Fig.
3c, Supplemental  Table  S3).  Similar  results  were also observed
in  the  comparison  of  three  different  leaf  groups  (Fig.  3d−f,
Supplemental  Table  S3).  Attention-worthy,  most  differential
metabolites  were  flavonoids  (Supplemental  Table  S3),  thus,  in
the following analysis process, we focus on analyzing the differ-
ences of flavonoids in three tea cultivars. 

Specific analysis of differential metabolites
Figure 3 showed that the main differential metabolites in the

six  tissues  of  the  three  cultivars  are  flavonoids.  Flavonoids  are
derived  from  the  phenylpropanoids  pathway,  which  is  cata-
lyzed  by  a  series  of  enzymes  to  produce  flavonols,  anthocya-
nins, and flavan-3-ol (Fig. 4a). To identify specific differences in

flavonoid  metabolites,  we  conducted  a  more  detailed  analysis
using  cluster  analysis  (Fig.  4b,c).  Flavan-3-ols  are  the  main
flavonoids,  and their  content  directly  affects  the quality  of  the
tea. The EGCG has the highest content of six types of catechins,
and compared to 'SCZ' and 'HK', the relative content of EGCG in
'ZJ'  is  slightly  lower  in  both  the  apical  bud  and  the  1st leaf,  as
shown in part P1 of Fig. 4b. The accumulation of two other typi-
cal catechins, EC and C, in 'HK' is inferior to that in 'ZJ' and 'SCZ',
as shown in part P2 of Fig. 4b. In contrast to flavan-3-ols, antho-
cyanins  mainly  accumulate  in  the form of  glycosides  in  'ZJ',  as
shown in part P3 of Fig. 4b, except for cyanidin 3,5-O-diggluco-
side, indicating a correlation with the color attributes. Addition-
ally,  beyond  catechins  and  anthocyanins,  flavonols  and  glyco-
sides  are  also  important  factors  affecting  tea  quality.  Among
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Fig.  1    Detection  and  identification  of  specialized  metabolites.  (a)  The  phenotypes  of  two  tissues  of  the  three  cultivars.  'Shuchazao'  (SCZ),
'Huangkui' (HK) and 'Zijuan' (ZJ).  (b) Clustering heatmap tree of total metabolites of two tissues of the three cultivars. Z-scores normalize the
value. Red indicates a high abundance, and blue indicates a low relative abundance of metabolites. (c) Composition and proportion of different
metabolites in different tea cultivars. (d) PCA of the metabolites in different tissues of tea plants. SB: SCZ-bud; ZB: ZJ-bud; HB: HK-bud; SL: SCZ-
leaf; ZL: ZJ-leaf; HL: HL-leaf.
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the  six  tissues  of  three  cultivars,  flavonoids  mainly  exist  in  the
form of glycosides, mainly flavonol glycosides (Fig. 4c). Further-
more,  flavonol  glycosides,  similar  to  anthocyanin  glycosides,
accumulate in 'ZJ', as shown in part P4 of Fig. 4c. In addition to
the  above  characteristics,  the  accumulation  of  flavonols  and
flavonol  glycosides  in  the  apical  buds  of  the  three  varieties  is
slightly  lower  than  that  in  the  leaves  (Fig.  4c).  These  findings
indicate  that  'SCZ'  mainly  accumulates  a  large  number  of
flavan-3-ols,  such  as  EGCG,  EC,  and  C,  while  anthocyanins,
anthocyanin  glycosides,  and  flavonol  glycosides  are  mainly
accumulated  in  'ZJ'.  In  comparison  to  the  other  two  cultivars,
the  synthesis,  and  accumulation  of  flavonoid  metabolites  in

'HK'  are  comparatively  less,  suggesting  a  potential  correlation
with genetic factors.
 

Metabolic analysis of free amino acids
Free  amino  acids  are  also  the  main  compounds  that  affect

the  quality  of  tea,  especially  L-theanine.  Amino  acids  are
synthesized through branched pathways in tea plants (Fig. 5a).
Glucose  serves  as  the  foundational  element  for  all  amino  acid
metabolism  and  is  synthesized  diversely  to  generate  essential
and non-essential amino acids in plants. Glycolysis produces 3-
phosphoglycerate,  which is  the substrate of serin,  glycine,  and
cysteine synthesis. Furthermore, a further reaction of glycerate
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Fig. 2    Differential metabolite analysis by OPLS-DA.
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3-phosphate  resulted  in  the  generation  of  phosphoenolpyru-
vate, which is the initiator of shikimate. Pyruvate is the starting
point  for  the  synthesis  of  L-theanine  and  other  free  amino
acids.  Alanine,  ethylamine,  and L-glutamate are several  impor-
tant  prerequisite  amino  acids  for  the  synthesis  of  L-theanine,
and  those  undergo  different  catalytic  enzyme  reactions  to
produce  L-theanine,  such  as  TS,  and  GGT  (Fig.  5a).  A  cluster
analysis of amino acids and derivatives reveals that L-theanine
exhibits  the  highest  content  of  free  amino  acids,  as  shown  in
the P5 section of Fig. 5b. It is worth noting that the content of
most free amino acids in the apical buds of the three cultivars is
higher  than  in  the  leaves,  which  is  contrary  to  the  synthesis
pattern  of  flavonoids  (Fig.  4c, 5b).  Clustering  analysis  results
indicate  a  marginally  higher  accumulation  of  several  amino
acids  and  derivatives  in  'HK'  compared  to  the  other  two  culti-
vars, including L-glutamine, L-theanine, 2-aminoisobutyric acid,
and  L-glutamic  acid  (Fig.  5b).  Consequently,  based  on  the
above  results,  it  can  be  seen  that  'HK'  did  not  accumulate  too

many  flavonoids  but  instead  accumulated  a  large  number  of
free amino acids, mainly in the apical buds. 

Accumulation patterns of lipids in different tea
cultivars

It was necessary to analyze lipids to compare the differences
in metabolites of different tea qualities, as lipids are precursors
of volatile aroma compounds. Targeted lipid metabolite detec-
tion was conducated on six samples from three different culti-
vars.  Cluster  analysis  revealed  that  Octadeca-11E,13E,15Z-
trienoic acid, LysoPC 18:3 (2n isomer), LysoPC 18:2 (2n isomer),
MAG  (18:3)  isomer3,  and α-linolenic  acid  show  the  highest
content  of  all  the  detected  lipids  and  derivatives  in  three  tea
cultivars  (Fig.  6).  Additionally,  Lysopc,  lysope,  and MAG have a
large number of isomers present (Fig. 6). Comparison between
apical  buds  and  leaves  of  the  same  cultivar  unveiled  that  the
majority  of  lipid  metabolites  accumulated  in  the  apical  buds,
with similar patterns observed in all three cultivars (Fig. 6). It is
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Fig. 3    Volcano plots showing the differential metabolite expression levels.
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Fig. 4    Phenylpropanoid pathways toward the biosynthesis of flavonoids in tea plants. (a) Flavonoid biosynthesis pathways in tea plant. (b), (c)
Catechins,  flavonoids  and anthocyanin relative  content  in  different  tissues  of  SCZ,  HK and ZJ  plants.  CHS:  Chalcone synthase;  CHI:  Chalcone
isomerase; C4H: Cinnamate 4-hydroxylase; DFR: Dihydroflavonol reductase; EGC: Epigallocatechin; ECG: Epicatechin-3-gallate; F3H: flavonoid 3-
hydroxylase;  F3'H:  Flavonoid  3'-hydroxylase;  F3'5'H:  Flavonoid  3'5'-hydroxylase;  FNS:  flavone  synthase;  FLS:  Flavonol  synthase;  LAR:
Leuacoanthocyanidin  reductase;  PAL:  Phenylalanine  ammonialyase;  4CL:  4-Coumarate:CoA  ligase;  HCT:  Hydroxycinnamoyl-CoA:  shikimate
hydroxycinnamoyl  transferase1;  SCPL:  Serine  carboxypeptidase-like  Clade  1A;  UGT:  UDP-Glucose  flavonoid  3-O-glucosyl  transferase;  C:
Catechin; EC: Epicatechin; EGCG: Epigallocatechin-3-gallate.
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Fig. 5    L-theanine and other free amino acid metabolism pathways in tea plants. (a) L-theanine biosynthesis pathways in tea plant. (b) Other
free  amino  acid  and  L-theanine  relative  content  in  different  tissues  of  SCZ,  HK  and  ZJ  plants.  OGAT:  Glutamate  synthase;  ALDA:  Alanine
decarboxylase; GGT: γ-glutamyltranspeptidase; TS: Theanine synthetase.
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worth  noting  that  the  accumulation  pattern  of  lipids  is  similar
to  the  accumulation  pattern  of  free  amino  acids  (Fig.  5b).
Further examination of lipid accumulation patterns across three
tea  cultivars  indicated  that  the  'ZJ'  variety's  apical  buds  accu-
mulated relatively higher lipid content than the other two culti-
vars, as shown in Part P6 in Fig. 6. Conversely, there is not much
difference  in  the  accumulation  amount  in  the  leaves  of Fig.  6.
The  observed  accumulation  patterns  suggest  distinctions  in
lipid accumulation among various tea cultivars,  with a notable
tendency  for  higher  lipid  accumulation  in  apical  buds
compared to leaves. 

Discussion

Tea is favored by consumers due to its abundance of various
bioactive substances. Presently, there are about 3000 tea acces-
sions  in  China[33].  Confronted  with  such  a  vast  variety  of  tea
cultivars,  analyzing the quality metabolites of each tea cultivar
remains  a  formidable  challenge.  Previous  studies  showed  that
flavonoids,  amino  acids,  and  lipids  affect  the  quality  of
tea[1,12,28].  In 2020, Yu et al.[10] analyzed differential metabolites
in  136  cultivars,  the  results  showed  that  CSA  tea  accessions
feature  a  high  accumulation  of  diverse  classes  of  flavonoid

 

 
Fig. 6    Differential analysis of lipid metabolites. (MGDG - monogalactosyldiacylglycerol,  GDG - digalactosyldiacylglycerol,  C12:0 - lauric acid,
C14:0 - myristic acid, C16:0 - palmitic acid, C16:1 - palmitoleic acid, C18:0 - stearic acid, C18:1 - oleic acid, C18:2 - linoleic acid, C18:3 - linolenic
acid, C20:0 - arachidic acid, C20:1 - eicosenoic acid, C20:2 - eicosadienoic acid, C20:3 - eicosatrienoic acid, C20:4 - eicosatetraenoic acid, C22:0 -
docosanoic acid, C24:0 - tetracosanoic acid, C24:1 - tetracosenoic acid, C26:0 - hexacosanoic acid, C28:0 - octacosanoic acid; DG - diacylglycerol,
TG - triacylglycerol; PC - phosphatidylcholine; LPC - lysophosphatidylcholine, PE - phosphatidylethanolamine, PA - phosphatidic acid).

Metabolome profiling in tea cultivars
 

Zhao et al. Beverage Plant Research 2024, 4: e023   Page 7 of 9



compounds,  such  as  flavanols,  flavonol  mono-/di-glycosides,
proanthocyanidin dimers, and phenolic acid.

In  this  study,  We  selected  three  tea  cultivars  with  different
color phenotypes (Fig. 1a), and analyzed the different metabo-
lites  through  widely  targeted  metabolomics.  Notably,
flavonoids  exert  a  significant  influence  on  the  bitterness  and
astringency of  tea,  and we can derive from analyzing the data
that  flavan-3-ols,  flavones,  flavonols,  and  glycosides  mainly
accumulate in green ('SCZ') and purple ('ZJ') cultivars Fig. 2. This
result to some extent indicates that under the same processing
technology,  the  bitterness  and  astringency  of  'SCZ'  and  'ZJ'
cultivars exhibit a slightly greater intensity than that of 'HK'.  In
addition, 'ZJ' has accumulated a large number of anthocyanins,
which is also the reason for the high bitterness and astringency
of  'ZJ'  (Fig.  4b).  Free  amino  acids  mainly  provide  the  pleasant
flavor of tea soup, especially L-theanine. By comparative analy-
sis, the free amino acid content in the apical buds and 1st leaf of
'HK'  is  marginally  higher  than that  of  the two cultivars  (Fig.  5),
and  this  result  indicates  that  'HK'  may  have  a  more  pleasant
flavor,  particularly  in  the  apical  buds.  Lipids  and  their  deriva-
tives provide the aroma of tea,  which directly affects the qual-
ity  of  tea. Fig.  6 showed that the accumulated lipids in 'ZJ'  are
slightly higher than those in 'SCZ' and 'HK', especially the apical
buds.  Drawing  on  the  accumulation  pattern  of  flavonoids  and
lipids,  we  infer  that  'ZJ'  not  only  exhibits  pronounced  bitter-
ness  and  astringency  but  also  boasts  a  heightened  aromatic
profile.

By  comparative  analysis  of  various  metabolites  of  the  three
cultivars,  we  infer  that  there  are  significant  differences  in  the
accumulation of  metabolites  of  different  tea  cultivars,  and the
main  reason  should  be  genetic  differences[1,10].  Furthermore,
under the same genetic background, there are also differences
in  metabolite  accumulation in  different  tissues,  leading to  this
result mainly due to differences in the transcription level of key
genes  involved  in  metabolite  synthesis[42].  The  above  results
provide  insights  into  metabolite  diversity  and  are  useful  for
accelerated tea plant breeding. 
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