Open Access

https://doi.org/10.48130/bpr-0024-0013 Beverage Plant Research **2024**, 4: e024

Exogenous hydrogen sulfide enhanced Al stress tolerance in tea plant *Camellia sinensis*

Anqi Xing^{1#}, Zaifa Shu^{2#}, Peifang Huang¹, Yang Zhang³, Xueyan Sui^{3,4}, Shuai Wan¹, Shujing Liu¹, Xuan Chen¹, Xinghui Li¹ and Yuhua Wang^{1*}

¹ College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

² Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China

³ Jiangsu Land Consolidation and Rehabilitation Center, Nanjing 210017, China

⁴ Jiangsu Donghai and Yixing Land Consolidation and Ecological Protection Field Scientific Observation and Research Station, Ministry of Natural Resources, Yixing 214200, China

[#] Authors contributed equally: Anqi Xing, Zaifa Shu

* Corresponding author, E-mail: wangyuhua@njau.edu.cn

Abstract

Al is an essential element for the growth of tea plants roots, but excessive Al affects growth and development of *Camellia sinensis*. The underlying mechanism, particularly regulation of gas signaling molecule H₂S, remains unclear. This study aims to uncover the function of H₂S on *C. sinensis* under Al stress by treating hydroponic tea seedlings with different Al concentration, Na₂S (H₂S donor) and DL-propargylglycine (PAG, synthesis inhibitor). High concentration of Al inhibits growth of tea roots, while H₂S significantly improves the effects caused by Al stress. Whether it is 2 mM Al³⁺ or 4 mM Al³⁺, H₂S reduces content of Al in the entire plant and roots, increases root activity, further promotes root growth, increases fresh and dry weight, regulates ion homeostasis, improves cell structure, increases chlorophyll content, and thus reduces the damage of Al toxicity in *C. sinensis*. Moreover, in response to the stress of 2 mM Al³⁺, H₂S simultaneously alleviates Al stress by regulating substances related to antioxidant pathways, increasing content of GSH and GSSG, enhancing activity of GST, GR, LCD, and key components of tea, in order to alleviate Al stress. These approaches have effectively improved Al tolerance of *C. sinensis*, providing a new perspective for the study of H₂S enhancing Al tolerance.

Citation: Xing A, Shu Z, Huang P, Zhang Y, Sui X, et al. 2024. Exogenous hydrogen sulfide enhanced AI stress tolerance in tea plant *Camellia sinensis*. *Beverage Plant Research* 4: e024 https://doi.org/10.48130/bpr-0024-0013

Introduction

Tea plant [*Camellia sinensis* (L.) O. Kuntze], is suitable for growing in acidic soil with pH 4.5–6.5. Aluminum (AI) toxicity is currently a crucial factor limiting plant growth in acidic environments, because when the pH of the soil is less than 5, Al can be transformed into phytotoxic trivalent cation (Al³⁺) that are readily absorbed by plants, thereby affecting plant growth^[1]. As an Al hyperaccumulating plant, *C. sinensis* can contain up to 30,000 mg·kg⁻¹ of Al in its mature leaves without showing symptoms of Al toxicity^[2]. Appropriate Al concentration promotes the growth and development of tea plants. Once it exceeds 1 mmol·L⁻¹, *C. sinensis* suffer from a negative effect on its normal growth^[3].

Various strategies for plants to cope with Al toxicity include external exclusion mechanisms such as increasing Al chelation and reducing Al uptake by plants, as well as increasing antioxidant enzyme activity and reducing toxic substances caused by reactive oxygen species and free radicals, among other internal detoxification mechanisms^[4]. Meanwhile, excessive Al also has a certain impact on the tea quality components of tea polyphenols, catechins, amino acids, caffeine and other substances^[5]. Not only that, tea consumption also increases dietary intake of Al, which is thought to be associated with Alzheimer's disease^[6]. Therefore, exploration of measures to reduce content of Al in *C. sinensis* is of great significance in alleviating Al stress and improving tea quality.

Hydrogen sulfide (H₂S) is regarded as a poisonous gas and atmospheric pollutant, but it was subsequently found to be the third gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO)^[7]. And synthesizes endogenous H₂S mainly through L-cysteine desulphydrase (LCD), which is widely present in plants^[8]. Recently, research on H₂S has begun to reveal the role of these molecules in regulating plant abiotic and biotic stress resistance responses. Through the exogenous application of H₂S donors, H₂S has been proven to regulate plant growth and increase plant tolerance to drought, salt, temperature, and metal stress. It can be seen that H₂S plays vital roles in facilitating plant with tolerance to environmental stresses^[9]. However, the role of H₂S in alleviating Al stress of *C. sinensis* is still unclear.

There are many studies on Al enrichment in tea plants, but currently there is a lack of research on H₂S signaling molecules for Al tolerance in tea plants. Now, through different hydroponic treatments (0.4Al, H₂S + 0.4Al, PAG + 0.4Al, 2Al, H₂S + 2Al, PAG + 2Al, 4Al, H₂S + 4Al, PAG + 4Al), we investigated the effects of H₂S preapplication on the biomass, the content and transfer rate of Al and other elements in different tissues, the content of chlorophyll, photosynthetic indexes, the ultrastructure, the antioxidant enzyme activity and tea quality components under Al stress. Preliminary exploration of the role of exogenous H₂S in the physiological response of tea plants to Al stress provides new ideas for further research on alleviating Al stress and reducing Al accumulation in tea plants.

Materials and methods

Plant material and experimental treatments

For the experiment, annual cutting seedlings of C. sinensis cv. 'Zhongcha 108' were obtained from the Nanjing (Ya Run Tea Co., Ltd., Jiangsu Province, China). The tea seedlings were firstly pre-cultured in water for 5 d, then transferred to 1/8, 1/4, and 1/2 total nutrient solutions to culture for 5 d in each strength nutrient solution, and finally transferred to total nutrient solutions for 10 d (culture medium was replaced every 5 d)^[10]. The seedlings with consistent growth were used to carry out the subsequent treatment assays with H₂S or PAG and Al³⁺ as shown in Table 1. For treatments, Al₂(SO₄)₃·18H₂O, Na₂S·9H₂O and DL-propargylglycine (PAG) were the Al^{3+} donor^[11], H_2S donor^[12] and L-cysteine desulfurase (LCD) inhibitor^[13], respectively. And solution pH was adjusted to 4.5 \pm 0.1 with 1.0 mol·L⁻¹ NaOH or 1.0 mol·L⁻¹ HCl. The experiments were performed in the Intelligent Greenhouse of Nanjing Agricultural University (China), controlled growth room at 25 °C/22 °C with 16 h light/8 h dark cycle, 30,000 l x light intensity and a relative humidity of 75%.

Fresh and dry weight analysis

Plants were collected and separated into young leaf (the first and second leaf from the top of plants), mature leaf (remaining leaves), stem and root. Fresh weight (FW) of seedlings were weighed instantly after harvesting and then placed into an oven at 105 °C for 30 min and then baked at 80 °C until biomass became stable. The dry weight (DW) immediately weighed after removal from the oven.

Root activity assessments

Root activity was measured using the 2,3,5-tripheyl tetrazolium chloride (TTC) method^[14]. About 0.5 g of fresh root tips were placed in a mixture of 5 mL 1% TTC and 5 mL phosphate buffer for 1 h at 37 °C in the dark. The assays were terminated by adding 2 mL 1.0 mol·L⁻¹ H₂SO₄ to the reaction mixture. The reduced TTC was extracted with 3-4 mL ethyl acetate, then ethyl acetate was added to the 10 mL level, and absorbance was read at 485 nm.

Transmission electron microscopy

Leaf fragments without veins were collected from randomly selected plants, then fixed 24 h in 2.5 % glutaraldehyde

Table 1. Description of nine experimental treatments.

Treatments	Days 1–15	Days 15–30
0.4Al (control)	0.4 mmol·L ⁻¹ Al ³⁺	0.4 mmol·L ⁻¹ Al ³⁺
$H_{2}S + 0.4AI$	$100 \ \mu mol \cdot L^{-1} \ H_2 S + 0.4 \ mmol \cdot L^{-1} \ Al^{3+}$	$0.4 \text{ mmol} \cdot \text{L}^{-1} \text{ Al}^{3+}$
PAG + 0.4Al	1 mmol·L ^{-1} PAG + 0.4 mmol·L ^{-1} Al ³⁺	$0.4 \text{ mmol} \cdot \text{L}^{-1} \text{ Al}^{3+}$
2AI	0.4 mmol·L ⁻¹ Al ³⁺	2 mmol·L ⁻¹ Al ³⁺
$H_2S + 2AI$	100 μ mol·L ⁻¹ H ₂ S + 0.4 mmol·L ⁻¹ Al ³⁺	2 mmol·L ⁻¹ Al ³⁺
PAG + 2Al	1 mmol·L ^{-1} PAG + 0.4 mmol·L ^{-1} Al ³⁺	2 mmol·L ⁻¹ Al ³⁺
4AI	0.4 mmol·L ⁻¹ Al ³⁺	4 mmol·L ⁻¹ Al ³⁺
$H_2S + 4AI$	100 μ mol·L ⁻¹ H ₂ S + 0.4 mmol·L ⁻¹ Al ³⁺	4 mmol·L ⁻¹ Al ³⁺
PAG + 4Al	1 mmol·L ⁻¹ PAG + 0.4 mmol·L ⁻¹ Al ³⁺	4 mmol·L ⁻¹ Al ³⁺

solution and stored at 4 °C. Samples were rinsed three times with the same phosphate-buffered saline (PBS, pH 7.2), and post-fixed in 1% osmium oxide for 1 h, washed three times with distilled water. The samples were dehydrated in a graded series of ethanol (50%, 70%, 80%, and 100 %) and at the end treated with absolute acetone for 24 h. Ultra-thin sections (\leq 100 nm) of specimens were prepared for viewing.

Measurement of chlorophyll content and photosynthesis parameters

Chlorophyll a and chlorophyll b of randomly selected mature leaves per treatment were measured as described previously^[15]. Samples were completely immersed with 10.0 mL mixture of acetone-95% ethanol-water (9:9:2, v:v) and transferred into tubes placed in a dark place until the leaves turn completely white. The OD₆₆₅ and OD₆₄₉ values were used to calculate chlorophyll content. A LI-6400XT portable photosynthesis system (Li-Cor Biosciences, Lincoln, Nebraska, USA) was used to measure net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular CO₂ concentration (Ci) with 1,200 μ mol·m⁻²·s⁻¹ illuminance and 500 μ mol·mol⁻¹ flow rate.

Assay of Al and other elemental concentrations

The plant samples with 0.2 g were placed into the digestion vessels, mixed with HNO_3 : $HCIO_4$, (4:1, v:v) and digested in microwave digestion system. The concentrations of Al, calcium (Ca), magnesium (Mg), manganese (Mn), iron (Fe) and zinc (Zn) in the filtrate were determined using inductively coupled plasma optical emission (ICP-OES, PerkinElmer Inc.) following a standard procedure.

Analysis of lipid peroxidation and proline content

Lipid peroxidation was measured in terms of malondialdehyde (MDA) content according to Alatawi et al.^[16]. Fresh leaves (0.1 g) were ground and extracted in 1 mL of 10% trichloroacetic acid (TCA), then the supernatant was collected by centrifuging at 5,000 rpm for 10 min. 0.5 mL supernatant (0.5 mL distilled water as control) were homogenized in 0.5 ml of 0.6 % 2-thiobarbituric acid (TBA) and heat in boiling water for 15 min, then cooled until room temperature. The absorbance of the supernatant was measured at 532, 600, and 450 nm.

Proline content was determined using the acid ninhydrin method^[17]. First, 0.1 g of leaf samples was added to 1 ml of 3% sulfosalicylic acid solution and extracted in boiling water for 10 min, then centrifuged at 5,000 rpm for 10 min. Next, 0.2 mL of supernatant was homogenized and mixed with 0.2 mL of acetic acid and 0.2 mL of 2.5% acid ninhydrin and kept at boiling point for 30 min, then cooled until room temperature, 0.4 mL of toluene treated and then oscillated by vortex for 30 s. After 10 min, supernatant centrifuged at 3,000 rpm for 5 min. Finally, the absorbance was scored at 520 nm.

Determination of GSH, GSSG and enzyme activity

The glutathione (GSH) and oxidized glutathione (GSSG) were measured by GSH and GSSG kit (NO. BC1170, NO. BC1180; Beijing Solarbio Science & Technology Co., Ltd., China). LCD enzyme was detected by referring to the LCD kit (NO. MBE21193; Nanjing Maibo Biotechnology Co., Ltd., China). The activities of glutathiones-transferase (GST) and glutathione reductase (GR) was determined following the description by kit (NO. BC0350, NO. BC1160; Beijing Solarbio Science & Technology Co., Ltd., China). Superoxide dismutase (SOD), peroxidase

Hydrogen sulfide enhanced AI stress in tea plant

(POD) and catalase (CAT) was performed according to instructions of the kits (NO. R22262, NO. R3031, NO. R22072; Shanghai Yuanye Biotechnology Co., Ltd., China), respectively.

Determination of tea components content

The contents assay viz. tea polyphenols, catechins, amino acids and caffeine was measured according to GB/T 8313-2018^[18], GB/T 8314-2013^[19], and GB/T 8312-2013^[20], respectively.

Data statistics and analysis

All the data were from three independent experiments with three biological repeats. The experimental data were statistically processed using Excel 2016, GraphPad Prism 8.0 and variance analysis software SPSS 20.0 (SPSS Inc. version 22.0, Chicago, IL, USA). Different lowercase letters on the graphs indicate that the mean values among different H₂S conditions under the same Al concentration treatment were statistically different at p < 0.05 level, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition at p < 0.05 level.

Results

Effects of different treatments of H₂S and Al on C. sinensis

As expected, new root of *C. sinensis* treated with 2AI and 4AI was less than that of normal 0.4AI culture, but early application of H_2S compared to lone AI treatment effectively promoted the root development, while PAG + AI significantly inhibited root growth (Fig. 1). Moreover, application of PAG not only inhibited normal development of root system, but also inhibited the growth of leaves (Fig. 1c, f & i). Chlorosis, even leaf abscission symptoms in leaves have also occurred (Fig. 1c, f & i).

To further clarify whether H_2S is beneficial for tea root growth under different Al conditions, we explored root activity. We observed higher concentrations (2Al and 4Al) resulted in a greatly decrease in root activity (Fig. 1j). And an increase of 37.59%, 58.42%, and 19.55% in root activity under H_2S pretreatment compared to the separate 0.4Al, 2Al and 4Al treatments, respectively (Fig. 1j). However, exogenous PAG treatment significantly inhibited root activity compared to various Al concentrations (Fig. 1j).

Effects different treatments on fresh and dry weight

Overall, the total fresh weight (FW) and dry weight (DW) of tea plants were both increased by early application of H_2S , while the use of PAG reduced the FW and DW of *C. sinensis* (Fig. 2e, j). Moreover, the results showed that, except for $H_2S +$ 4Al, which did not increase FW in the leaves compared to 4Al, the FW of other different tissues under $H_2S +$ Al treatments showed an increase in FW compared to the single Al treatment (Fig. 2a–d). In addition, the DW of other tissues increased under $H_2S +$ Al treatments compared to single Al treatment for tea seedlings, except for $H_2S +$ 4Al which showed decrease in DW of old leaves compared to 4Al (Fig. 2f–i).

Effect of H₂S on accumulation and translocation factor of Al in C. *sinensis*

There was no significant decrease in content of Al between pre-applied H₂S treatment and single Al treatment in young leaves (Table 2). Nevertheless, compared with 0.4Al treatment,

Fig. 1 Effect of different treatments on symptoms, (a) 0.4AI, (b) $H_2S + 0.4AI$, (c) PAG + 0.4AI, (d) 2AI, (e) $H_2S + 2AI$, (f) PAG + 2AI, (g) 4AI, (h) $H_2S + 4AI$, (i) PAG + 4AI, and (j) root activity in *C. sinensis*. Different lowercase letters in (j) represent significant differences among different H_2S conditions under the same AI concentration treatment, and different uppercase letters represent significant differences among different AI concentration treatments under the same H_2S condition (p < 0.05), as determined by the Duncan test.

content of Al in roots markedly increased when H₂S was applied in advance, while accumulation of Al in roots was dramatically reduced when H₂S was applied in advance to the 2 mM Al³⁺ and 4 mM Al³⁺ treatments (Table 2). Meanwhile, compared to other treatments within the group, content of Al was the highest in roots when PAG-pretreated was applied in advance, with similar performance in total Al content (Table 2). Unusually, pretreatment with H₂S increased content of Al in mature leaves compared to Al treatment alone, and there was a similar trend of Al accumulation in stems (Table 2). Under normal Al concentration, the translocation factor (TF) of Al of 0.4Al is the highest, which is 1.7 times that of H₂S + 0.4Al and 10.625 times that of PAG + 0.4Al (Table 2). Whereas, TF of Al demonstrated H₂S + Al > Al > PAG + Al after 2Al and 4Al treatment (Table 2).

H₂S affects ion homeostasis of C. *sinensis* after different treatments

Content of Ca increased in the solution with H_2S or PAG preapplied, and this increase was more elevated in 0.4AI than 2AI,

Beverage Plant Research

Hydrogen sulfide enhanced AI stress in tea plant

Fig. 2 Fresh and dry weight in (a, f) young leaves, (b, g) matures leaves, (c, h) stems, (d, i) roots, and (e, j) total content of Al of *C. sinensis* cultured with different treatments. Different lowercase letters represent significant differences among different H₂S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

Table 2.	. Effects on content and translocation factor (TF) of Al in C. sinensis under different tr	reatments
----------	--	-----------

Elements	Treatment	YL (mg⋅kg ⁻¹)	ML (mg⋅kg ⁻¹)	S (mg·kg ^{−1})	R (mg⋅kg ⁻¹)	Total content (mg·kg ⁻¹)	TF (%)
Al	0.4Al 0.4Al + H ₂ S	551.30 ± 25.52Ba 474.49 ± 57.74Ba	1204.96 ± 324.00Aa 1605.65 ± 30.85Ba	427.13 ± 12.20Ba 558.06 ± 69.96Ca	2566.89 ± 96.52Bc 5323.33 ± 506.90Cb	4750.29 ± 207.35Bc 7961.52 ± 573.30Bb	0.85 ± 0.14Aa 0.50 ± 0.04Bb
	0.4AI + PAG	291.67 ± 33.05Cb	1125.82 ± 345.62Aa	537.35 ± 118.21Aa	23523.28 ± 1412.99Ba	25478.12 ± 1623.32Ba	$0.08 \pm 0.01 Bc$
	2AI	700.68 ± 14.51Ab	1232.58 ± 102.65Ab	735.12 ± 40.15Ab	15651.00 ± 387.50Ab	18319.37 ± 478.25Ab	0.17 ± 0.01 Bb
	$2AI + H_2S$	758.33 ± 51.39Ab	2000.13 ± 209.09Aa	976.59 ± 29.70Aa	8574.85 ± 700.31Bc	12309.90 ± 638.39Ac	$0.44 \pm 0.05 Ba$
	2AI + PAG	999.06 ± 45.47Ba	1101.78 ± 48.02Ab	669.60 ± 131.31Ab	28361.41 ± 199.73Aa	31131.86 ± 296.48Aa	$0.10\pm0.01\text{ABc}$
	4AI	771.52 ± 123.22Ab	1342.59 ± 60.73Aa	675.39 ± 120.29Aa	14741.91 ± 2122.85Ab	17531.41 ± 2218.98Ab	0.19 ± 0.03Bb
	$4AI + H_2S$	819.06 ± 20.35Ab	1475.13 ± 107.29Ba	732.93 ± 62.82Ba	10066.06 ± 835.49Ac	13093.18 ± 954.89Ab	0.30 ± 0.02 Aa
	4AI + PAG	1285.44 ± 106.37Aa	1086.46 ± 135.20Ab	756.13 ± 104.12Aa	26682.34 ± 3130.59ABc	29810.37 ± 3150.15Aa	$0.12 \pm 0.02 \text{AAc}$

Values are the mean \pm SD (n = 3). Different lowercase letters represent significant differences among different H₂S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

4Al in young leaves, while more increased in 2Al and 4Al than 0.4Al in mature leaves (Table 3). In stems, application of PAG remarkably enhanced the concentrations of Ca under 0.4Al, but decreased content of Ca in 2Al and 4Al (Table 3). Moreover, results in roots showed that content of Ca under H₂S + 0.4Al was 2.71 times that of 0.4 Al, and content of Ca in PAG + 0.4Al was 4.5 times that of 0.4 Al, but H₂S + 4Al and PAG + 4Al inhibited content of Ca compared to 4Al, and changes in content of Ca between 2Al, H₂S + 2Al, and PAG + 2Al groups were relatively small (Table 3). After H₂S combined 2Al significantly improved content of total Ca, while a little effect on 0.4Al and 4Al (Table 3). In addition, the TF of Ca exhibited 0.4Al > H₂S + 0.4Al > PAG + 0.4Al, while H₂S + 2 Al and PAG + 2Al have no significantly promoted TF of Ca compared to 4Al (Table 3).

Content of Mg in young leaves were found to significantly inhibited only in H_2S + 4Al and PAG + 4Al compared to 4Al, but there was no significant change in content of Mg between treatments at only 4Al in mature leaves (Table 3). The application of exogenous PAG contributed to increase in content of Mg in stems, but H_2S had a small effect on the level of Mg compared to Al alone in stems (Table 3). However, H_2S significantly increased Mg levels in roots (Table 3). It was found that the change in total content of Mg was not significant under H_2S + 4Al compared to 4Al, while content of Mg under other H_2S + 4Al reatments significantly increased compared to Al alone (Table 3). However, the TF of Mg was inhibited by 73.66% under H_2S + 0.4Al compared to 0.4Al, 23.82% under H_2S + 2Al compared to 2Al, and 30.84% under H_2S + 4Al compared to 4Al (Table 3).

Ca 0.4Al 6168.53 ± 606.308b 0.4Al + PAG 9322.85 ± 1413.64Aa 2AI 11223.02 ± 223.36Aa 2AI 11223.02 ± 223.36Aa 2AI + PAG 9322.85 ± 1413.64Aa 2AI + PAG 10558.09 ± 799.31Aa 2AI + PAG 10558.09 ± 739.35Aa 4AI 10986.74 ± 1426.59Aa 4AI + H ₂ S 10405.55 ± 102.64Ba 4AI + H ₂ S 10405.55 ± 102.64Ba 4AI + H ₂ S 10405.55 ± 102.64Ba 0.4AI + H ₂ S 10405.55 ± 102.64Ba 0.4AI + H ₂ S 10405.55 ± 102.64Ba 2AI + PAG 0.805.80 ± 1205.84Ba 2AI + PAG 267.911 ± 76.29Ca 2AI + PAG 2610.66 ± 446.66Aa 2AI + PAG 3610.66 ± 446.66Aa 2AI + PAG 37.051 ± 5.02ABb 2AI + PAG 2.01.61 ± 5.02AB 2AI + PAG 11.5		•			1X
0.4Al + H ₂ S 8064.66 ± 66.16Ca 0.4Al + PAG 9322.85 ± 1413.64Aa 2Al + H ₂ S 11533.02 ± 223.36Aa 2Al + H ₂ S 1055.809 ± 739.25Aa 4Al 10986.74 ± 1426.59Aa 4Al 10986.74 ± 1426.59Aa 4Al 10986.74 ± 1426.59Aa 4Al 10986.74 ± 1426.59Aa 4Al + H ₂ S 10405.55 ± 102.64Ba 0.4Al + H ₂ S 1046.55 ± 102.64Ba 0.4Al + H ₂ S 10405.55 ± 83.10Aa 2Al 2Al 261.51 ± 72.9Ca 0.4Al + H ₂ S 3307.60 ± 162.06Aa 2Al + H ₂ S 3307.60 ± 162.06Aa 2Al + H ₂ S 3510.65 ± 446.66Aa 2Al + H ₂ S 3510.65 ± 125.02AB 2Al + H ₂ S 3510.65 ± 163.42Aa 2Al + H ₂ S 350.96 ± 12.02AB 2Al + H ₂ S 3610.66 ± 446.66Aa 2Al + H ₂ S 3610.66 ± 12.52Ba 2Al + H ₂ S 3610.66 ± 12.52Ba 2Al + H ₂ S 11.12Ca 2Al + H ₂ S 11.12Ca 2Al + H ₂ S 13.68 ± 11.12Ca 2Al + H ₂ S 13.68 ± 12	UDV 1 2044.U3 1 24U.17Adu	2746.77 ± 24.59Bb	476.37 ± 41.02Cc	23285.69 ± 1696.58Bb	47.92 ± 0.76Aa
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5Ca 13027.66 ± 1043.18Bb	2781.84 ± 61.89Cb	$1289.49 \pm 60.48Bb$	25163.67 ± 436.51Cb	18.53 ± 0.58Ab
2AI 11223.02±223.36Aa 2AI + H ₂ S 11693.96±749.31Aa 2AI + H ₂ S 10558.09±739.25Aa 4AI 10986.74±1426.59Aa 4AI 10986.74±1426.59Aa 4AI + H ₂ S 10405.55±102.64Ba 4AI + H ₂ S 10405.55±102.64Ba 4AI + H ₂ S 10405.55±102.64Ba 0.4AI + H ₂ S 10405.55±102.64Ba 0.4AI + H ₂ S 2679.11±76.29Ca 0.4AI + H ₂ S 3203.55±83.10Aa 2AI + PAG 2551.51±378.60Ba 2AI + PAG 3203.55±83.10Aa 2AI + H ₂ S 3093.27±163.42Aa 4AI 3610.66±446.66Aa 4AI + H ₂ S 3059.80±57.45Bb 2AI + H ₂ S 31.36±1.1.2Ca 2AI + H ₂ S 31.1.2Ca	54Aa 14978.35 ± 230.29Aa	3606.75 ± 523.74Aa	2144.36 ± 58.02Aa	30052.32 ± 1938.42Aa	13.03 ± 1.24Ac
2AI + H ₂ S 11693.96 ± 749.31 Aa 2AI + PAG 10986.74 ± 1426.59Aa 4AI 10986.74 ± 1426.59Aa 4AI + H ₂ S 10405.55 ± 102.64Ba 4AI + PAG 10806.80 ± 1205.83Aa 0.4AI + H ₃ S 10405.55 ± 102.64Ba 0.4AI + H ₃ S 10405.55 ± 102.64Ba 0.4AI + H ₃ S 2679.11 ± 76.29Ca 0.4AI + H ₃ S 2679.11 ± 76.29Ca 0.4AI + H ₂ S 3307.60 ± 162.06Aa 2AI + H ₂ S 3059.80 ± 57.45Bb 2AI + H ₂ S 3059.80 ± 57.45Bb 2AI + H ₂ S 3059.80 ± 57.45Bb 2AI + H ₂ S 307.60 ± 16.205Aa 4AI + H ₂ S 307.60 ± 16.207.80 2AI + H ₂ S 305.980 ± 57.45Bb 2AI + H ₂ S 11.36 ± 0.95Ba 2AI + H ₂ S 11.56 ± 2.02AB 0.4AI + H ₂ S 307.60 ± 16.207.81 2AI + H ₂ S 307.60 ± 16.207.81 2AI + H ₂ S 11.56 ± 2.02AB Mn 0.4AI 8.70 ± 11.207.43 Mn 0.4AI 8.70 ± 11.209 Mn	36Aa 12447.40 ± 1926.26Ab	3559.11 ± 198.46Aa	$1573.00 \pm 74.02Ba$	$28802.53 \pm 598.30Ac$	17.33 ± 0.62Ba
2AI + PAG 10558.09 ± 739.25 Aa 4AI H ₂ S 10986.74 ± 1426.59 Aa 4AI + H ₂ S 10405.55 ± 102.64 Ba 4AI + PAG 10806.80 ± 1205.83 Aa 0.4AI + H ₃ S 0.4AI + H ₃ S 0.4AI + H ₃ S 10806.80 ± 1205.83 Aa 0.4AI + H ₃ S 2679.11 ± 76.29 Ca 2AI 2571.51 ± 378.00 Ba 2AI + H ₂ S 3307.60 ± 162.06 Aa 2AI + H ₂ S 3307.60 ± 162.06 Aa 2AI + H ₂ S 3307.60 ± 162.06 Aa 2AI + H ₂ S 3610.66 ± 446.66 Aa 4AI + H ₂ S 3610.66 ± 446.66 Aa 4AI + H ₂ S 3610.66 ± 446.66 Aa 2AI + H ₂ S 3610.66 ± 445.66 Aa AAI + H ₂ S 3610.66 ± 446.66 Aa AAI + H ₂ S 3610.66 ± 446.66 Aa AAI + H ₂ S 3610.66 ± 446.66 Aa AAI + H ₂ S 3610.66 ± 446.66 Aa AAI + H ₂ S 3707.61 ± 5.02 AB D.4AI + H ₂ S 11.58 ± 3.00 Ca 2AI + H ₂ S 11.61 ± 1.07 Ab Mn 0.4AI 17.09 ± 2.08 Ab AAI + H ₂ S 21.1 ± 61 ± 1.07 Ab Mn 0.4AI 17.09 ± 2.08 Ab AAI + H ₂ S 21.1 ± 61 ± 1.07 Ab Mn 0.4AI 17.69 ± 2.08 Ab AAI + H ₂ S 21.37 ± 0.92 2a </td <td>31Aa 15968.96 ± 553.09Aa</td> <td>3955.32 ± 217.77Aa</td> <td>1695.65 ± 273.89Aa</td> <td>33313.87 ± 1007.07Aa</td> <td>19.05 ± 3.82Aa</td>	31Aa 15968.96 ± 553.09Aa	3955.32 ± 217.77Aa	1695.65 ± 273.89Aa	33313.87 ± 1007.07Aa	19.05 ± 3.82Aa
4AI 10986.74 \pm 1426.59Aa 4AI + H ₂ S 10405.55 \pm 102.64Ba 4AI + PAG 10405.55 \pm 102.64Ba 4AI + PAG 10806.80 \pm 1205.83Aa 0.4AI + PAG 10806.80 \pm 1205.83Aa 0.4AI + PAG 10806.80 \pm 1205.84Ba 0.4AI + PAG 2161.53 \pm 297.57Ba 0.4AI + PAG 2161.53 \pm 297.57Ba 0.4AI + PAG 2551.51 ± 378.60Ba 2AI 22AI + H ₂ S 3307.60 ± 162.06Aa 2AI + PAG 3307.60 ± 162.06Aa 2AI + PAG 3307.60 ± 162.06Aa 4AI + H ₂ S 3307.60 ± 162.06Aa 4AI + H ₂ S 309.27 ± 163.42Aa 4AI + H ₂ S 307.60 ± 162.06Aa 2AI + PAG 9.4AI + H ₂ S 2AI + PAG 11.68 ± 1.26Ba 2AI + H ₂ S 11.80 ± 0.93Bb 4AI + H ₂ S 15.64 ± 4.93Bb AAI + PAG 11.80 ± 0.93Bb AAI + PAG 11.80 ± 0.93Bb AAI + H ₂ S 15.44 ± 4.907Ab Mn 0.4AI 331.68 \pm 11.06Cb 0.4AI + H ₂ S 15.0924a = Mn 0.	25Aa 15748.44 ± 629.97Ba	3026.63 ± 321.80Ab	1905.82 ± 193.23 ABa	31238.99 ± 388.96Ab	15.51 ± 1.78Aa
4AI + H ₂ S 10405.55 ± 102.648a 4AI + PAG 10806.80 ± 1205.834a 0.4AI + PAG 10806.80 ± 1205.834a 0.4AI + PAG 2161.53 ± 297.578a 0.4AI + PAG 2551.51 ± 378.608a 2AI 3203.55 ± 83.10Aa 2AI + H ₂ S 3307.60 ± 162.06Aa 2AI + H ₂ S 3307.50 ± 162.06Aa 4AI + H ₂ S 3093.27 ± 163.42Aa 4AI + H ₂ S 3093.27 ± 163.42Aa 4AI + H ₂ S 307.50 ± 162.06Aa 2AI + PAG 3610.66 ± 446.66Aa 4AI + H ₂ S 307.61 ± 1.02Ca 0.4AI + H ₂ S 11.58 ± 3.00Ca 0.4AI + H ₂ S 11.63 ± 3.00Ca 0.4AI + H ₂ S 11.60 ± 0.93Bb 4AI 17.09 ± 0.95Ba 2AI + H ₂ S 11.80 ± 0.93Bb 4AI + H ₂ S 11.80 ± 0.93Bb 4AI + H ₂ S 11.60 ± 0.93Bb AAI + H ₂ S 13.68 ± 1.106Cb 0.4AI + H ₂ S 13.168 ± 1.106Cb 0.4AI + H ₂ S 331.68 ± 11.06Cb 0.4AI + H ₂ S 331.68 ± 1.106Cb 0.4AI + H ₂ S 331.68 ± 11.05Cb 0.4AI + H ₂ S 24.44 ± 114.52Aa	59Aa 12852.33 ± 968.51Ab	3355.19 ± 272.64Aab	1878.07 ± 191.42 Aa	29072.34 ± 1204.10Aa	14.57 ± 1.35Cb
Mg 4Al + PAG 10806.80 ± 1205.83Aa 0.4Al + PAG 0.4Al + 2 2679.11 ± 76.29Ca 0.4Al + PAG 2551.51 ± 378.60Ba 2Al 2Al 2Al 2679.11 ± 76.29Ca 0.4Al + PAG 2551.51 ± 378.60Ba 2Al 2Al 2Al 3203.55 ± 83.10Aa 2Al 3203.55 ± 83.10Aa 2Al 2Al + H ₂ S 3307.60 ± 162.06Aa 2Al + H ₂ S 309.277 ± 163.42Aa 4Al + H ₂ S 309.277 ± 163.42Aa 4Al + H ₂ S 307.60 ± 1.2Ca 0.4Al + H ₂ S 307.61 ± 5.02ABb 2Al + PAG 0.4Al + H ₂ S 0.4Al + H ₂ S 11.58 ± 3.00Ca 0.4Al + H ₂ S 15.68 ± 1.25Bab 2Al + H ₂ S 15.68 ± 1.207Ab Mn 0.4Al 17.09 ± 0.95Ba AAl + H ₂ S 15.09 ± 0.95Ba AAl + H ₂ S 331.68 ± 11.0.52Aa	54Ba 14656.58 ± 769.17ABa	3566.27 ± 65.69Ba	$1511.59 \pm 84.73ABb$	30140.00 ± 1162.14Ba	18.96 ± 0.69Aa
Mg 0.4Al 2161:53 ± 297.57 Ba 0.4Al + PAG 2551:51 ± 378.60 Ba 2Al 2Al + PAG 2551:51 ± 378.60 Ba 2Al 2Al + PAG 2551:51 ± 378.60 Ba 2Al 3203.55 ± 83.10 Aa 281.0 Aa 2Al 3203.55 ± 83.10 Aa 281.0 Aa 2Al + H2 3307.60 ± 162.06 Aa 389.27 ± 163.42 Aa 4Al 3610.66 ± 446.66 Aa 441.66 Aa 4Al + PAG 369.07 ± 163.42 Aa 4Al + PAG 367.00 ± 1.12 Ca 0.4Al + PAG 9.33 ± 1.22 Ca 2Al + PAG 11.68 ± 0.03 Bb 4Al + PAG 11.80 ± 0.93 Bb AAl + PAG 11.80 ± 0.93 Bb AAl + PAG 11.60 Cb 0.4Al + PAG 11.60 Cb 0.4Al 331.68 ± 11.10.50 Cb 0.4Al 331.68 ± 11.10.50 Cb 0.4Al + PAG 331.68 ± 11.10.52 Aa 2Al + PAG	83Aa 12881.85 ± 15.75Bb	$3227.25 \pm 1.88Ab$	1713.41 ± 164.33Bab	28629.31 ± 1365.33Aa	15.77 ± 0.97Ab
0.4Al + H ₂ S 2679.11 ± 76.29Ca 0.4Al + PAG 251151 ± 378.60Ba 2Al + H ₂ S 3307.60 ± 162.06Aa 2Al + H ₂ S 3307.60 ± 162.06Aa 2Al + H ₂ S 3089.27 ± 163.42Aa 4Al + H ₂ S 3089.27 ± 163.42Aa 4Al + H ₂ S 305.980 ± 57.45Bb 4Al + H ₂ S 305.980 ± 57.45Bb 4Al + H ₂ S 305.980 ± 57.45Bb 4Al + H ₂ S 11.58 ± 3.00Ca 0.4Al + H ₃ S 11.58 ± 3.00Ca 0.4Al + H ₂ S 11.58 ± 3.00Ca 2Al + PAG 9.33 ± 1.22Ca 2Al + PAG 9.33 ± 1.22Ca 2Al + PAG 11.58 ± 3.00Ca 0.4Al + H ₂ S 11.58 ± 3.00Ca 2Al + H ₂ S 11.59Bb 4Al + H ₂ S 11.57Bab 4Al + H ₂ S 11.57Bab 2Al + H ₂ S 11.57Bab 0.4Al + H ₂ S 331.68 ± 11.05Cb 0.4Al + H ₂ S 208.65 ± 12.29Ac 2Al + H ₂ S 22.38 ± 44.740Ab 2Al + H ₂ S 22.38 ± 44.740Ab 2Al + H ₂ S 22.38 ± 44.740Ab 2Al + H ₂ S 62.31Bb 4Al + H ₂ S 62.31Bb	7Ba 2987.80 ± 291.75Aab	1388.72 ± 43.03Bb	$346.52 \pm 15.37Bc$	6884.56 ± 597.72Bb	18.87 ± 1.45Aa
0.4AI + PAG 2551.51 ± 378.608a 2AI 2AI + H2S 3307.60 ± 162.06Aa 4AI 3610.66 ± 446.66Aa 4AI + H2S 3059.27 ± 163.42Aa 4AI + H2S 3059.80 ± 57.45Bb 4AI + H2S 3059.80 ± 57.45Bb 2AI + PAG 3707.61 ± 5.02ABb 0.4AI + H2S 3059.80 ± 57.45Bb 2AI + PAG 9.30 ± 1.1.2Ca 0.4AI + H2S 11.58 ± 3.00Ca 0.4AI + H2S 13.68 ± 1.25Bab 2AI + PAG 13.68 ± 1.25Bab 4AI + 12S 13.68 ± 1.25Bab 2AI + H2S 15.49 ± 0.95Ba 2AI + H2S 15.49 ± 0.95Ba AAI + H2S 21.37 ± 0.92Aa Mn 0.4AI 4.41.52Aa 2AI + PAG 14.61 ± 1.07Ab 0.4AI + H2S 331.68 ± 11.06Cb 0.4AI + H2S 22.137a 2AI + H2G 28.956 ±	9Ca 2869.31 ± 12.76Ab	1326.99 ± 29.76Bb	1384.29 ± 37.80Aa	8259.70 ± 93.16Ca	$4.97 \pm 0.21 Bc$
2AI 2AI 3203.55 ± 83.10Aa 2AI + H ₂ S 3307.60 ± 162.06Aa 2AI + H ₂ S 3307.60 ± 162.06Aa 4AI 3610.66 ± 446.66Aa 4AI + H ₂ S 3059.27 ± 163.42Aa 4AI + H ₂ S 3059.80 ± 57.45Bb 4AI + PAG 3059.80 ± 57.45Bb 4AI + PAG 307.61 ± 5.02ABb 0.4AI + H ₂ S 3059.80 ± 57.45Bb 2AI + PAG 2707.61 ± 5.02ABb 0.4AI + H ₂ S 3059.80 ± 57.45Bb 2AI + PAG 9.32 ± 1.22Ca 0.4AI + H ₂ S 11.68 ± 3.00Ca 0.4AI + H ₂ S 13.68 ± 1.25Bab 2AI + H ₂ S 13.68 ± 1.207Ab Mn 0.4AI 17.09 ± 0.95Ba 0.4AI + H ₂ S 14.61 ± 1.07Ab 0.4AI + H ₂ S 31.68 ± 11.06Cb 0.4AI + H ₂ S 31.68 ± 11.05Cb 0.4AI + H ₂ S 331.68 ± 11.05Cb 2AI + H ₂ S 22.323Bb <	0Ba 3266.05 ± 76.24Aa	2152.37 ± 144.18Aa	$497.68 \pm 22.78Ab$	8467.61 ± 526.12 ABa	16.04 ± 1.39Ab
2Al + H ₂ S 3307.60 ± 162.06 a 2Al + PAG 3089.27 ± 163.42 Aa 4Al 3610.66 ± 446.66 Aa 4Al + H ₂ S 3059.80 ± 57.45 Bb 4Al + PAG 3059.80 ± 57.45 Bb 0.4Al + PAG 2707.61 ± 5.02 ABb 0.4Al + PAG 11.38 ± 3.00 Ca 0.4Al + PAG 11.58 ± 3.00 Ca 2Al + H ₂ S 11.69 ± 0.95 Ba 2Al + PAG 11.69 ± 0.95 Ba 2Al + H ₂ S 15.49 ± 0.95 Ba 2Al + H ₂ S 15.49 ± 0.95 Ba 2Al + PAG 17.09 ± 0.93 Bb 4Al + 1 ₂ S 15.49 ± 0.95 Ba 0.4Al + PAG 14.61 ± 1.07 Ab 0.4Al + PAG 14.61 ± 1.07 Ab 0.4Al + PAG 14.61 ± 1.07 Ab 0.4Al + PAG 331.68 ± 11.306 Cb 0.4Al + PAG 331.68 ± 11.06 Cb 0.4Al + PAG 331.68 ± 11.106 Cb 0.4Al + PAG 331.68 ± 11.106 Cb 0.4A + PAG 333.68 ± 12.29 Ac	0Aa 2612.19 ± 216.71Ab	1578.27 ± 51.43Ab	924.90 ± 98.81Ab	8318.92 ± 253.97Ac	$8.06 \pm 0.95 Bb$
2AI + PAG 3089.27 ± 163.42a 4AI 4AI 3610.66 ± 446.66Aa 4AI + H ₂ S 3059.80 ± 57.45Bb 4AI + PAG 3059.80 ± 57.45Bb 4AI + PAG 2707.61 ± 5.02ABb 2AI 0.4AI + H ₂ S 3059.80 ± 57.45Bb 2AI 0.4AI + PAG 8.70 ± 1.12Ca 0.4AI + PAG 9.33 ± 1.22Ca 2AI 11.58 ± 3.00Ca 0.4AI + PAG 9.33 ± 1.22Ca 2AI + H ₂ S 13.68 ± 1.25Bab 2AI + H ₂ S 13.68 ± 1.25Bab 4AI 17.09 ± 0.95Ba 2AI + H ₂ S 13.68 ± 1.25Bab 4AI 17.91 ± 2.08Ab 4AI 17.91 ± 2.092Aa 4AI 17.91 ± 2.092Aa 4AI + PAG 14.61 ± 1.07Ab 0.4AI + PAG 14.61 ± 1.07Ab 0.4AI + PAG 14.61 ± 1.07Ab 0.4AI + PAG 331.68 ± 11.06Cb 0.4AI + PAG 331.68 ± 11.05Cb 0.4AI + PAG 331.68 ± 11.14.740Ab 2AI + PAG 725.34 ± 47.40Ab 2AI + PAG	6Aa 3142.00 ± 338.93Aa	1660.00 ± 103.48Ab	1322.66 ± 58.80Aa	9432.27 ± 159.11Aa	6.14 ± 0.43Ab
4AI 3610.66 ± 446.66 a $4AI + H_2S$ 3059.80 ± 57.45 Bb $4AI + PAG$ $2707.61 \pm 5.02 ABb$ $4AI + PAG$ $2707.61 \pm 5.02 ABb$ $AAI + PAG$ $2707.61 \pm 5.02 ABb$ $AAI + PAG$ $2707.61 \pm 5.02 ABb$ $0.4AI + PAG$ $8.70 \pm 11.12 Ca$ $0.4AI + PAG$ $9.33 \pm 1.22 Ca$ $2AI$ $11.58 \pm 3.00 Ca$ $2AI$ $13.68 \pm 1.25 Bab$ $2AI$ $13.68 \pm 1.25 Bab$ $2AI$ $13.68 \pm 1.25 Bab$ $2AI + H_2S$ $11.60 \pm 0.93 Bb$ $4AI$ $17.09 \pm 2.08 Ab$ $4AI$ $17.09 \pm 2.08 Ab$ $4AI + H_2S$ $21.37 \pm 0.92 Aa$ $4AI + H_2S$ $21.37 \pm 0.92 Aa$ $AI + PAG$ $14.61 \pm 1.07 Ab$ $AI + PAG$ $14.61 \pm 1.107 Ab$ $AI + PAG$ $31.68 \pm 11.206 Cb$	2Aa 3290.93 ± 108.91Aa	1908.25 ± 31.93Ba	498.33 ± 39.52Ac	$8786.78 \pm 71.55Ab$	16.70 ± 1.37Aa
4AI + H ₂ S 3059,80 ± 57,45Bb 4AI + PAG 2707,61 ± 5.02ABb 4AI + PAG 2707,61 ± 5.02ABb 0.4AI + H ₂ S 0.4AI + PAG 0.4AI + PAG 8.70 ± 1.12Ca 0.4AI + PAG 9.33 ± 1.22Ca 0.4AI + PAG 11.58 ± 3.00Ca 0.4AI + PAG 13.68 ± 1.25Bab 2AI + H ₂ S 15.49 ± 0.95Ba 2AI + H ₂ S 15.49 ± 0.95Ba 4AI 17.09 ± 0.93Bb 4AI 17.09 ± 0.93Bb 4AI 17.91 ± 2.092Aa 4AI 17.91 ± 2.092Aa 4AI 17.92 ± 0.92Ba 0.4AI + PAG 14.61 ± 1.07Ab Mn 0.4AI + PAG 14.61 ± 1.07Ab Mn 0.4AI + PAG 14.61 ± 1.07Ab 0.4AI + PAG 14.61 ± 1.07Ab 0.4AI + PAG 14.61 ± 1.14.52Aa 2AI + PAG 331.68 ± 11.16Cb 0.4AI + PAG 838.44 ± 114.52Aa 2AI + PAG 580.86 ± 12.29Ac 2AI + PAG 580.86 ± 12.29Ac 2AI + PAG 725.34 ± 47.40Ab 2AI + PAG 928.92 ± 45.21Aa 4AI 460.62 ± 66.3	6Aa 2809.35 ± 171.88Aa	1442.35 ± 119.96ABb	954.41 ± 122.46Ab	8816.77 ± 562.41 Aa	$8.30 \pm 0.78Bb$
Zn 4Al + PAG 2707,61 ± 5.02ABb Q.4Al + PAG 8.70 ± 1.12Ca 0.4Al + PAG 9.33 ± 1.22Ca 0.4Al + PAG 9.33 ± 1.22Ca 2Al 13.68 ± 1.25Bab 2Al + PAG 13.68 ± 1.25Bab 2Al + PAG 13.68 ± 1.25Bab 2Al + PAG 13.68 ± 1.25Bab 2Al + H2 13.68 ± 1.25Bab 4Al 17.80 ± 0.93Bb 4Al 17.90 ± 2.08Ab 4Al 17.90 ± 2.08Ab 4Al 17.80 ± 0.93Bb 0.4Al 17.90 ± 2.08Ab 4Al + PAG 11.60 ± 0.93Bb 0.4Al + PAG 14.61 ± 1.07Ab 0.4Al + PAG 331.68 ± 11.06Cb 0.4Al + PAG 331.68 ± 11.07Ab 0.4Al + PAG 331.68 ± 11.07Ab 0.4Al + PAG 331.68 ± 11.14.52Aa 2Al + PAG 580.86 ± 12.29Ac 2Al + PAG 755.34 ± 47.40Ab 2Al + PAG 755.34 ± 47.40Ab 2Al + PAG 928.92 ± 45.21Aa 4Al + H ₂ S 528.13 ± 14.12Ba 4Al + H ₂ S 628.13 ± 14.12Ba	5Bb 2752.72 ± 222.97Aa	$1561.74 \pm 53.55Ab$	1284.43 ± 54.96Aa	8658.69 ± 280.14Ba	5.74 ± 0.13Ab
Zn 0.4Al 8.70±1.12Ca 0.4Al+H ₅ S 11.58±3.00Ca 0.4Al+PAG 9.33±1.22Ca 2Al 13.68±1.25Bab 2Al 13.68±1.25Bab 2Al+H ₂ S 13.68±1.25Bab 2Al+H ₂ S 13.68±1.25Bab 2Al+H ₂ S 13.68±1.25Bab 2Al+H ₂ S 13.68±1.25Bab 4Al 17.09±2.08Ab 4Al 17.09±2.08Ab 4Al+H ₂ S 21.37±0.92Aa 4Al+H ₂ S 21.37±0.92Aa 4Al+H ₂ S 21.37±0.92Aa 4Al+H ₂ S 331.68±11.06Cb 0.4Al+H ₂ S 331.68±11.06Cb 2Al+H ₂ S 755.34±47.40Ab 2Al+H ₂ S 755.34±45.21Aa 4Al	ABb 2584.47 ± 406.13Ba	2072.19 ± 16.34ABa	387.73 ± 33.22Bc	7752.01 ± 387.21Bb	19.12 ± 2.39Aa
0.4AI + H ₅ S 11.58 ± 3.00Ca 0.4AI + PAG 9.33 ± 1.22Ca 2AI + H ₂ S 1.368 ± 1.25Bab 2AI + H ₂ S 13.68 ± 1.25Bab 2AI + PAG 11.80 ± 0.93Bb 4AI + H ₂ S 21.37 ± 0.92Aa 4AI + H ₂ S 21.37 ± 0.92Aa 4AI + H ₂ S 21.37 ± 0.92Aa 0.4AI + H ₂ S 331.68 ± 11.06Cb 0.4AI + H ₂ S 331.68 ± 11.06Cb 0.4AI + H ₂ S 331.68 ± 11.05Cb 0.4AI + H ₂ S 331.68 ± 11.05Cb 0.4AI + H ₂ S 331.68 ± 11.05Cb 0.4AI + H ₂ S 331.68 ± 11.29Ac 2AI + PAG 928.92 ± 45.21Aa 4AI 4H ₂ S 628.13Bb 4AI + H ₂ S 628.13B + 47.21Aa 4AI 4H ₂ S 628.13 ± 14.12Ba	a 12.22 ± 1.13Ba	18.92 ± 1.49Bb	23.29 ± 1.72Bc	63.12 ± 2.34Bc	1.72 ± 0.14 Aa
0.4AI + PAG 9.33 ± 1.22Ca 2AI 13.68 ± 1.25Bab 2AI + H ₂ S 15.49 ± 0.95Ba 2AI + PAG 11.80 ± 0.93Bb 4AI 17.09 ± 2.08Ab 4AI 17.09 ± 2.08Ab 4AI + H ₂ S 11.30 ± 2.08Ab 4AI + H ₂ S 11.709 ± 2.08Ab 4AI + H ₂ S 11.709 ± 2.08Ab 4AI + H ₂ S 21.37 ± 0.92Aa 0.4AI + H ₂ S 31.68 ± 11.07Ab 0.4AI + H ₂ S 331.68 ± 11.06Cb 0.4AI + H ₂ S 725.34 ± 47.40Ab 2AI 580.86 ± 12.29Ac 2AI 580.86 ± 12.29Ac 2AI + H ₂ S 725.34 ± 47.40Ab 2AI + H ₂ S 628.13 ± 14.12Ba 4AI + H ₂ S 628.13 ± 14.12Ba	a 14.66 ± 2.74Aa	20.42 ± 2.36Bb	82.47 ± 4.76Ca	129.13±5.16Ba	$0.57 \pm 0.04Bc$
$\begin{array}{ccccccc} 2AI & 13.68 \pm 1.25Bab \\ 2AI + H_2 S & 15.49 \pm 0.95Ba \\ 2AI + PAG & 11.80 \pm 0.93Bb \\ 4AI & 17.09 \pm 2.08Ab \\ 4AI + H_2 S & 21.37 \pm 0.92Aa \\ 4AI + PAG & 14.61 \pm 1.07Ab \\ 0.4AI & 434.54 \pm 49.93Bb \\ 0.4AI + H_5 S & 331.68 \pm 11.06Cb \\ 0.4AI + H_5 S & 331.68 \pm 11.06Cb \\ 0.4AI + PAG & 834.44 \pm 114.52Aa \\ 2AI & 580.86 \pm 12.29Ac \\ 2AI + H_2 S & 725.34 \pm 47.40Ab \\ 2AI + PAG & 928.92 \pm 45.21Aa \\ 4AI & 460.62 \pm 66.33Bb \\ 4AI + H_2 S & 628.13 \pm 14.12Ba \\ 4AI + H_2 S & 648.14Ba \\ 4AI + H_2 S & 648.$	a 12.43 ± 0.50Ba	25.11±0.62Ba	59.10 ± 2.76Aa	105.96 ± 1.00 Cb	0.80 ± 0.07Cb
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ab 14.98 ± 1.59ABa	27.60 ± 2.46Aa	74.61 ± 5.32Aa	130.86 ± 3.45Ab	$0.76 \pm 0.11Bb$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ia 16.72 ± 1.98Aa	26.31 ± 3.59ABa	123.25 ± 4.99Aa	181.77 ± 5.41Aa	0.48 ± 0.02Cc
4AI 17.09 ± 2.08 Ab $4AI + H_2S$ $21.37 \pm 0.92 Aa$ $4AI + H_2S$ $21.37 \pm 0.92 Aa$ $4AI + PAG$ $14.61 \pm 1.07 Ab$ $AAI + PAG$ $14.61 \pm 1.07 Ab$ $0.4AI$ $434.54 \pm 49.93 Bb$ $0.4AI$ $435.53 \pm 44.740 Ab$ $2AI$ $580.86 \pm 12.29 Ac$ $2AI$ $580.86 \pm 12.29 Ac$ $2AI$ $580.86 \pm 12.29 Ac$ $2AI$ $725.34 \pm 47.40 Ab$ $2AI$ $725.34 \pm 47.40 Ab$ $2AI$ PAG $928.92 \pm 45.21 Aa$ $4AI$ $460.62 \pm 66.33 Bb$ $4AI$ $460.62 \pm 66.33 Bb$	b 20.59 ± 4.06Aa	30.27 ± 1.78Aa	55.57 ± 2.46Aa	118.24 ± 3.15Bc	1.13 ± 0.07Aa
4Al + H ₂ S 21.37 ± 0.92Aa 4Al + PAG 14.61 ± 1.07Ab 4Al + PAG 14.61 ± 1.07Ab 0.4Al + PJS 331.68 ± 11.06Cb 0.4Al + PAG 834.44 ± 114.52Aa 2Al 580.86 ± 12.29Ac 2Al 580.86 ± 12.29Ac 2Al 580.86 ± 12.29Ac 2Al + PAG 928.92 ± 45.21Aa 2Al + PAG 928.92 ± 45.21Aa 4Al 460.62 ± 66.33Bb 4Al + H ₂ S 628.13 ± 14.12Ba	b 18.44 ± 4.07Aa	29.14 ± 2.30 Aa	82.54 ± 7.89Aa	147.20 ± 14.19Ab	0.78 ± 0.09Ba
4AI + PAG 14.61 ± 1.07Ab 0.4AI 0.4AI 0.4AI + H ₂ S 331.68 ± 11.06Cb 0.4AI + PAG 834.44 ± 114.52Aa 2AI 580.86 ± 12.29Ac 2AI 580.86 ± 12.29Ac 2AI + PAG 928.92 ± 45.21Aa 4AI 42 4AI 42 4AI + H ₂ S 725.34 ± 47.40Ab 2AI + PAG 928.92 ± 45.21Aa 4AI 460.62 ± 66.33Bb 4AI + H ₂ S 628.13 ± 14.12Ba	a 17.90 ± 0.30Aa	31.47 ± 5.39 Aa	101.06 ± 5.07 Aa	171.80 ± 9.69 Aa	0.70 ± 0.02 Aa
Mn 0.4Al H3 434.54 ± 49.93Bb 0.4Al + H2 331.68 ± 11.06Cb 331.68 ± 11.06Cb 0.4Al + PAG 834.44 ± 114.52Aa 2Al 2Al 580.86 ± 12.29Ac 2Al + H2 2Al + H2 725.34 ± 47.40Ab 2Al + H2 2Al + PAG 928.92 ± 45.21Aa 4Al 4Al 460.62 ± 66.33Bb 4Al + H2	b 13.16 ± 0.38Bb	33.98 ± 3.70Aa	67.89 ± 9.40Aa	1 29.63 ± 7.39Ab	0.93 ± 0.19ABa
0.4AI + H ₂ S 331.68 ± 11.06Cb 0.4AI + PAG 834.44 ± 114.52Aa 2AI 580.86 ± 12.29Ac 2AI + H ₂ S 725.34 ± 47.40Ab 2AI + PAG 928.92 ± 45.21Aa 4AI + H ₂ S 628.13 ± 14.12Ba	Bb 545.22 ± 57.44Ab	166.17 ± 11.21 Ab	134.39 ± 12.51Cc	1280.32 ± 34.67Cc	8.60 ± 1.20Aa
0.4AI + PAG 834.44 ± 114.52Aa 2AI 580.86 ± 12.29Ac 2AI + H ₂ S 725.34 ± 47.40Ab 2AI + PAG 928.92 ± 45.21Aa 4AI 4 H ₂ S 62.813 ± 14.12Ba	Cb 877.57 ± 9.52Aa	344.66 ± 11.87Ba	$754.57 \pm 31.78Ab$	$2308.49 \pm 11.48Bb$	$2.06 \pm 0.12Bb$
2AI 580.86 \pm 12.29Ac 2AI + H ₂ S 725.34 \pm 47.40Ab 2AI + PAG 928.92 \pm 45.21Aa 4AI 460.62 \pm 66.33Bb 4AI + H ₂ S 628.13 \pm 14.12Ba	2Aa 550.37 ± 95.76Ab	133.36 ± 16.66Ac	4346.17 ± 226.23ABa	5864.34 ± 188.71 Aa	$0.35 \pm 0.03Bc$
$2AI + H_2S 725.34 \pm 47.40Ab$ $2AI + PAG 928.92 \pm 45.21Aa$ $4AI 460.62 \pm 66.33Bb$ $4AI + H_2S 628.13 \pm 14.12Ba$	Ac 493.94 ± 29.55Ac	140.13 ± 9.00 Bb	$331.60 \pm 27.71Bc$	1546.53 ± 53.41 Bc	3.68 ± 0.26Ba
2AI + PAG	Ab 812.18 ± 82.33Aa	441.12 ± 40.94 Aa	700.79 ± 23.40 Bb	2679.43 ± 33.48Ab	2.83 ± 0.08Ab
4AI 460.62 \pm 66.33Bb 4AI + H ₂ S 628.13 \pm 14.12Ba	Aa 624.51 ± 22.29Ab	98.97 ± 8.63Ab	3967.98 ± 23.31Ba	5620.38 ± 56.40 Aa	$0.42 \pm 0.01 \text{Ac}$
$4AI + H_2S$ 628.13 ± 14.12Ba	Bb 555.60 ± 64.32Ac	177.93 ± 12.21Ab	556.44 ± 62.27 Ab	$1750.59 \pm 105.01 \text{ Ab}$	$2.16 \pm 0.17 Cb$
	Ba 689.53 ± 39.43Ba	276.52 ± 2.49Ca	555.42 ± 21.57 Cb	2149.60 ± 47.85 Cb	2.87 ± 0.16Aa
4AI + PAG 435.88 ± 72.96Bb	Bb 601.91 ± 11.98Aab	$107.04 \pm 23.12Ac$	4802.02 ± 610.68 Aa	5946.86 ± 651.79 Aa	0.24 ± 0.02 Cc
Fe 0.4Al 83.08 ± 8.24Bc	sc 228.98 ± 29.41Ab	116.78 ± 11.68Ab	212.67 ± 18.38Cc	$641.51 \pm 8.04Bc$	2.03 ± 0.29Aa
$0.4AI + H_2S$ 142.21 ± 15.79Aa	Aa 399.33 ± 0.52Aa	292.37 ± 11.60Aa	$401.46 \pm 66.03 Ab$	$1235.37 \pm 78.04Ab$	2.11 ± 0.34Aa
0.4Al + PAG 111.92 ± 8.22Bb	3b 230.35 ± 33.40ABb	$110.94 \pm 14.25Ab$	956.68 ± 72.57Aa	1409.89 ± 74.53Ba	$0.48 \pm 0.04Ab$
2AI 147.45 ± 5.50Ab	4b 207.06 ± 16.44Aa	122.89 ± 29.28Aa	702.60 ± 109.64 Ab	1180.00 ± 150.22 Ab	0.69 ± 0.07Ba
$2AI + H_2S$ 130.75 ± 8.31Ab	db 257.56 ± 31.45Ba	136.29 ± 7.22Ca	$521.81 \pm 202.62Ab$	1046.41 ± 198.89Ab	1.13 ± 0.50Ba
2AI + PAG 216.42 ± 11.66Aa	Aa 266.43 ± 43.53Aa	110.46 ± 8.78Aa	1110.40 ± 18.95Aa	1703.70±19.91Aa	0.53 ± 0.04Aa
4AI 134.64 ± 13.60Ab	Ab 208.35 ± 12.59Ab	105.13 ± 5.55 Ab	534.53 ± 88.15Bb	982.65 ± 96.52Ab	$0.85 \pm 0.16Bb$
$4AI + H_2S$ 145.29 ± 2.86Ab	4b 270.95 ± 21.28Ba	201.43 ± 16.05Ba	368.04 ± 37.29Ab	985.70 ± 44.68Ab	1.69 ± 0.16ABa
4Al + PAG 230.61 ± 38.35Aa	Aa 163.31 ± 45.36Bb	103.44 ± 3.47 Ab	944.38 ± 142.73Aa	1441.74 ± 137.29Ba	$0.54 \pm 0.14 Ac$

Beverage Plant Research

It was demonstrated that H_2S promoted an increase in content of Zn in different tissues (Table 3). Meanwhile, the total content of Zn also showed that H_2S -pretreated significantly promoted the accumulation of Zn in *C.sinensis*. The effects of H_2S and PAG on TF of Zn under different Al concentrations were also inconsistent. Significantly inhibited TF of Zn was observed in exogenous H_2S or PAG followed by 0.4Al, however, TF of Zn showed significant performance as PAG + 2Al > 2Al > H_2S + 2Al, but there was no significant difference in the effect of exogenous H_2S or PAG on TF of Zn at 4Al (Table 3).

Content of Mn further increased after applying $H_2S + 2AI$ and $H_2S + 4AI$ to young leaves, while content of Mn was decreased but not significant in $H_2S + 0.4$ Al compared with simple AI treatment (Table 3). It was $H_2S + AI$ that dramatically increased Mn levels compared to AI in mature leaves, consistent with the performance in stems (Table 3). In roots, it was PAG + AI that showed a significant increase in content of Mn compared to AI, and H_2S significantly promoted an increase in Mn only at 0.4AI and 2AI (Table 3). It is interesting to note that total content of Mn was similar to the content of Mn under each treatment in roots (Table 3). The early application of PAG increased the accumulation of total Mn in tea plants compared to AI alone, but its TF was significantly inhibited, with TF of Mn at 0.4AI was 24.57 times that of $H_2S + 0.4AI$, 2AI was 8.76 times that of $H_2S + 2AI$, and 4AI was nine times that of $H_2S + 4AI$.

Exogenous H_2S followed by 0.4Al resulted in a remarkable increase in the content of Fe in young leaves, but the effect of H_2S on content of Fe was not significant at 2Al and 4Al, whereas PAG showed a significant increase in content of Fe (Table 3).

H₂S also increased content of Fe in mature leaves at various Al concentrations, as well as in stems (Table 3). Whereas, exogenous PAG significantly increased content of Fe in roots, and the total content of Fe was also significantly affected by exogenous PAG (Table 3). Under different Al concentrations, H₂S + Al exhibited a promotion of Fe-TF, while PAG + Al inhibited TF of Fe (Table 3).

Observation of ultrastructure under different treatments

A clear cell membrane could be seen in normal Al concentration, and the well-developed chloroplast having regular arrangements of thylakoid membranes could also be observed (Fig. 3a). At the same time, no osmiophilic granules (OG) were present in chloroplasts under H₂S + 0.4Al (Fig. 3b), but application of PAG + 0.4Al led to appearance of OG in chloroplasts (Fig. 3c). Under stress of 2Al, the chloroplast membranes (PE) were still visible, but OG appeared (Fig. 3d), H₂S reduced OG (Fig. 3e), and the early application of PAG generated more OG (Fig. 3f). Although, chloroplast structure was relatively intact, cells with scattered stromal lamellae under 4Al stress, and the stromal lamellar structure of H₂S + 4Al loosened even more (Fig. 3g, h), with solubilization and even vacuolation occurring in PAG + 4Al (Fig. 3i).

Chlorophyll content and photosynthetic parameters analysis

An increase was observed in chl a content under H_2S as compared to Al treatment alone, however, reduction of chl a showed in exogenous PAG, and chl b content has the same performance (Fig. 4a, b). Furthermore, total chlorophyll content

Fig. 3 Different changes in ultrastructure of *C. sinensis* after different treatments. (a) 0.4AI, (b) $H_2S + 0.4AI$, (c) PAG + 0.4AI, (d) 2AI, (e) $H_2S + 2AI$, (f) PAG + 2AI, (g) 4AI, h: $H_2S + 4AI$, (i) PAG + 4AI. PE: chloroplast membrane, Ch: chloroplast, SG: starch granules, Th: matrix lamellae, OG: osmiophilic granule. Scale bar = 1.0 μ m.

Beverage Plant Research

also has the same trend, and with the increase of Al concentration, the total chlorophyll content of H_2S + Al increases by 21.15%, 11.59%, and 17.64% compared to Al, respectively (Fig. 4c). Nevertheless, the results of chl a/chl b showed the opposite, namely PAG + Al > H₂S + Al (Fig. 4d).

Pn under 0.4Al was significantly promoted by application of H_2S , but pretreatment with PAG significantly decreased Pn (Fig. 5a). Differently, the effect of applying H_2S and PAG on Pn showed an opposite trend at 2Al, and exogenous application of

 H_2S and PAG showed significant inhibition compared to 4AI alone (Fig. 5a). Gs showed a consistent trend at 0.4AI and 4AI, with $H_2S + AI > AI > PAG + AI$ (Fig. 5b). Ci were different under different treatments with different AI concentrations, namely $H_2S + 0.4AI > 0.4AI > PAG + 0.4AI$, 2AI $> H_2S + 2AI > PAG + 2AI$, and PAG $+ 4AI > 4AI > H_2S + 4AI$ (Fig. 5c). The results of Tr under normal AI concentration were consistent with those of Pn, Gs and Ci, but at high concentrations of AI, they showed 2AI $> PAG + 2AI > H_2S + 2AI > H_2S + 2AI > PAG$

Fig. 4 Changes in chlorophyll content of *C. sinensis* after different treatments. Different lowercase letters represent significant differences among different H_2S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H_2S condition (p < 0.05), as determined by the Duncan test.

Fig. 5 Changes in photosynthetic parameters of *C. sinensis* under different treatments. Different lowercase letters represent significant differences among different H_2S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H_2S condition (p < 0.05), as determined by the Duncan test.

(Fig. 5d). Tr agreed with Pn, Gs, Ci results at normal Al concentration, but exhibited $2AI > PAG + 2AI > H_2S + 2AI$ and $4AI > H_2S + 4AI > PAG + 4AI$, respectively, at AI stress concentrations (Fig. 5).

Effects of H₂S on Proline, MDA content and enzyme activity under Al conditions

Interestingly, MDA content in leaves of H₂S pretreatment was inhibited by 3.61% compared to 2Al, whereas preincubation of PAG significantly increased MDA content (Fig. 6a). Proline content significantly accumulated in Al stress compared to 0.4Al, and its content increases by 2.82% under H₂S + 2Al compared to 2Al, while pretreatment with H₂S before 4Al treatment did not inhibit lipid peroxidation through proline content (Fig. 6b).

Similar tendency was observed in roots and leaves under normal AI, with H₂S + 0.4AI compared to 0.4AI not significantly increasing CAT activity by 15% and 16.67%, respectively (Fig. 7a & b). CAT showed the highest activity of H₂S + 2AI in leaves, but the lowest activity in roots under H₂S + 2AI (Fig. 7a & b). And CAT activity of leaves at 4AI was higher than that of H₂S + 4AI at 4AI and PAG + 4AI, while the CAT activity in roots treated with PAG + 4AI was higher than that of 4AI and H₂S + 4AI (Fig. 7a & b).

Similarly, POD activity showed the same trend in roots and leaves only under normal AI, with POD activity in PAG + 0.4AI greater than that in 0.4AI and H₂S + 0.4AI (Fig. 7c & d). Meanwhile, it is noteworthy that POD activity after H₂S + 2AI is 3.56 times compared to 2AI in leaves, while the lowest POD activity was observed in the roots at H₂S + 2AI, and the same was showed PAG + AI > AI > H₂S + AI at 4 AI (Fig. 7c & d). However,

Fig. 6 The effect of different treatments on (a) MDA and (b) proline content in tea leaves. Different lowercase letters represent significant differences among different H₂S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

there was no significant difference between the treatments at 4AI for the leaves (Fig. 7c).

Compared with 0.4Al treatment, $H_2S + 0.4Al$ treatment increased SOD activity in leaves and roots (Fig. 7e & f). However, there was no significant difference in SOD activity after applying H_2S at 4 mM Al³⁺ in the roots and leaves (Fig. 7e & f).

But the application of H_2S and PAG under 2Al conditions in leaves failed to stimulate the activity of SOD, and pretreatment with H_2S or PAG in roots dramatically decreased the activity of SOD (Fig. 7e & f). Furthermore, there was no significant difference in SOD activity among different treatments at 4Al in leaves and roots (Fig. 7e & f).

GSH content in leaves under normal Al and 2Al all exhibited $H_2S + Al > Al > PAG + Al$, but GSH exhibited $Al > H_2S + Al > PAG + Al$ in 4Al (Fig. 8a). The content of GSSG was decreased in PAG-treated at 0.4Al and 2Al, but was increased in PAG + 4Al cultures (Fig. 8b). Noteworthy, no significant change of GSH/GSSG was discovered when H_2S or PAG was added together with Al treatment (Fig. 8c).

It was found that GST activity in leaves was higher in $H_2S + 0.4AI$ than under 0.4AI and PAG + 0 .4AI treatments (Fig. 8d). And GST activity exhibited the highest in $H_2S + AI$, followed by 2AI, and the lowest in PAG + 2AI. Unlike under 4AI where the activity of GST was inhibited by 4AI treatment with H_2S and PAG, although the level of decrease was not significant (Fig. 8d).

Tea leaves exposed to $H_2S + 0.4AI$ treatment exhibited a significant increase of GR activity in comparison with 0.4AI alone and PAG + 0.4AI samples (Fig. 8e). PAG + 2AI and $H_2S + 4AI$ treatments had the lowest GR activity compared with 2AI and 4AI, respectively (Fig. 8e).

LCD activity only showed H₂S + 0.4Al > 0.4Al > PAG + 0.4Al under normal Al concentration in leaves, and there was a significant difference among different treatments (Fig. 9a). However, the application of high concentration Al showed no significant difference under early application of H₂S or PAG (Fig. 9a). What is different in root is that except for the insignificant difference in LCD activity between H₂S + 2Al, 2Al and PAG + 2Al, all other groups showed significant differences, and LCD activity showed H₂S + Al > PAG + Al (Fig. 9b).

Response of tea components to different treatments

The synthesis of tea polyphenols was drastically promoted by $H_2S + 0.4AI$, but slightly deduced by PAG + 0.4AI (Fig. 10a). Compared to 2AI, $H_2S + 2AI$ increased tea polyphenol content, while PAG + 2AI decreased tea polyphenol content, both of which were not significant (Fig. 10a). Similarly, the effects of various treatments based on 4AI on tea polyphenols were not significant (Fig. 10a).

 H_2S + 0.4Al treatment induced the highest content of amino acids after treatment, significantly higher than both Al and PAG + 0.4Al (Fig. 10b). H_2S + 2Al and H_2S + 4Al did not significantly affect the amino acid content when compared to 2Al and 4Al, respectively (Fig. 10b). With PAG + 0.4Al treatment, amino acid content increased compared to 0.4Al, but amino acid content inhibited in PAG + 4Al, and no significant difference between PAG + 2Al and 2Al (Fig. 10b).

Caffeine content at normal Al concentration showed no significant difference in caffeine content among H_2S + 0.4Al, 0.4Al, PAG + 0.4Al. And H_2S + 2Al, 2Al, PAG + 2Al were the same

Fig. 7 *C. sinensis* on antioxidant enzyme activities in (a), (c), (e) leaves and (b), (d), (f) roots with different treatments. Different lowercase letters represent significant differences among different H₂S conditions under the same AI concentration treatment, and different uppercase letters represent significant differences among different AI concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

(Fig. 10c). The caffeine content only after being subjected to PAG + 4Al was greater than that of H_2S + 4Al and 4Al (Fig. 10c).

Results showed that the most abundant one was epicatechin (EC), along with of epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallocatechin (GC), gallocatechin gallate (GCG), epicatechin gallate (ECG) and catechin (C) detected in tea leaves (Table 4). Compared to 0.4Al, H₂S + 0.4Al increased the total catechin content by 9.48%, while H_2S + 4Al has a 14.45% increase in total catechin content compared to 4AI (Table 4). In each component, GC and EGC under H_2S + 2Al were increased compared to 2Al. C and EC contents can be generally stimulated under H₂S + 0.4Al and PAG + 0.4Al, while C and EC contents were reduced by $H_2S + 4AI$ (Table 4). Although the contents of EGCG, ECG and GCG of ester catechins were relatively low, early application of H₂S was still sufficient to stimulate an increase in EGCG, ECG, and GCG at 0.4Al and 2Al (Table 4). It was found that $H_2S + 0.4AI$ increased EGCG by 19.35% compared to 0.4Al, and H₂S + 2Al increased EGCG by 8.70% compared to 2Al. Interestingly, even with early application of H₂S, EGCG, ECG, and GCG were still repressed by 4AI (Table 4).

Discussion

H₂S induced a well-developed C. *sinensis* and improved root activity

It is easy to accumulate too much availability Al³⁺ in the rhizosphere environment of C. sinensis suitable for planting in acid soil. Al actually has been regarded as an essential element with dose - dependent effect, which is first reflected in root growth and development^[3]. Root growth is stimulated in low concentrations of Al, while in high concentrations of Al, growth of the root and the plant is delayed^[21]. In the present study, we also demonstrated that the effects on root development was strongly dependent on the Al concentration, the root system was damaged and new roots failed to generate by Al stress concentration (Fig. 1a-i). At the same time, it showed that H₂S broke the restriction of Al stress on root development, but PAG promoted the root development hindered by Al stress (Fig. 1a-i). Moreover, pre-treatment with H₂S increased total FW, total DW and root activity of C. sinensis to cope with excessive Al inhibition (Fig. 1j & 2). Recent research has demonstrated that H₂S alleviates the inhibition of plant growth under metal stress in various crop plant species, including mungbean^[22],

Hydrogen sulfide enhanced AI stress in tea plant

Fig. 8 Effect of different treatments on (a) GSH content, (b) GSSG content, (c) GSH/GSSG, (d) GST activity and (e) GR activity in tea leaves. Different lowercase letters represent significant differences among different H₂S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

Fig. 9 *C. sinensis* on LCD activities in (a) leaves and (b) roots with different treatments. Different lowercase letters represent significant differences among different H₂S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

soybean^[23] and *Miscanthus sacchariflorus*^[24]. These results indicated that H₂S can effectively alleviate the growth and development of *C. sinensis* under Al stress.

H₂S promotes plant ion absorption of *C. sinensis* under Al stress

Maintaining constant intracellular ion homeostasis is crucial for plants adapting to stress environments. Most of Al in C. sinensis was contained in root after AI stress (Table 2), affecting the root growth attributes more than the shoot growth attributes, which ultimately limited the growth and development of plants. Similar results were also observed in previous studies^[25,26]. H₂S alleviated the enrichment of Al in roots and promoted the TF of Al under Al stress, while PAG increased the accumulation of Al and inhibited the TF of Al (Table 2). Moreover, H₂S application helped to maintain ion homeostasis by accumulating Ca in mature leaves, Mg, Zn in root and Mn in above-ground parts and increasing the TF of Fe under Al stress (Table 3). It has also been reported that H₂S improves nutrients uptake under AI stress^[27]. The results showed that H₂S directly mitigated inhibitory effect of AI toxicity on root growth by decreasing content of Al in root systems, thus pre-application of H₂S promoted the root growth and development of C. sinensis. Therefore, an increased uptake of Ca, Mg, Zn and Mn has been explained as a consequence of the stimulation of root arowth under H₂S.

H₂S enhances chlorophyll synthesis and ultrastructural stability under Al stress

We confirmed that excessive accumulation of Al disrupted ultrastructural and inhibited several processes, such as chlorophyll content and photosynthesis. Meanwhile, application of exogenous H₂S enhanced chlorophyll content under Al stress conditions (Fig. 4), which was also reported by Ali et al.^[27], who determined that H₂S increased chlorophyll a and chlorophyll b by reducing damage to thylakoids in the chloroplast of *Brassica napus*. It is well known that the chlorophyll content and photosynthetic rate are closely correlated in plants. However, this result indicates that H₂S failed to promote photosynthesis in *C*.

Fig. 10 The performance of (a) tea polyphenol, (b) free amino acid and (c) caffeine content in different treatments. Different lowercase letters represent significant differences among different H₂S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

Treatment	GC (%)	EGC (%)	C (%)	EC (%)	EGCG (%)	ECG (%)	GCG (%)	Total catechins (%)
0.4AI	0.81 ± 0.03Aa	2.92 ± 0.41Aa	0.24 ± 0.00Ab	3.68 ± 0.42Ab	0.93 ± 0.09Ab	0.38 ± 0.01Aa	0.62 ± 0.06Ab	9.81 ± 1.00Aa
$0.4AI + H_2S$	$0.80 \pm 0.01 Aa$	2.91 ± 0.06Aa	0.248 ± 0.00 Aa	4.30 ± 0.17Aa	1.11 ± 0.04Aa	0.39 ± 0.00 Aa	$0.73 \pm 0.01 Aa$	10.74 ± 0.16Aa
0.4AI + PAG	$0.82 \pm 0.01 Aa$	2.44 ± 0.22Aa	0.25 ± 0.00Aa	3.95 ± 0.13Aab	$0.94 \pm 0.05 Ab$	$0.37 \pm 0.01 \text{Ab}$	$0.59 \pm 0.04 \text{Ab}$	9.61 ± 0.23Aa
2AI	0.76 ± 0.01Ba	2.30 ± 0.35 Aa	0.24 ± 0.00 Aa	3.44 ± 0.29Aa	$0.92 \pm 0.05 Aa$	$0.37 \pm 0.01 Aa$	0.60 ± 0.04 Aa	9.41 ± 1.30Aa
$2AI + H_2S$	0.79 ± 0.02 Aa	2.80 ± 0.40 Aa	$0.24 \pm 0.01 Ba$	3.35 ± 0.64 Ba	1.00 ± 0.15ABa	0.37 ± 0.01Ba	$0.62 \pm 0.07 Ba$	8.91 ± 0.76ABa
2AI + PAG	0.76 ± 0.04 Ba	2.58 ± 0.31 Aa	0.24 ± 0.00 Ba	3.76 ± 0.62Aa	1.06 ± 0.17Aa	0.38 ± 0.01 Aa	0.67 ± 0.09 Aa	9.91 ± 1.19Aa
4AI	0.75 ± 0.02Ba	2.31 ± 0.45 Aab	0.24 ± 0.01 Aa	3.59 ± 0.81 Aab	0.96 ± 0.11Ab	$0.37 \pm 0.01 Aa$	$0.57 \pm 0.06 \text{Ab}$	7.82 ± 0.03Aab
$4AI + H_2S$	0.77 ± 0.02 Aa	2.11 ± 0.09Bb	0.23 ± 0.00 Bb	2.75 ± 0.04Bb	0.82 ± 0.03 Bb	0.36 ± 0.00 Ca	$0.53 \pm 0.01 Bb$	8.95 ± 1.57Bb
4AI + PAG	0.76 ± 0.01 Ba	2.80 ± 0.32 Aa	0.25 ± 0.00Aa	4.11 ± 0.51Aa	1.16 ± 0.11 Aa	0.33 ± 0.00 Bb	0.70 ± 0.04 Aa	10.26 ± 0.99Aa

Data are mean values \pm SD (n = 3). Different lowercase letters represent significant differences among different H₂S conditions under the same Al concentration treatment, and different uppercase letters represent significant differences among different Al concentration treatments under the same H₂S condition (p < 0.05), as determined by the Duncan test.

sinensis under Al stress (Fig. 5), suggesting that H_2S mitigates Al toxicity mainly through the increase of chlorophyll content and ultrastructural stabilization rather than regulating photosynthetic parameters.

H₂S regulates the antioxidant system of C. *sinensis* to resist Al stress

Plants suffering from AI toxicity often exhibit symptoms associated with membrane lipid peroxidation, which result in accumulation of MDA^[28]. As previously studied^[29], the present results indicated that H₂S reduce accumulation of MDA in leaves at 2Al (Fig. 6a). Proline participates in removal membrane lipid peroxidation under stress conditions^[30]. However, using exogenous H₂S at 2Al concentration only increases proline content in tea leaves by 2.82% compared to 2Al alone (Fig. 6b). CAT, POD and SOD are the main antioxidant enzymes in plants, all of which are involved in inhibition of oxidative stress and lipid peroxidation^[31] in plants under excessive Al conditions, thus mitigating Al toxicity in plants^[32]. CAT and POD played a role in the leaves under $H_2S + 2AI$, because the activities of CAT and POD in H₂S + 2Al were significantly higher than those in 2AI (Fig. 7a and 7c). There is also evidence indicating that H₂S-induced alleviation in Al toxicity is attributed to elevated CAT and POD activities, but in barley roots^[33]. At the same time, $H_2S + 2AI$ and $H_2S + 4AI$ reduced CAT, POD and SOD activities in roots, compared with 2AI and 4Al, respectively (Fig. 7b, d & f). When concerning reactive oxygen species scavenging systems, it is speculated that H₂S may alleviate AI toxicity through elevated CAT and POD activities in leaves, while the root system mainly alleviates Al injury through other ways, thus the activities of CAT, POD and SOD

decreased. Taken together this data supports the idea that H_2S reduces MDA and increases proline levels by regulating antioxidant enzyme activity to alleviate stress in 2AI treatment in leaves.

GSH, the major non-enzymatic antioxidants in the ASA-GSH cycle contribute to plant antioxidant defense^[34]. Consistent with previous research results^[35], the GSH content in leaves significantly increased after exposure to Al stress. Although exogenous H_2S reduced the GSH content in barley leaves^[35], it did not decrease GSH content in tea leaves under $H_2S + 2AI$, and only decreased the GSH content under $H_2S + 4AI$ (Fig. 8a), indicating that H₂S responds to 4AI toxicity by altering GSH content in leaves, triggering the AsA-GSH cycle and improving antioxidant capacity. Consistently, levels of GSSG, which is reduced to GSH, enhanced in leaves during AI stress exposure, and H₂S reduce the content of GSSG only in 4Al (Fig. 8b). The GSH/GSSG ratio is also an important indicator of intracellular redox homeostasis within cells. Exogenous H₂S modulated the GSH/GSSG ratios by altering GSH and GSSG to varying levels, but resulting in a little change in GSH/GSSG compared to Al stress alone (Fig. 8c). These outcomes are consistent with the findings of previous studies on bermudagrass^[36] and rice^[37]. GST has been found to catalyze the chelation of GSH with metals and reduce the toxicity of metals to plants^[38]. The GST activity under H₂S + 2Al not H₂S + 4Al stress was significantly enhanced (Fig. 8d), plants rely on the binding to minimize damage, which was consistent with the study of Miscanthus sacchariflorus^[24].

GR regulates the redox state of glutathione by converting GSSG into GSH, and also responsible for combating a large amount of reactive oxygen species in plants^[39]. The GR activity

in this study shown an increase under Al stress which is similar to the observations made by Devi et al.^[40]. Higher GR activity after H₂S + 2Al and lower GR activity under H₂S + 4Al were observed, respectively in comparison to 2Al and 4Al (Fig. 8e). The above results confirmed that H₂S alleviates 2Al stress by regulating substances derived from antioxidant system, whereas the mechanism was complex, resulting in a small pattern of changes in H₂S + 4Al compared with 4Al stress alone.

LCD is primarily responsible for catalyses the decomposition of cysteine to H₂S. Further enzyme analysis indicated that the externally applied H₂S enhanced the activity of LCD relative to Al alone stress, which was especially significant in roots. In *Spinacia oleracea* also clearly showed an increase in LCD activity with application H₂S^[41], and an early H₂S signal might promoted higher LCD activity than Al stress after 3 h^[42]. Taken together, LCD activity regulates the internal H₂S pathway in *C. sinensis* and plays a more effective role in roots rather than leaves

H₂S altered tea components during Al stress

Various components of the tea plant, including tea polyphenols, amino acids, caffeine, catechins, are not only closely related to the flavor of the tea plant, but also have an effect when C. sinensis is exposed to stress. The synthesis of amino acids, caffeine, and catechins is regulated by Al^[43]. In this study, compared with normal Al concentration, the changes in tea polyphenol content under Al stress were not significant, while the content of free amino acids was significantly reduced and the content of caffeine was significantly increased (Fig. 9). At normal Al concentration, early application of H₂S increases the content of these substances (Fig. 9), which may be related to the promotion of tea roots growth by H₂S^[44]. As a major component of the ester type catechins, EGCG has been reported to chelate Al, thus conferring Al tolerance to plants^[45]. It was found that the EGCG content increased by 8.70% under H₂S + 2Al compared to 2Al, and excessive stress of 4Al may lead to a decrease in EGCG content, and even with the addition of exogenous H₂S, the changes in content remains small under 4AI stress (Table 4). Combined with the above results, it providing further evidence that the part of H₂S that promotes the increase of components may have chelated with too much Al at $H_2S + AI$, resulting in a decrease in the final content, or may be caused by severe stress at 4AI.

Conclusions

Our results indicate that H_2S may be pivotal actor in enhancing the resistance of *C. sinensis* to Al stress. Increasing biomass, promoting root activity, reducing accumulation of Al in roots and increasing TF of Al, regulating the content of Ca, Mg, Zn, Mn and Fe and their TF in different tissues, increasing chlorophyll content, maintaining ultrastructural homeostasis, regulating substances related to antioxidant pathways and tea plant components all play key roles in the ameliorating effect. Moreover, compared to 4Al, H_2S can better alleviate the stress caused by 2Al.

Author contributions

The authors confirm contribution to the paper as follows: conceptualization: Shu Z, Sui X, Wang Y; investigation: Shu Z, Huang P, Wan S; data curation: Zhang Y, Xing A; project administration: Shu Z, Wang Y; supervision: Wang Y; resources: Li X;

Data availability

All data generated or analyzed during this study are available within the article.

formal analysis, visualization, writing-original draft prepara-

Acknowledgments

We thank Professor Yanjie Xie from College of Life Sciences, Nanjing Agricultural University, for revising the paper. We thank Dr. Yuehua Ma (Central Laboratory of College of Horticulture, Nanjing Agricultural University) for using Microporous Plate Detecting Instrument (Cytation3, BioteK, USA). This work was supported by the National Natural Science Foundation of China (31972457), Jiangsu Agricultural Industry Technology System (JATS[2023]416), and Natural Resources Science and Technology Foundation of Jiangsu Province (2022018).

Conflict of interest

The authors declare that they have no conflict of interest.

Dates

Received 2 December 2023; Revised 27 February 2024; Accepted 4 March 2024; Published online 4 July 2024

References

- 1. Ma JF, Ryan PR, Delhaize E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. *Trends in Plant Science* 6(6):273–78
- Matsumoto H, Hirasawa E, Morimura S, Takahashi E. 1976. Localization of aluminum in tea leaves. *Plant and Cell Physiology* 17(3):627–31
- Sun L, Zhang M, Liu X, Mao Q, Shi C, et al. 2020. Aluminium is essential for root growth and development of tea plants (*Camellia* sinensis). Journal of Integrative Plant Biology 62(6):984–97
- 4. Zhang X, Liu L, Luo S, Ye X, Wen W. 2023. Research advances in aluminum tolerance and accumulation in tea plant (*Camellia sinensis*). *Beverage Plant Research* 3:18
- Huang Y, Duan X, Hu X, Deng Z, Chen F. 2011. Effects of simulated acid rain and AI regulation on tea quality and its AI accumulation. *Journal of Tropical and Subtropical Botany* 19(3):254–59
- 6. Wong MH, Zhang ZQ, Wong JWC, Lan CY. 1998. Trace metal contents (Al, Cu and Zn) of tea: tea and soil from two tea plantations, and tea products from different provinces of China. *Environmental Geochemistry and Health* 20:87–94
- 7. Wang R. 2002. Two's company, three's a crowd: can H_2S be the third endogenous gaseous transmitter?. The FASEB Journal 16(13):1792–98
- Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, et al. 2004. Sulphur supply and infection with *Pyrenopeziza brassicae* influence L-cysteine desulphydrase activity in *Brassica napus* L. *Journal of Experimental Botany* 55:2305–12
- Zhang J, Zhou M, Zhou H, Zhao D, Gotor C, et al. 2021. Hydrogen sulfide, a signaling molecule in plant stress responses. *Journal of Integrative Plant Biology* 63:146–60
- Xing A, Tian Z, Chu R, Xu X, Yin J, et al. 2023. Effects of nitric oxide on response of different tissues to aluminum stress in *Camellia sinensis* (L.) O. Kuntze. *Jiangsu Agricultural Sciences* 51(7):110–17

Hydrogen sulfide enhanced AI stress in tea plant

- 11. Hao J, Peng A, Li Y, Zuo H, Li P, et al. 2022. Tea plant roots respond to aluminum-induced mineral nutrient imbalances by transcriptional regulation of multiple cation and anion transporters. *BMC Plant Biology* 22:203
- Li L, Wang Y, Shen W. 2012. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. *BioMetals* 25:617–31
- Zhang B, Zheng X, Huang W, Chen Y, Shen Z, et al. 2019. Effect of hydrogen sulfide on growth and physiological Indices of wheat seedlings under cadmium stress. *Journal of Triticeae Crops* 39(3):329–37
- Ruf M, Brunner I. 2003. Vitality of tree fine roots: reevaluation of the tetrazolium test. *Tree Physiology* 4:257–63
- Hu B, Huang H, Ji Y, Zhao X, Qi J, et al. 2018. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry. *Pratacultural Science* 35(8):1965–74
- Alatawi A, Mfarrej MFB, Alshegaihi RM, Asghar MA, Mumtaz S, et al. 2023. Application of silicon and sodium hydrosulfide alleviates arsenic toxicity by regulating the physio-biochemical and molecular mechanisms of *Zea mays. Environmental Science and Pollution Research* 30:76555–74
- Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. *Plant and Soil* 39(1):205–7
- AQSIQ. 2018. GB/T 8313-2018 Determination of total polyphenols and catechins content in tea. Inspection and Quarantine of People's Republic of China. http://down.foodmate.net/standard/sort/3/ 53218.html
- AQSIQ. 2013. GB/T 8314-2013 Tea-determination of free amino acids content. Inspection and Quarantine of People's Republic of China. http://down.foodmate.net/standard/sort/3/39356.html
- 20. AQSIQ. 2013. *GB/T 8312-2013 Tea-determination of caffeine content*. Inspection and Quarantine of People's Republic of China. http://down.foodmate.net/standard/sort/3/39355.html
- Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. 2017. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. *Frontiers in Plant Science* 8:1767
- 22. Singh D, Sharma NL, Singh D, Siddiqui MH, Taunk J, et al. 2023. Exogenous hydrogen sulfide alleviates chromium toxicity by modulating chromium, nutrients and reactive oxygen species accumulation, and antioxidant defence system in mungbean (*Vigna radiata* L.) seedlings. *Plant Physiology and Biochemistry* 8:107767
- 23. Wang H, Fang J, Zhang Y, Hou J, Liu W, et al. 2019. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. *Plant Cell and Environment* 42(8):2340–56
- 24. Zhang J, Liang X, Simin X, Liang Y, Liang S, et al. 2023. Effects of hydrogen sulfide on the growth and physiological characteristics of *Miscanthus sacchariflorus* seedlings under cadmium stress. *Ecotoxicology and Environmental Safety* 263:115281
- 25. Fung KF, Carr HP, Zhang J, Wong MH. 2008. Growth and nutrient uptake of tea under different aluminium concentrations. *Journal of the Science of Food and Agriculture* 88:1582–91
- 26. Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, et al. 2023. Aluminum Toxicity in Plants: Present and Future. *Journal of Plant Growth Regulation* 42:3967–99
- 27. Ali B, Qian P, Sun R, Farooq MA, Gill RA, et al. 2015. Hydrogen sulfide alleviates the aluminum-induced changes in *Brassica napus* as revealed by physiochemical and ultrastructural study of plant. *Environmental Science and Pollution Research* 22:3068–81
- Hossain MA, Hossain AKMZ, Kihara T, Koyama H, Hara T. 2005. Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H₂O₂ generation in wheat seedlings. *Soil Science and Plant Nutrition* 51:223–30
- Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL. 2010. Hydrogen Sulfide Alleviates Aluminum Toxicity in Germinating Wheat Seedlings. *Journal of Integrative Plant Biology* 52(6):556–567
- Xing et al. Beverage Plant Research 2024, 4: e024

- Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. *Trends in Plant Science* 15(2):89–97
- 31. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. *Trends in Plant Science* 7(9):405–410
- Ghanati F, Morita A, Yokota H. 2005. Effects of aluminum on the growth of tea plant and activation of antioxidant system. *Plant and Soil* 276:133–141
- 33. Dawood M, Cao F, Jahangir MM, Zhang GP, Wu FB. 2012. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. *Journal of Hazardous Materials* 209–210(1):121–128
- 34. Rausch T, Wachter A. 2005. Sulfur metabolism: a versatile platform for launching defence operations. *Trends in Plant Science* 10(10):503–509
- Chen J, Wang WH, Wu FH, You CY, Liu TW, et al. 2013. Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. *Plant and Soil* 362:301–318
- 36. Shi H, Ye TT, Chan ZL. 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (*Cynodon dactylon* (L). Pers.). *Plant Physiology and Biochemistry* 71:226–234
- 37. Zhu CQ, Wei QQ, Wen JH, Kong YL, Xiang XJ, et al. 2022. Unearthing the alleviatory mechanisms of hydrogen sulfide in aluminum toxicity in rice. *Plant Physiology and Biochemistry* 182:133–144
- Mohsenzadeh S, Esmaeili M, Moosavi F, Shahrtash M, Saffari B, Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. *African Journal of Biotechnology* 10(8):8160–8165
- Chew O, Whelan J, Millar AH. 2003. Molecular definition of the ascorbate–glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. *The Journal of Biological Chemistry* 278(47):46869–46877
- 40. Devi SS, Saha B, Awasthi JP, Regon P, Panda SK. 2020. Redox status and oxalate exudation determines the differential tolerance of two contrasting varieties of 'Assam tea' [*Camelia sinensis* (L.) O. Kuntz] in response to aluminum toxicity. *Horticulture, Environment, and Biotechnology* 61(3):485–499
- 41. Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, et al. 2011. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in *Spinacia oleracea* seedlings. *Journal of Experimental Botany* 62(13):4481–4493
- 42. Yu Y, Dong J, Li R, Zhao X, Zhu ZH, et al. 2023. Sodium hydrosulfide alleviates aluminum toxicity in *Brassica napus* through maintaining H₂S, ROS homeostasis and enhancing aluminum exclusion. *Science of the Total Environment* 858:160073
- 43. Peng AQ, Yu KK, Li YY, Zuo H, Li P, et al. 2023. Aluminum and Fluoride Stresses Altered Organic Acid and Secondary Metabolism in Tea (*Camellia sinensis*) Plants: Influences on Plant Tolerance, Tea Quality and Safety, Aluminum induced metabolic responses in two tea cultivars. *International Journal of Molecular Sciences* 24:4640
- Morita A, Yanagisawa O, Maeda S, Takatsu S, Ikka T. 2011. Tea plant (*Camellia sinensis* L.) roots secrete oxalic acid and caffeine into medium containing aluminum. *Soil Science and Plant Nutrition* 57(6):796–802
- 45. Fu ZP, Jiang XL, Kong DX, Chen YF, Zhuang JH, et al. 2022. Flavonol-Aluminum Complex Formation: Enhancing Aluminum Accumulation in Tea Plants. *Journal of agricultural and food chemistry* 70(43):14096–14108

Copyright: © 2024 by the author(s). Published by Maximum Academic Press, Fayetteville, GA. This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.