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Abstract
Cocoa is spread over tropical countries, being extensively cultivated by mostly smallholders and processed by industries as the raw material of

chocolate. Pathogens and drought are one of the biotic and abiotic factors limiting the productivity of cocoa. The main objective of this study was

to evaluate the pathogenicity of Lasiodiplodia theobromae in drought-stressed and well-watered cocoa clone MCC 02. MCC 02, a popular cocoa

clone in Sulawesi (Indonesia), was evaluated in the greenhouse for infection of L. theobromae under water-stressed and well-watered conditions.

Dieback, leaf chlorotic and necrotic, scion survival, and vascular streaking were determined. The results indicated that the treated cocoa seedlings

exposed to water stress corresponding to 25% field capacity during both inoculation of the pathogen simultaneously with the initiation of water

stress or seven days after water stress commenced were more susceptible to L. theobromae than well-watered ones.  However,  this effect was

mainly relevant when the pathogen was inoculated through a wound on the stem. Moreover,  the severity  of  the disease on inoculation of L.

theobromae simultaneously with the initiation of water stress was higher than that of the disease on inoculation seven days after water stress

commenced but not significantly different. This study demonstrates the potential threat of drought stress to cocoa plants under the infestation of

L.  theobromae and  emphasizes  the  significant  effect  of  water  stress  in  interaction  with L.  theobromae that  should  be  considered  in  plant

management, especially under the climate change scenario in Sulawesi, in which the drought will increase and last longer.
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Introduction

Cocoa (Theobroma cacao L.), the raw material of chocolate, is
one  of  the  important  estate  commodities  for  many  people  in
several  producing  countries  in  Africa,  Central  America,  South
America, and Asia, including Indonesia. In Indonesia, the major-
ity  of  cocoa  growers  have  small-sized  cocoa  farms,  and  cocoa
trees  are  cultivated  by  mostly  smallholder  farmers.  However,
area  cultivation  gradually  decreased  in  the  last  ten  years,
1,421,009 Ha as of 2022, which decreased from 1,740,612 Ha as
of  2013[1].  Sulawesi  Island  is  the  largest  producer  of  cocoa
beans  in  Indonesia,  with  nearly  60%  production  per  year.  Like
other  perennial  crops,  many  cacao  trees  are  damaged  by  old
and new fungal diseases, leading to significant yield losses[2−4].

Lasiodiplodia theobromae,  a  member  of  the  family  Botryo-
sphaeriaceae,  is  a  diverse  fungus  and  often  resides  in  plant
systems  without  producing  disease  symptoms[5].  In  the  plant
tissue,  the  fungus  can  colonize  the  plant  tissue  as  a  latent
pathogen  following  endophytic  infections[6−8].  On  the  other
hand, L. theobromae causes  disease  in  many  plants[9−18].  On
cocoa, L.  theobromae is  a  unique  pathogen  and  is  considered
an  important  pathogen  because  the  pathogen  causes  several
diseases, including diebacks, stem cankers, leaf blight, and pod
rot[12,19−23].  Also,  the  pathogen has  been isolated from numer-
ous  tissues  and  conditions,  including  tissues  showing  symp-
toms of vascular streak dieback (VSD) disease[21,24]. In Indonesia,
the pathogen is  considered a  newly emerging threat  to  cocoa

production  in  Sulawesi[22].  Currently,  the  disease  associated
with  the  pathogen  appears  to  be  alarming.  Monitoring  of  the
Lasiodiplodia cocoa dieback disease was conducted on a cocoa
farm  in  East  Luwu,  South  Sulawesi,  in  August  2019,  and  the
incidence of the disease was as high as 30%. In 2022 and 2023,
the disease occurrences were observed in other cocoa areas in
South  Sulawesi,  including  Pinrang,  Soppeng,  Enrekang  and
Luwu  Regency.  Also,  the  disease  was  detected  in  two  cocoa
regencies in Southeast Sulawesi. L. theobromae is known to kill
tissue  on  the  vital  organs,  stems,  pods,  and  even  trunks  of
cocoa,  causing  substantial  yield  losses  and  tree  mortality  may
occur[18−20,23].  Similar aggressivity of L. theobromae to Phytoph-
thora palmivora on stems of cocoa was reported[25].

The impact  of  the disease caused by L. theobromae appears
to  be  increasing,  perhaps  in  association  with  a  pressure  of
abiotic  and  biotic  stresses[26].  Abiotic  factors  like  temperature
and drought  are  known to influence the interactions  between
plant  hosts  and L.  theobromae[27−29].  Drought  incidence  may
result  from  poor  irrigation,  high  or  low  temperature,  or  un-
balanced soil application of mineral salts and fertilizers[30−32]. In
addition, the incidence of drought in cacao cultivation areas is
related to global warming. So, climate change issues on cocoa
and  the  tropics,  in  general,  are  becoming  an  increasing
concern[33−40].

Drought stress could make plants more susceptible to infec-
tion  by  pathogens  through  predisposition  changes  in
plants[5,41−43].  The  family  Botryosphaeriaceae  members  are
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recognized opportunistic pathogens that cause severe diseases
in  drought-stressed  plants[43,44].  Drought  stress  may  influence
the interactions between L. theobromae and their plant hosts[5],
including the interaction between L. theobromae and cocoa. In
a  previous  study,  water  stress  was  applied  to  6-month-old
cocoa  seedlings  inoculated  by L. theobromae presumably  to
increase  the  susceptibility  of  cocoa,  but  no  comparison  was
made  between  watering  treatment  and  water  stress
treatment[19]. Little is known about the interaction between the
disease  caused  by Lasiodiplodia and  cocoa  under  drought
stress conditions, particularly in Sulawesi, where cocoa dieback
disease  caused  by Lasiodiplodia has  occurred.  Sulawesi,  the
largest plantation area of cocoa in Indonesia has experienced a
prolonged  drought  and  is  estimated  to  face  a  long  drought
session.  Considering  the  increasing  frequency  of  drought
conditions  forecasted  in  Indonesia[45−47] and  the  potential
economic  damage  of L.  theobromae as  an  emerging  threat  to
cocoa  sustainability  in  Sulawesi,  this  study  aimed  to  evaluate
the effect of drought stress on cocoa clone MCC 02 interaction
with L. theobromae. 

Materials and methods
 

Plant materials
Masamba Cocoa Clone (MCC) 02 cocoa clone, also known as

'45',  was  selected  by  local  farmer  selections.  The  clone  origi-
nated  from  the  North  Luwu  Regency  of  South  Sulawesi
Province,  Indonesia,  and  it  was  invented  in  2006  by  two  local
farmers M. Nasir and H. Andi Mulyadi. In 1987, a farmer M. Nasir
identified one superior cocoa tree on his farm, and then H. Andi
Mulyadi  propagated  the  cocoa  tree  through  clonal  propaga-
tion  using  a  side  grafting  technique.  MCC  02  is  considered  a
high-yield  clone  (>  3  tons  ha−1 per  year),  resistant  to  VSD  and
pod rot diseases, and cocoa pod borer (CPB)[48]. Also, the clone
has been planted widely by farmers in Sulawesi and Indonesia.
In addition, the clone has been certified and recommended by
the  Indonesian  government  to  be  planted[49].  Currently,  MCC
02  is  a  favorite  clone  and  comparatively  tolerant  to  cocoa
dieback  caused  by L. theobromae.  The  clone  has  been
distributed to almost all provinces in Indonesia, and its popula-
tion is higher than other cocoa clones. 

Preparations of rootstock, scion, and grafting
Seeds of the clonal trees of MCC 02 were harvested for root-

stock production. After the seeds were selected, the seeds were
washed,  removed  from  their  placenta,  soaked  overnight,  and
treated  with  1%  Dithane  M-45  fungicide  (a.i.  mancozeb  80%).
Then,  the  seeds  were  placed  in  the  germination  sack.  The
germinated  seeds  were  planted  in  poly-ethylene  (PE)  bags
(15  cm  ×  22  cm)  containing  soil.  Seedlings  were  placed  in  a
nursery shade house with ultraviolet  (UV) plastic  as  a  roof  and
maintained  with  good  irrigation.  The  temperature  inside  the
nursery ranged from 27 to 33 °C during the daytime, and rela-
tive humidity ranged from 76% to 90%.

Five-month-old  seedling  rootstocks  were  selected  for  graft-
ing.  Grafting  was  performed  in  a  nursery  shade  house.  The
nursery  shade  house  is  surrounded  by  cocoa,  durian,  and
rambutan  trees  and  located  in  the  Village  of  Tarengge,  Wotu
District,  East  Luwu  Regency,  in  South  Sulawesi  (2°33'28.3"  S,
120°47'53.8"  E).  Meanwhile,  healthy  scions  of  MCC  02  that
measured  a  length  of  ±  9  cm  and  a  diameter  of  5−9  mm  and
contained  green-brownish  to  brownish  buds  were  taken  from

plagiotropic  branches.  Also,  the  healthy  scions  were  taken
from  mature  and  productive  trees  on  the  same  farm.  The
grafting  process  was  conducted  based  on  the  procedure  of
Asman et al.[50]. 

Preparation of the L. theobromae culture
The isolate of L. theobromae (CAS0321) used in this study was

isolated  from  cocoa  that  was  associated  with  dieback  symp-
toms  in  South  Sulawesi,  Indonesia.  Among  four Lasiodiplodia
that  were  obtained,  the L.  theobromae isolate  CAS0321  was
more  virulent  based  on  bioassay  and  pathogenicity  tests  in  a
previous  study.  The  fungal  inoculum  was  maintained  as  pure
cultures in-vitro on Potato Dextrose Agar (PDA; Merck) medium
at 25−28 °C in the dark.

The  identity  of L.  theobromae isolate  (CAS0321)  and  three
other Lasiodiplodia isolates  were  confirmed  by  morphological
identification  and  performed  sequencing  of  the  internal  tran-
scribed  spacer  (ITS)  and  the  elongation  factor  1-alpha  (EF1α)
regions  after  PCR  amplification. PCR  amplification  of  the  ITS
region  and  elongation  factor  1-alpha  (EF1α)  of  the  template
DNA  of Lasiodiplodia was  performed  using  the  primers  pairs
ITS1-ITS4[51] and  primer  pairs  EF1-688F  and  EF1-1251R
described by Alves et al.[52],  respectively.  For polymerase chain
reaction  (PCR)  amplification  of  ITS  and EF1α were  performed
using  (2×)  MyTaq  HS  Red  Mix  (Bioline,  BIO-25048)  with  the
following  conditions:  Initial  denaturation  at  95  °C  for  3  min
(ITS)  /  2  min  (EF1α),  then  35  cycles  (ITS)  /  35  cycles  (EF1α)  of
denaturation  at  95  °C  for  30  s  (ITS)  /  30  s  (EF1α),  annealing  at
55 °C for 15 s (ITS) / 30 s (EF1α), extension at 72 °C for 30 s (ITS) /
45  s  (EF1α),  and  final  extension  at  72  °C  for  4  min  (ITS)/5  min
(EF1α).

The PCR products were electrophoresed in a 1% TBE agarose
gel.  The  size  of  the  amplified  PCR  products  was  determined
using a 100 bp DNA ladder. DNA sequencing through Bi-direc-
tional sequencing was conducted by 1st Base, Apical Scientific
Company, Selangor, Malaysia. 

Plant inoculation of L. theobromae
The  stem  inoculation  was  performed  on  each  scion  of  the

clone MCC 02 grafted on MCC 02 seedling rootstock when the
grafted scion was four months old. For inoculation, the surface
of  the stem bark was disinfected with 70% ethanol  and left  to
dry. A 9-mm square cut was made into the wood between two
nodes.  An  8-mm  diameter  mycelial  PDA  round  plug  was
removed from the edge of actively growing cultures and placed
onto the stem wounds, with the mycelium facing the cambium.
The inoculated wound was wrapped with Parafilm M (Bemis) to
prevent  desiccation  and  contamination.  The  Parafilm  was
removed  at  the  end  of  the  experiment.  Control  plants  were
inoculated with sterile PDA agar plugs.

The  air  temperature  was  recorded  daily  in  the  greenhouse
and  varied  between  29.8  to  33.9  °C,  and  relative  humidity
ranged  from  88.8%  to  99%  during  the  daytime.  After  inocu-
lation,  the  temperature  varied  from  30.2−35  °C,  and  relative
humidity  ranged  from  69%  to  99%  from  10:00  am  to  4:00  pm
(daytime). 

Watering treatments
Water  content  was  determined  by  a  gravimetric  method  of

three representative samples of poly-bags with soil. Each poly-
bag  was  weighed  to  obtain  the  poly-bag  wet  weight  after
flooding  the  soil  and  then  drained  overnight  through  gravi-
tational drainage. Then, the soil  was allowed to dry in an oven
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at  100  °C  for  24  h  and  then  weighed  to  obtain  the  poly-bag's
dry  weight.  Soil  water  content  was  determined  using  the
following formula;

S oil water content (%) =
(WW −DW)

DW
×100

where, WW, wet soil weight; DW, dry soil weight
During the experiment, the sets composed of poly-bag, plant

and soil were weighed daily using digital scales to monitor the
required  weight.  Correction  in  weight  difference  on  subse-
quent  days  was  conducted  by  adding  water  to  maintain  until
reaching  the  desired  field  capacity  (FC).  The  period  of  water
stress was 30 d. 

Drought treatments
Graft-propagated  cocoa  plants  were  maintained  under

greenhouse conditions  before  drought  imposition.  The green-
house  was  located  in  the  area  of  the  Faculty  of  Agriculture,
Hasanuddin  University,  city  of  Makassar,  South  Sulawesi
(5°07'53.3"  S,  119°29'05.8"  E).  There  are  two  levels  of  water
treatments, namely, water-stressed (WS), corresponding to 25%
field  capacity  (FC),  and  well-watered  (WW),  corresponding  to
80%  FC.  25%  FC  was  selected  for  water  stress  treatment
because the level was considered moderate water stress, while
below 25% FC was considered too dry  and severe,  which may
impair  the plants  and thus influence the study.  Also,  there are
two  kinds  of  inoculum  treatments  (fungus  and  control).  Then,
there  are  two  different  experiments  (timings  of  inoculation),
namely:

1. Inoculation of L. theobromae was applied to plants simulta-
neously with the initiation of water stress. The experiment was
designed with the following treatments:

a. Water-stressed (WS) - 25% FC + L. theobromae
b. Well-watered (WW) - 80% FC + L. theobromae
c. Water-stressed (WS) - 25% FC + Control
d. Well-watered (WW) - 80% FC + Control
2.  Inoculation  of L. theobromae was  applied  to  plants  seven

days  after  water  stress  commenced.  The  experiment  was
designed with the following treatments:

a. Water-stressed (WS) - 25% FC + L. theobromae
b. Well-watered (WW) - 80% FC + L. theobromae
c. Water-stressed (WS) - 25% FC + Control
d. Well-watered (WW) - 80% FC + Control
The  trial  was  arranged  as  a  completely  randomized  design,

and  the  experiment  combinations  were  repeated  once.  Each
treatment  was  repeated  with  four  replications  per  treatment
combination.  Also,  each  treatment  consisted  of  six  plants  per
replication,  providing  a  total  of  192  plants  for  all  treatment
combinations. 

Evaluation of infection
The  disease  development  was  evaluated  by  its  severity

weekly. In addition, the scion was cross-sectioned at the end of
the experiment (2 months after inoculation). The dark brown to
black  vascular  streaking  area  was  measured  with  a  digital
calliper.  The  disease  severity  was  measured  every  week  by
developing severity scores:

The  severity  of  the  disease  is  determined  by  scoring
symptoms in individual seedlings as follows: 0 (nil) = No visible
symptoms;  1  (low)  =  percentage  of  chlorotic/necrotic:  below
50%,  branch  remain  alive;  2  (moderate)  =  percentage  of
chlorotic/necrotic:  above  50%,  branch  remain  alive;  3  (moder-
ately-high) = percentage of branch dieback: below 50%; 4 (very

high) = percentage of branch dieback: above 50%−80%; 5 (very
high) = percentage of branch dieback: 80%−100%.

Mean disease severity was calculated using the formula[53]:

I =
∑

(n× v)
Z×N

×100

where n represents the number of infected plants on each score;
v is  a  score  on  each  infestation  category; Z is  the  highest  score;
and N represents the total number of plants observed.

The disease progression was evaluated by the area under the
disease  progress  curve  (AUDPC)  that  was  generally  calculated
from  the  initial  scoring  to  the  last  as  the  total  area  under  the
graph of disease severity against time. Specifically, in this study,
the  AUDPC  value  was  determined  according  to  the  dieback
severity estimates corresponding to the disease ratings[54,55]:

AUDPC =
n−1∑
i=1

yi+ yi+1

2
× (ti+1− ti)

where, yi is  an  assessment  of  a  disease  percentage  at  the i-th
observation, ti is  time  at  the i-th  observation,  and n is  the  total
number of observations. 

Re-isolation
Lasiodiplodia was  reisolated  from  four  plants  per  treatment

at  the  end of  the  experiment. Lasiodiplodia from symptomatic
inoculated  stems  were  re-identified  using  morphological
colony characteristics. Re-isolation was conducted from treated
and untreated plants onto a PDA medium. Seedling stems were
surface sterilized with NaOCl solution (5%) for 3 min and rinsed
in  sterilized  water  three  times.  Approximately  3–5  mm diame-
ter  pieces  of  stems  were  placed  on  a  PDA  medium  supple-
mented with chloramphenicol and incubated at room tempera-
ture in the dark. 

Data statistical analysis
Analysis of differences in dieback severity, scion survival, and

vascular streaking progression on the two types of experiment
was  conducted  by  one-way  analysis  of  variance  (ANOVA).
Factorial or two-way ANOVA was used to determine the effects
of every single factor (water treatment and inoculum type) and
their  interaction.  When  significant  differences  were  detected,
means  were  separated  by  Tukey's  test  at  the  level  of
significance  (p <  0.05)  or  5%  probability  level.  The  normality
data was checked by the skewness and kurtosis test. 

Results
 

Dieback severity
The plants inoculated with L. theobromae under two distinct

watering  regime  treatments  as  summarized  in Figs  1−3 and
Tables 1−3, respectively, showed a marked difference in disease
severity  between well-watered and water-stressed treatments.
During the whole period of the evaluation (seven to 56 d after
inoculation), the mean disease incidence under the water stress
treatment  was  significantly  different.  The  external  symptoms,
such  as  dieback,  chlorotic,  and  necrotic,  were  visible  7  d  after
inoculation (Fig. 5a−g) and then increased gradually. After that,
no other symptoms appeared until  the end of the observation
in both experiments (Fig. 6a−g). Meanwhile, the plants treated
with a PDA agar plug (healthy control) in both watering regime
treatments  remain  symptomless  regardless  of  water  stress
(Fig. 5h & i).
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In  the  experiment  where  the  plants  were  inoculated  with L.
theobromae simultaneously  to  water  stress  imposition  (Fig.  1),
inoculation  treatment  with  water  stress  induced  the  highest
incidence  of  dieback  (40.8%),  followed  by  inoculation  treat-
ment with well-watered (15.8%) by the time of  the first  obser-
vation  (7  d  after  inoculation).  These  two  treatments  are  sig-
nificantly  different.  Also,  the  inoculation  treatment  under
water-stressed  condition  leads  to  significantly  higher  disease
incidents than that in the control (no inoculation), either under
water-stressed condition (0%) or under well-watered condition
(0%). However, there was no significant difference between the
inoculation  treatment  and  the  control  (no  inoculation)  under
well-watered  condition.  Meanwhile,  at  the  second  evaluation
(14  d  after  inoculation),  the  mean  percentage  of  dieback
increased  (42.5%)  on  the  plot  with  inoculation  treatment
accompanied by water stress,  and there was no more increase
in dieback incidence until the end of the evaluation. In contrast,
the  dieback  incidence  on  the  plot  with  inoculation  treatment
with  well-watering  increased  at  the  fourth  evaluation  (28  d
after  inoculation)  (19.2%).  Then,  the  dieback  severity  was
constant  until  the  end  of  the  evaluation.  For  the  controls,  the
plants remained healthy until the end of the experiment. Simi-
larly,  the  AUDPC  values  indicate  that  inoculation  treatment

under  water  stress  caused  the  highest  degree  of  dieback.
Moreover,  the  effect  of  the  water  stress  imposition  (factor  1)
was  not  significant  on  dieback  severity  from  the  beginning  of
the  evaluation  (1  week  after  inoculation)  until  the  end  of  the
evaluation.  Meanwhile,  the  effect  of  the  inoculum type (factor
2)  was  significant  in  any  evaluation  event.  On  the  other  hand,
the interaction (water stress imposition x inoculum type) effect
was not significant, in either the percentage of dieback severity
or AUDPC disease severity (Table 1).

In  the  experiment  where  the  plants  were  inoculated  with L.
theobromae seven days after water stress imposition (Fig. 2), at
the beginning of the evaluation, the highest severity of dieback
was  recorded  at  the  inoculation  treatment  under  water  stress
(35.0%).  The  value  was  significantly  higher  than  those  in  the
plot of the inoculation treatment with well-watering (5.0%) and
both  controls  (water-stressed  or  well-watered)  (0%).  Similar  to
the  experiment  where  the  plants  were  inoculated  simultane-
ously  to  water  stress  imposition,  the  mean  percentage  of
dieback  on  the  plot  with  inoculation  treatment  with  water
stress increased (38.3%) in the second observation. In addition,
the  severity  increased  on  the  plot  with  inoculation  treatment
with  well-watering  as  well  (6.7%).  However,  they  were  signifi-
cantly different. The dieback severity under both water-stressed
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Fig.  1    Dieback  severity  in  cocoa  MCC  02  clone  inoculated  with L.  theobromae simultaneous  to  water-stress  imposition  and  with  PDA  as  a
control inoculum for 56 d. Bars with the same letter indicate no significant difference according to the Tukey's test at p ≤ 0.05. DAI: Days after
inoculation.

 

Table 1.    Two-way ANOVA of dieback severity in two different watering regimes and two different inoculum types. Cocoa MCC 02 clone inoculated with
L. theobromae simultaneous to water stress imposition and with PDA as a control inoculum for 56 d and evaluated 1, 2, 3, 4, and 5 weeks after inoculation
in South Sulawesi (from January 2023 to March 2023). In all treatments, dieback symptoms were first observed one week after inoculation.

Watering regime/
inoculum type

Dieback severity
1 week after
inoculation

Dieback severity
2 weeks after
inoculation

Dieback severity
3 weeks after
inoculation

Dieback severity
4 weeks after
inoculation

Dieback severity
5 weeks after
inoculation

Mean AUDPC
disease severity

for 8 weeks

Averages for each watering regime
  Well-watered 7.92% 7.92% 7.92% 9.58% 9.58% 62.92%
  Water-stressed 20.42% 20.42% 20.42% 21.25% 21.25% 148.33%
  Tukey's test 15.08% (NS) 15.08% (NS) 15.08% (NS) 13.73% (NS) 13.73% (NS) 98.85% (NS)

Averages for each inoculation time
  Control 0.00 0.00 0.00 0.00 0.00 0.00
  L. theobromae 28.33% 28.33% 28.33% 30.83% 30.83% 211.25%
  Tukey's test 15.08% (**) 15.08% (**) 15.08% (**) 13.73% (**) 13.73% (**) 98.85% (**)

Analysis of variance (p-value)
  Watering regime (W) NS NS NS NS NS NS
  Inoculum type (I) ** ** ** ** ** **
  W × I NS NS NS NS NS NS

**  and  NS  indicate  statistical  significance  at p <  0.01,  0.05,  and  not  significant  by  Tukey's  test  analysis  (p <  0.05),  respectively.  Mean  disease  severity  as
described on Materials and methods section.
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and well-watered conditions remained steady after the second
evaluation  until  the  end  of  the  experiment.  In  addition,  the
plants  in  the  control  groups,  both  well-watered  and  water-
stressed,  remained  symptomless  (0%)  until  the  end  of  the
evaluation.  Likewise,  the  AUDPC  value  of  the  plot  with  inocu-
lation  treatment  with  water  stress  was  significantly  high.
Furthermore,  there  is  an  effect  of  the  water  stress  imposition
(factor  1)  on  dieback  severity  where  the  influence  was  highly
significant  from  the  beginning  of  the  evaluation  (1  week  after
inoculation) until the end of the evaluation. Similarly, the inocu-
lum  type  (factor  2)  and  interaction  (water-stress  imposition  ×
inoculation time)  effects  were highly  significant  in  any evalua-
tion  event,  either  a  percentage  of  dieback  severity  or  AUDPC
disease severity (Table 2).

When  AUDPC  values  of  dieback  severity  were  compared  in
two different watering regimes and two different times of ino-
culation  of L. theobromae,  the  AUDPC  values  with  the  simul-
taneous  and  delayed  inoculation  treatments  under  water-
stressed condition were significantly higher than those with the
simultaneous  and  delayed  inoculation  treatments  under  well-
watered  condition  as  well  as  those  in  the  controls  (Fig.  3).  In
addition,  the  AUDPC  value  with  the  delayed  inoculation

treatment  under  well-watered  condition  was  not  significantly
different  from  the  control  (Fig.  3).  The  combination  of  water
stress  imposition  and  inoculation  time  showed  a  variety  of
dieback  severity.  There  is  an  effect  of  the  water  stress  imposi-
tion  (factor  1)  on  dieback  severity  where  the  influence  was
highly significant from the beginning of the evaluation (1 week
after  inoculation)  until  the  end  of  the  evaluation.  Meanwhile,
inoculation time (factor 2) and interaction (water-stress imposi-
tion × inoculation time) effects were not significant in any eval-
uation  event,  either  percentage  of  dieback  severity  or  AUDPC
disease severity (Table 3).

Inoculation  of L. theobromae with  water-stress  imposition
consistently  resulted  in  higher  dieback  severity,  regardless  of
the  inoculation  time,  than  inoculation  of L. theobromae under
well-watered  condition  (Figs  1−3 & Tables  1−3).  In  addition,
black conidiomata were apparent after the branch or stem was
colonized thoroughly by L. theobromae (Fig. 6h). 

Survival of the scions and vascular streaking
progression

The treatments of water stress showed significantly different
rates of survival of scions after inoculation of L. theobromae and
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Fig. 2    Dieback severity in MCC 02 cocoa clone inoculated with L. theobromae 7 d after the initiation of water-stress imposition and with PDA
as a control inoculum for 56 d. Bars with the same letter indicate no significant difference according to the Tukey's test at p ≤ 0.05. DAI: Days
after inoculation.

 

Table 2.    Two-way ANOVA of dieback severity in two different watering regimes and two different inoculum types. Cocoa MCC 02 clone inoculated with
L. theobromae 7 d after the initiation of water-stress imposition and with PDA as a control inoculum for 56 d and evaluated 1, 2, 3, 4, and 5 weeks after
inoculation in South Sulawesi (from January 2023 to March 2023). In all treatments, dieback symptoms were first observed one week after inoculation.

Watering regime/
inoculum type

Dieback severity
1 week after
inoculation

Dieback severity
2 weeks after
inoculation

Dieback severity
3 weeks after
inoculation

Dieback severity
4 weeks after
inoculation

Dieback severity
5 weeks after
inoculation

Mean AUDPC
disease severity

for 8 weeks

Averages for each watering regime
  Well-watered 2.50% 3.33% 3.33% 3.33% 3.33% 22.92%
  Water-stressed 17.50% 19.17% 19.17% 19.17% 19.17% 133.33%
  Tukey's test 8.29% (**) 7.52% (**) 7.52% (**) 7.52% (**) 7.52% (**) 52.62% (**)

Averages for each inoculation time
  Control 0.00 0.00 0.00 0.00 0.00 0.00
  L. theobromae 20.00% 22.50% 22.50% 22.50% 22.50% 156.25%
  Tukey's test 8.29% (**) 7.52% (**) 7.52% (**) 7.52% (**) 7.52% (**) 52.62% (**)

Analysis of variance (p-value)
  Watering regime (W) ** ** ** ** ** **
  Inoculum type (I) ** ** ** ** ** **
  W × I ** ** ** ** ** **

** indicate statistical significance at p < 0.01, 0.05 by Tukey's test analysis (p < 0.05). Mean disease severity as described on materials and methods.
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without  inoculation  (controls).  The  lowest  survival  rates  of
scions  were  observed  by  the  water-stressed  treatments,  with
simultaneous  inoculation  and  inoculation  on  the  seventh  day
after  water-stress  imposition  at  50%  and  66.7%,  respectively
(Fig.  4).  Meanwhile,  the  largest  survival  rates  of  scions  after
inoculation  were  perceived  by  well-watering  treatments  with
simultaneous  inoculation  and  inoculation  on  the  seventh  day
after  initiation of  well-watering,  95.8% and 91.7%, respectively
(Fig.  4).  Controls  on  both  water  stress  and  well-watered  treat-
ments  remained  healthy  (100%  survival  rate)  until  the  end  of
the experiment.

On the surviving scions, vascular streaking was visible in the
vertical  sections  of  all  the  fungal-inoculated  scions  (Table  4,
Fig. 6i−o).  The vascular streaking length showed no significant
difference  in  all  fungal  inoculated  treatments,  regardless  of
water  stress  and  timing  of  inoculation.  However,  vascular
streaking  spread  faster  on  the  scions  with  water-stress

treatment than on those with well-watering. Also, the percent-
age  of  colonization  of  the  pathogen  on  the  scions  with  the
water-stress treatments was higher than that on the scions that
were  well-watered.  In  addition,  the  pathogen  moved  upward
and  downward  from  the  inoculation  site.  Controls  on  both
water  stress  and well-watering remained healthy in the vascu-
lar until the end of the experiment (Fig. 6p−r). 

Discussion

The current study explored the influence and the interaction
of  drought  stress  and  inoculation  of L. theobromae to  dieback
disease  on T.  cocoa clone  MCC  02.  For  these  purposes,  we
determined  such  responses  as  dieback,  leaf  chlorotic  and
necrotic,  and  vascular  streaking  of  cocoa  to L. theobromae
infection  under  drought  treatments  through  artificial  inocula-
tion  on  potted  plants  prepared  from  a  typical  cocoa  clone  in
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Fig.  3    Mean  AUDPC  values  of  dieback  severity  in  two  different  watering  regimes  and  two  different  times  of  inoculation  of L.  theobromae
evaluated 1, 2, 3, 4, and 5 weeks after inoculation in South Sulawesi (from January 2023 to March 2023). In all treatments, dieback symptoms
were  first  observed  one  week  after  inoculation.  Bars  with  the  same  letter  do  not  differ  significantly  according  to  the  Tukey's  test  analysis
(p < 0.05).

 

Table 3.    Two-way ANOVA of dieback severity in four different watering regimes and two different times of inoculation of L. theobromae evaluated 1, 2, 3,
4, and 5 weeks after inoculation in South Sulawesi (from January 2023 to March 2023). In all treatments, dieback symptoms were first observed one week
after inoculation.

Watering regime/
inoculation time

Dieback severity
1 week after
inoculation

Dieback severity
2 weeks after
inoculation

Dieback severity
3 weeks after
inoculation

Dieback severity
4 weeks after
inoculation

Dieback severity
5 weeks after
inoculation

Mean AUDPC
disease severity

for 8 weeks

Averages for each watering regime
  Well-watered LT 5.21%b 5.63%b 5.63%b 6.46%b 6.46%b 42.92%b

  Water-stressed LT 18.96%a 20.21%a 20.21%a 20.21%a 20.21%a 140.83%a

  Well-watered CO 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b

  Water-stressed CO 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b

  Tukey's test 13.11% (**) 12.56% (**) 12.56% (**) 11.77% (**) 11.77% (**) 83.99% (**)

Averages for each inoculation time
  0-day 28.33% 29.17% 29.17% 30.83% 30.83% 211.25%
  7-day 20.00% 22.50% 22.50% 22.50% 22.50% 156.25%
  Tukey's test NS NS NS NS NS NS

Analysis of variance (p-value)
  Watering regime (W) ** ** ** ** ** **
  Inoculation time (I) NS NS NS NS NS NS
  W × I NS NS NS NS NS NS

Numbers  in  the  same  column  followed  by  the  same  letter  are  not  significantly  different  by  Tukey's  test  analysis  (p <  0.05).  **  and  NS  indicate  statistical
significance  at p <  0.01,  0.05,  and  not  significant,  respectively.  Mean  disease  severity  as  described  in  the  Materials  and  methods.  LT: L. theobromae;  CO:
Control, a PDA plug.
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Fig.  4    Survival  rates  of  scions  inoculated  by L.  theobromae in  two  different  experiments:  Fungal  inoculation  simultaneous  to  water  stress
imposition  (Experiment  1)  and  7  d  after  the  initiation  of  water  stress  imposition  (Experiment  2),  with  PDA  as  a  control  inoculum  for  64  d.
Differences in letters  above the bar on each treatment indicate statistically  significant differences by Tukey's  test  analysis  (p < 0.05).  WWCO:
Well-watered treated with a PDA plug (control); WWLT: Well-watered with L. theobromae inoculation; WSCO: Water-stressed treated with a PDA
plug (control); WSLT: Water-stressed with L. theobromae inoculation.

 

Table  4.    Vascular  streaking length (mm) in  the  stem of  MCC 02 cocoa clone inoculated with Lasiodiplodia theobromae simultaneous  to  water-stress
imposition (Experiment 1) and 7 d after the initiation of water-stressed imposition (Experiment 2) with PDA as a control inoculum for 64 d.

No. Experiment Treatment Vascular
streaking (mm)

Vascular streaking
length compared

to scion length

Distance of from inoculation site to
edge of lesion (mm)

Upward Downward

1 L. theobromae inoculation
simultaneous to water-

stressed imposition

Well-watered Control 0.0b 0.0c 0.0b 0.0b

L. theobromae 71.3a 72.6%ab 34.5a 36.8a

Water-stressed Control 0.0b 0.0c 0.0b 0.0b

L. theobromae 80.2a 83.7%a 40.0a 40.2a

2 L. theobromae inoculation
seven days after water-

stressed imposition

Well-watered Control 0.0b 0.0c 0.0b 0.0b

L. theobromae 71.2a 65.1%b 38.6a 32.7a

Water-stressed Control 0.0b 0.0c 0.0b 0.0b

L. theobromae 82.6a 87.3%a 42.4a 40.2a

Tukey's test at α = 0.05 16.84 (**) 15.13% (**) 8.67 (**) 10.41 (**)

Columns with the same letter do not differ significantly according to Tukey's test at α = 0.05.
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Fig. 5    Various initial symptoms on leaves of cocoa scions inoculated by L. theobromae (simultaneously or 7 d after water imposition) under
well-watered and water-stressed conditions. (a), (b) dieback; (c)−(e) chlorotic and mixed of chlorotic and necrotic; (f), (g) chlorotic; (h), (i) control
(a PDA plug).
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Sulawesi.  The  results  indicated  that  water  deprivation
promoted  disease  development,  regardless  of  the  timing  of
inoculation  during  drought  stress.  Generally,  drought  situa-
tions  influence  plants  by  inducing  damage  to  water  relations
and  making  plants  more  predisposed  to  pathogen  onset  and
other  biotic  attacks.  Also,  the  severity  of  the  disease  probably
elevates  with  drought  stress[56−58].  In  addition,  drought  stress
may  exacerbate  the  development  of  the  disease  in  the
trees[43,58−62].

Although drought stress is the most abiotic factor studied on
tree  susceptibility  to  pathogens[43,44,63,64],  the  role  of  drought
on  cocoa  susceptibility  to L. theobromae in  Sulawesi  had
remained  poorly  understood.  To  the  authors'  knowledge,  this
research  is  the  first  attempt  to  evaluate  the  interaction  of
drought  stress  and  disease  caused  by L. theobromae in
Indonesia.  The  present  results  showed  the  apparent  destruc-
tive effect of the water stress under infection of the pathogen.
Similarly,  it  has  been  known  that  water  stress  increases  the
susceptibility  of  perennial  plants  to L. theobromae and  other
Botryosphaeriaceae species[43,44,65].

Dieback  and  vascular  streaking  symptoms  were  clearly
expressed  on  each  inoculated  plant.  The  results  found  here
corroborate the pathogenicity of L. theobromae to cocoa clone
MCC  02  and  are  in  accordance  with  the  previous  study  that
indicates L. theobromae is  one  of  the  most  aggressive  and
destructive  phytopathogenic  fungi  responsible  for  causing
such  broad  disease  symptoms  as  dieback,  canker,  chlorotic,
root and collar root and leaf blight in many plants[9−15,18,23,66−70].

In  addition,  the increase in disease severity in a  plant exposed
to  water  stress  may  predisposed  by  host  physiology  status
where during water stress, accumulation and production of the
certain  compounds  that  induce  disease  defense  were  altered,
including  amino  acids  and  reactive  oxygen  species  (ROS)[65,71].
Also,  the  production  of  biochemical  defense  may  decrease
because of water stress[56,72].

Relatively  few  studies  have  directly  addressed  the  mecha-
nism  of  interaction  and  how L. theobromae became  more
severe  under  water  stress  on  cocoa  when  most  pathogens
strive  in  opposite  conditions.  However,  drought  could  make
trees  more  susceptible  to  pathogens  because  drought
decreases  the  availability  of  plant  resources  for  defenses
against  plant  pathogens.  How  drought  affects  pathogen
survival is not clear. However, some fungal pathogens are very
adaptable,  and  the  design  of  fungal  reproductive  systems  is
diverse  to  manage  fluctuating  environmental  conditions[73].
Moreover,  a  framework  estimates  that  necrotrophs  fungal
pathogens,  which  mostly  relies  on  nutrients  from  dead  tree
cells,  accelerate  drought-induced  tree  mortality  by  colonizing
sapwood and damaging plant transport systems[59].

Stress  duration  plays  an  important  role  in  host-pathogen
interaction.  A  study  conducted  on  stems  of  European  white
birch revealed that Botryosphaeria dothidea causes canker after
exposure  to  water  stress  for  a  minimum  of  3  d  at  the  accept-
able level[74]. Also, host-pathogen interaction was influenced by
the  timing  of  the  different  stresses.  A  study  on  dogwood
revealed  that  water  imposition  before  the  inoculation  of L.
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Fig. 6    Various advanced symptoms on cocoa scions inoculated with L. theobromae simultaneously with water imposition and 7 d after the
initiation of water imposition. (a)−(c) dieback on all branches, three, two, and one branch(es), respectively; (d)−(g) dieback on one side of the
branch; (g)browning leaf at lower leaf;  (h) presence of black conidiomata (red circle) on the fungal inoculated stem; (i)−(o) vertical section of
fungal inoculated scion stems showed vascular streaking; (p)−(r) vertical section of control showed symptomless/no vascular streaking.
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theobromae resulted in a greater effect on canker development
than post-inoculation water stress[5].

L. theobromae can  grow  in  wide  different  environmental
conditions  and  a  wide  range  of  temperatures[75−77].  The  aver-
age  temperature  during  the  experiment  was  relatively  in  the
high  range  (29.8–33.9  °C).  However,  with  such  a  temperature
range, L. theobromae can grow optimally and colonize the plant
aggressively[75−77].  In  addition,  such  a  temperature  range
seemed  to  increase  the  virulence  of Botryosphaeriaceae
spp.[27,77].  However,  at  this  point,  more  studies  are  needed  to
evaluate  the  effect  of  temperature  on  the  development  of
disease severity in cocoa.

Although  this  research  is  only  tested  on  potted  plants  in  a
greenhouse  using  artificial  inoculation,  only  performed  on  a
single clone and cannot represent directly mature trees that are
established  in  the  field,  the  results  of  this  study  showed  obvi-
ous  pictures  of  the  importance  of  drought  × L. theobromae
interaction-inducing disease.

The interaction of drought and L. theobromae reported here
suggested that water limitation before and after fungal inocula-
tion  makes  plants  more  susceptible  to  fungal  pathogens  and
weakens  plant  defense  against  pathogen  infection,  indicating
that  water  deprivation  supports  the  effectivity  of  pathogen
infection (predisposition). Also, this study emphasized that the
influence  of  water  deficit  on  plant  physiological  status  was
more prominent compared to the fungal infection.

More integrated studies are needed to follow up on the find-
ings here and to tackle the severity of dieback diseases in cocoa
under  drought  conditions  in  which  more  frequent  and  longer
are  predicted,  the  evaluation  of  different  cocoa  clones  will  be
necessary to gain more understanding of the effect of drought
stress  on  dieback  disease  development  under L.  theobromae
infection,  and  evaluation  of  other  abiotic  and  biotic  stress
factors  on  dieback  disease  development  under L. theobromae
infection will  help comprehend the dynamics of the disease in
the field. 

Conclusions

This study has shown that drought stress increases the sever-
ity  of  the  dieback  disease  caused  by L.  theobromae on  cocoa
clone  MCC  02.  It  was  also  observed  that  drought  stress  × L.
theobromae interaction increased the length of vascular streak-
ing  in  the  stems  of  cocoa.  In  addition,  we  observed  external
disease  symptoms  and  vascular  streaking  at  the  interaction
between  well-watered  × L.  theobromae.  This  research  extends
our  knowledge  of  the  impact  of  drought  on  plant-pathogen
interaction  in  cocoa  and  water  stress  should  be  avoided  in
cocoa plantations  due to  its  detrimental  impact  on severity  of
dieback diseases. 
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