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Abstract
This study mainly explores three types of fermented tea beverages: kombucha, known for its distinctive sweet and sour flavor; tea wine, valued

for  its  rich  taste  and  low  alcohol  content;  and  tea  vinegar,  notable  for  its  unique  vinegar  aroma.  These  beverages  are  produced  through

fermentation using teas  as  a  base,  facilitated by  yeast  and acetic  acid  bacteria.  The research investigates  how these  microbes  utilize  tea  as  a

nitrogen  source,  enhancing  the  content  of  tea  polyphenols,  reducing  caffeine,  and  generating  a  rich  array  of  organic  acids  and  volatile

compounds. This process imparts fermented tea beverages with unique flavors and augmented health benefits. Moreover, the bacterial cellulose

film created by the symbiotic relationship between yeast and acetic acid bacteria opens up innovative avenues for the deep processing and high-

value utilization of tea leaves.
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Introduction

Tea  is  celebrated  for  its  diverse  array  of  active  components,
such as tea polyphenols, amino acids, tea polysaccharides, and
caffeine,  all  contributing  to  its  varied  health  benefits[1].  The
majority  of  tea  leaves,  over  60%  of  the  annual  yield,  are
harvested during the summer and fall[2].  These leaves typically
have  higher  levels  of  tea  polyphenols,  anthocyanins,  and
purine  alkaloids,  but  lower  amino  acid  content  compared  to
those  harvested  in  the  spring[3].  Tea  can  be  classified  into  six
distinct  types  based  on  processing  techniques:  green  tea
(unfermented),  white tea (slight-fermented),  yellow tea (slight-
fermented),  oolong  tea  (semi-fermented),  black  tea  (fully
fermented), dark tea (post-fermented by microorganisms), each
with  its  unique  flavor  profile[4].  Enhancing  the  value-added
utilization  of  tea  resources  is  a  key  research  priority  in  the  tea
industry.

The  growing  consumer  interest  in  functional  foods  and
beverages  made  from  natural  ingredients  has  fueled  innova-
tion in tea-based products[5]. The bioactive compounds and the
flavor  profiles  of  tea  can  be  modified  and  enhanced  through
microbial  fermentation[6].  Kombucha,  a  fermented  tea  bever-
age originating from the Bohai Sea region in China, later spread
to the Soviet Union and Germany, and has since gained global
popularity[7−9].  It  is  distinguished  by  its  sweet  and  sour  taste
and  unique  flavor.  The  bacterial  cellulose  (BC)  produced  and
floating  on  the  surface  of  the  brew  is  considered  a  valuable
renewable resource[10−13].

The fermentation process involves complex interactions and
uncertainties  among  the  microorganisms  present.  This  review
utilizes  sources  from  the  Web  of  Science,  ScienceDirect,
Springer,  China  National  Knowledge  Infrastructure  (CNKI),  and
other  databases  from  the  past  five  years.  The  production  of
kombucha,  tea  wine,  and  tea  vinegar  typically  begins  with
sugar tea soup, where sugars serve as a carbon source and tea
soup  as  a  nitrogen  source.  A  symbiotic  culture  of  acetic  acid
bacteria  and  yeast  (sometimes  including  a  small  amount  of
lactic  acid bacteria)  inoculated to kombucha fermentation,  tea
wine primarily fermented by yeasts,  while tea vinegar requires
initial  alcoholic  fermentation  by  yeast  followed  by  inoculation
with  acetic  acid  bacteria[14−16].  This  review  delves  into  how
microbial  fermentation  transforms  tea  components,  creating
distinctive  flavor  profiles  in  fermented  tea  beverages  and
altering  organic  acids,  polyphenols,  caffeine,  and  volatile
components.

The  analysis  using  VOSviewer  —  a  software  tool  for  con-
structing  and  visualizing  bibliometric  networks  —  identifies
several  key  research  areas  in  studies  on  kombucha,  tea  wine,
and tea vinegar, including evaluation of functional food, bioac-
tive compounds, microbial  metabolism, and bacterial  cellulose
research (Fig. 1). 

Microorganisms in fermented tea beverages

In  the  world  of  kombucha,  yeast,  and  acetic  acid  bacteria
(AAB) are the primary microorganisms found[8]. Common yeast
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species include Candida, Debaryomyces, Dekkera, Pichia, Sacchar-
omyces, Saccharomycopsis, Schizosaccharomyces, Sporopachy-
dermia, Zygosaccharomyces,  and Zygotorulaspora[8,17,18].  For tea
wine fermentation, yeasts such as Schizosaccharomyces pombe,
Saccharomyces  cerevisiae,  and  Jiuqu  are  employed[15,19],  with
the latter being exclusive to tea wine. In kombucha, the princi-
pal  AAB  species  involved  are Acetobacter, Gluconobacter,
Gluconacetobacter,  and Komagataeibacter[8,17,18,20].  Tea  vinegar
fermentation  primarily  utilizes Acetobacter  aceti, Acetobacter
pasteurianus, and other Acetobacter species[21,22]. Yeast fermen-
tation  is  noted  for  producing  ethanol  and  carbon  dioxide,  as
well  as  smaller  amounts  of  glycerol,  higher  alcohols,  and
esters[14].  The  metabolic  processes  of  Acetobacter  species  are
known  for  their  'oxidative'  fermentation,  involving  the  incom-
plete oxidation of substrates by primary dehydrogenases in the
respiratory chain. This process oxidizes ethanol, carbohydrates,
and  sugar  alcohols  (also  known  as  polyols  or  polyhydric  alco-
hols)  into  their  corresponding  organic  acids,  aldehydes,  or
ketones, aiding in energy production[23,24]. 

Organic acids and ethanol in fermented tea
beverages

During the fermentation of tea beverages, yeast initiates the
process  by  breaking  down  glucose  and  fructose[25].  These
sugars  are  then  converted  into  pyruvate  through  glycolysis,
ultimately  entering  the  Tricarboxylic  Acid  (TCA)  cycle  to  pro-
duce various metabolites,  including organic  acids[26].  AAB play
a crucial role by oxidizing glucose into gluconic and glucuronic
acids and converting ethanol into acetic acid[27,28]. As fermenta-
tion  advances,  the  sugar  concentration  decreases,  while  the
accumulation of organic acids leads to a reduction in pH, typi-
cally stabilizing around 3.0[29−31].

In the specific context of tea wine fermentation, the predom-
inant organic  acids are malic  and succinic  acids,  with traces of
acetic, lactic, and gluconic acids also present[31,32].  Tea vinegar,
in  contrast,  contains  not  only  the  organic  acids  found  in  tea
wine  but  also  oxalic,  citric,  tartaric,  and  ascorbic  acids,  among
others[22],  demonstrating  a  volatile  acidity  of  about  4%[21].

These organic acids,  common to tea wine and tea vinegar,  are
also found in kombucha.  However,  kombucha is  distinguished
by  its  primary  organic  acids:  acetic,  gluconic,  glucuronic,  D-
saccharic acid 1,4-lactone (DSL), ascorbic, succinic, malic, lactic,
tartaric, and citric acids[29,30,33−35].

The alcohol content in these fermented tea beverages varies
with  the  microorganisms  involved.  Yeasts  are  capable  of  con-
verting  glucose  and  fructose  into  ethanol[14].  During  tea  wine
fermentation,  ethanol  levels  increase[36],  with  alcohol  content
ranging from 8% to 16% vol,  depending on specific  fermenta-
tion conditions[32,37−39].  For tea vinegar,  the alcohol concentra-
tion  declines  as  ethanol  is  first  oxidized  to  acetaldehyde  by
alcohol  dehydrogenase  (ADH)  on  the  acetic  acid  bacteria's
plasma membrane surface, then further oxidized to acetic acid
by  aldehyde  dehydrogenase  (ALDH)[40].  This  process  culmi-
nates  in  the  complete  oxidation  of  ethanol,  where  acetate  is
converted  into  CO2 and  water[24].  In  kombucha  fermentation,
ethanol levels initially rise before decreasing[29]. The acetic acid
produced  by  AAB  can  enhance  yeast's  ethanol  production,
stimulating  its  invertase  and  fermentation  activity[41].  As
kombucha is  classified as a non-alcoholic beverage,  its  alcohol
concentration is kept below 0.5% (v/v)[42]. 

Transformation of tea components
 

Phenolic compounds
Research  involving Saccharomyces  cerevisiae (S.  cerevisiae)

highlights  the  crucial  role  of  mannoprotein  N-glycosyl  phos-
phorylation  in  the  adsorption  of  polyphenols  by  yeast  and  its
cell walls, with a particular affinity for adsorbing polymeric and
oligomeric  tannins  and derived pigments[43].  Studies  on green
tea polyphenols (GTP) have shown their protective effects on S.
cerevisiae cells against ethanol-induced damage, enhancing cell
wall  permeability through up-regulation of the active gene for
the guanosine diphosphate mannose transporter and promot-
ing mannose protein formation.  Additionally,  GTP significantly
enhances genes related to proline metabolism and biosynthe-
sis,  thereby  increasing S.  cerevisiae's  tolerance  to  ethanol.  As
powerful  antioxidants,  GTPs  reduce  the  accumulation  of  ROS,

 

 
Fig. 1    Co-occurrence analysis of data from Web of Science on 'Kombucha, tea wine, and tea vinegar' records.

 
Fermented tea beverages

Page 2 of 11   Guo et al. Beverage Plant Research 2024, 4: e029



with  associated  genes  for  ROS  production  or  mitochondrial
electron  transport  being  down-regulated[44].  Yeast  cultures
actively  uptake  ethanol,  which  is  then  oxidized  to  acetalde-
hyde  and  acetyl-CoA,  providing  a  primary  source  of  high-
energy  electrons  for  NADH  and  NADPH[45].  Research  on  tea
wine  has  shown  that  catechins  interact  with  ethanol  to  form
hydrogen bonds, creating molecular clusters that transition the
direct  electron-transfer  process  of  catechin  to  proton-coupled
electron transfer, lowering the energy barrier of the redox reac-
tion and enhancing antioxidative capacity[46].

Fermentation  generally  increases  the  total  polyphenol
content in kombucha compared to unfermented tea soup, and
enhances  the  bioavailability  of  these  polyphenols[29,47,48].  A
wide range of phenolic compounds, including flavonoids, phe-
nolic  acids,  other  polyphenols,  lignans,  and  stilbenes,  have
been  identified  in  kombucha[30,49].  These  complex  phenolic
compounds may degrade in  kombucha's  low pH environment
and  through  enzymes  (e.g., β-glucosidase,  esterase)  produced
by bacteria and yeasts[49].  The increase of epigallocatechin and
gallic  acid  in  kombucha  indicates  the  hydrolysis  of  gallate
groups attached to polyphenols via ester bonds, such as epigal-
locatechin  gallate[50,51].  The  concentration  of  ester  catechins
decreases  in  kombucha  fermented  from  green  tea,  black  tea,
and Pu'er raw tea, while the total catechins content increases in
green tea kombucha[33,52].

In  contrast,  the  polyphenol  content  decreases  in  black  tea
wine  compared  to  unfermented  tea[36,37].  The  content  of  vari-
ous catechins, including (−)epigallocatechin gallate (EGCG), (+)-
catechin  (C),  (−)catechin  gallate  (CG),  (−)-epicatechin  gallate
(ECG), (−)gallocatechin gallate (GCG) increases in Keemun black
tea  wine,  with  no  significant  change  in  gallic  acid  content[32].
The  contents  of  (−)-epigallocatechin  (EGC),  EGCG,  and  gallic
acid also decrease in Dancong tea wine[39].  Total catechin con-
tents  are  significantly  reduced  in  green  tea  wine[53].  The  ester
bonds  of  catechins  like  EGCG  and  ECG  are  reactive  and  prone
to hydrolysis,  releasing gallic acid, EGC, and EC. This hydrolysis
can  lead  to  further  decomposition  under  yeast  dioxygenase
catalysis,  producing  simple  phenols  and  B-ring  fission  meta-
bolites of catechins[54].

In tea vinegar fermentation, the contents of tea polyphenols
and flavonoids  initially  decrease  and then stabilize[16,55].  When
AAB strains are inoculated into a black tea infusion with ethanol
to  produce black  tea  vinegar,  the  contents  of  tea  polyphenols
and thearubigins decrease, while theabrownins increase[22]. The
content  of  C  and  EC  decreases,  while  the  EGCG  content
increases,  generally  raising  the  total  catechin  content  in  tea
vinegar[55].

Microbial  strains  exhibit  distinct  polyphenol  transformation
capabilities during the fermentation of tea soup to kombucha.
Acetobacter pasteurianus, Zygosaccharomyces bailii, and Debary-
omyce  hansenii can  increase  the  content  of  EGCG,  a  major
component of tea polyphenols. Z. bailii and Acetobacter xylinum
enhance  the  concentration  of  low  molecular  weight  tea
polyphenols.  Synthetic  microbial  communities  constructed
with Z. bailii, L. plantarum, and D. hansenii significantly increase
the  EGCG  content  in  tea  broth,  along  with  total  phenols  and
flavonoid  contents[56].  Microbiomes  containing  the  enzyme
shikimate  dehydrogenase  are  responsible  for  gallic  acid
production.  Compared  to  kombucha  produced  with Bret-
tanomyces  bruxellensis and Schizosaccharomyces  pombe,  which
produces  higher  ethanol,  kombucha  without Brettanomyces

bruxellensis shows  lower  ethanol  and  increased  production  of
theobromine, rutin, and chlorogenic acid. The concentration of
gallic acid and caffeic acid increases, while catechin and epicat-
echin decrease after kombucha fermentation[57].

The  mid-fermentation  stage,  spanning  days  5  to  10,  plays  a
pivotal  role  in  the  biotransformation  of  phenolic  compounds
during  the  fermentation  of  black  tea  kombucha.  During  this
period, flavonoids experience the most significant degradation,
whereas  the  concentration  of  phenolic  acids  increased  sub-
stantially[49].  Compared  to  non-fermented  tea,  the  levels  of
gallic,  chlorogenic,  protocatechuic, p-coumaric,  and  ellagic
acids, along with rutin, vitexin, and resveratrol, are significantly
elevated in black tea kombucha, while ferulic acid and syringic
acid exhibit a slight decrease[48].

The  biotransformation  of  hydroxycinnamic  acids,  such  as
caffeic, ferulic, and p-coumaric acids, is facilitated by the decar-
boxylases or reductases of yeast[58]. In Saccharomyces cerevisiae,
the presence of three cofactors — FADH2, S-adenosyl-l-methio-
nine,  and  NADPH  —  promotes  the  conversion  of p-coumaric
acid into high levels of caffeic and ferulic acids[59]. Additionally,
the  ester  bonds  of  chlorogenic  acid  can  be  hydrolyzed  by  the
ester  hydrolases  of S.  cerevisiae,  leading  to  the  formation  of
caffeic  acid  and quinic  acid.  Furthermore, p-coumaric  acid  can
undergo  decarboxylation  by S.  cerevisiae to  form  4-vinyl
phenol[19]. 

Caffeine
Caffeine,  a  member  of  the  methylxanthine  class,  is  a  crucial

component  of  tea  and  provides  essential  nitrogen  for  micro-
bial  metabolism[48,60,61].  Both  bacteria  and  fungi  have  deve-
loped  pathways  for  caffeine  degradation,  mainly  through  N-
demethylation  and  C-8  oxidation  processes[62].  The  degrada-
tion sequence starts with the conversion of caffeine into theo-
bromine  and  theophylline,  which  are  then  transformed  into
xanthine and eventually broken down into carbon dioxide and
ammonia  by  yeast  via  the  purine  catabolic  pathway[63].  The
Pichia  manshurica strain,  a  caffeine-degrading  yeast  isolated
from  kombucha,  exhibits  maximum  caffeine  dehydrogenase
activity  when  utilizing  glucose  as  a  carbon  source,  with  fruc-
tose being the second most effective[64].

In  fermented  tea  beverages,  such  as  kombucha,  tea  wine,
and  tea  vinegar,  the  caffeine  content  undergoes  a  notable
reduction during fermentation compared to their unfermented
counterparts[48,50,65].  Kombucha,  in  particular,  shows  an
increase  in  theobromine  content  as  the  caffeine  content
decreases[56,57]. The consumption of caffeine stabilizes to lower
rates  in  the  mid  to  late  stages  of  tea  wine  fermentation[37].  In
tea  vinegar,  the  caffeine  content  is  reduced  by  approximated
40%[55].  This  general  decrease  in  caffeine  content  across  all
fermented tea beverages underscores the significant impact of
microbial  activity  on  this  stimulant  during  the  fermentation
process. 

Volatiles compounds in fermented tea
beverages

During  the  fermentation  of  kombucha,  tea  wine,  and  tea
vinegar, the original volatile components found in tea broth —
such  as  alcohols  like  linalool  and  geraniol,  terpenes  like  squa-
lene  and  limonene,  as  well  as  aldehydes  and  ketones  —  are
significantly  reduced  or  eliminated.  Microorganisms  transform
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terpenoids, including limonene and linalool into 4-pinacol type
terpenoids[66].  In  kombucha,  the  microbial  reduction  of  dihy-
drolinalool and α-terpineol results in fluctuations in β-limonene
content,  which  initially  increases  and  then  decreases[67].  The
fermentation  process  in  these  three  types  of  tea  beverages
alters the main volatile substances present in the tea broth and
produces  new  volatile  compounds,  including  alcohols,  esters,
and acids. These new compounds play a crucial role in develop-
ing  distinct  flavor  profiles.  The  specific  volatile  compounds
produced  are  influenced  by  the  fermentation  substrate,  the
microorganisms involved, and the fermentation conditions.

In  tea  wine,  the  primary  volatile  components  are  alcohols,
esters, and aromatic compounds[19,31,32,37,53]. The volatile profile
of  kombucha  is  primarily  composed  of  alcohols,  acids,  and
esters[52,67−71]. Tea vinegar is characterized mainly by its content
of  acids  and  alcohols[72].  The  transformation  of  aroma  com-
pounds during fermentation is affected by metabolic pathways
related  to  amino  acid  metabolism,  fatty  acid  synthesis,  and
terpene  synthesis[53].  This  complex  interplay  of  biochemical
reactions  gives  each  beverage  its  unique  and  characteristic
aroma. 

Alcohols
Research  has  identified  2-phenylethanol,  isoamyl  alcohol,

and isobutanol as the primary alcohols in fermented tea bever-
ages  like  kombucha,  tea  wine,  and  tea  vinegar[19,32,70,72].  Addi-
tional  alcohols  such  as  nerolidol,  nerol,  citronellol,  n-pentanol,
and  2-methyl-1-butanol  are  also  present,  with  unique  sub-
stances  like  citronellol,  1-nonyl  alcohol,  and  benzyl  alcohol
found in summer and autumn tea vinegar, and Jinjunmei black
tea  wine[37,70,72].  A  noted  increase  in  tea  concentration  during
the  fermentation  of  apple  tea  wine  significantly  boosts  the
production of fusel alcohols[73]. The fermentation of tea wine by
S.  cerevisiae results  in  the  depletion  of  amino  acids  such  as
isoleucine,  leucine,  and  phenylalanine,  correlating  with  the
formation  of  their  respective  alcohols:  isoamyl  alcohol,  and  2-
phenylethanol[19]. These amino acids are derived not only from
the tea  broth but  can also  be synthesized from carbohydrates
by yeast, where glucose undergoes glycolysis to form pyruvate,
subsequently entering the amino acid biosynthesis pathway[74].
The Ehrlich pathway typically leads to the production of higher
alcohols  from  the  catabolism  of  some  amino  acids  during
fermentation[75]. 

Esters
During the fermentation of tea wine with various teas, esters

such  as  ethyl  caprylate,  ethyl  caproate,  and  ethyl  decanoate
have been identified[19,31,32,37]. Other distinctive esters detected
include  isoamyl  caprylate,  isoamyl  acetate,  diethyl  succinate,
3-methylbutyl  decanoate,  ethyl  sorbate,  monoethyl  succinate,
lactic  acid  ethyl  ester,  and  ethyl  acetate[31,32,37].  In  tea  vinegar,
notable  esters  include  ethyl  acetate  and  lactic  acid  ethyl
ester[72].  Studies  on  kombucha  fermentation  have  revealed
compounds  like  2-(1H-indol-3-yl)  ethyl  acetate,  ethyl  2-pheny-
lacetate,  ethyl  hexanoate,  and  methyl  hexanoate[70].  Intro-
ducing Pichia kluyveri as a starter culture in kombucha fermen-
tation  enhances  the  rapid  buildup  of  acetic  acid  and  the
production  of  acetate  esters,  particularly  isoamyl  acetate  and
2-phenethyl acetate[76]. Ethyl esters, featuring an ethanol (alco-
hol group) and a medium-chain fatty acid (acid group), include
compounds  like  ethyl  hexanoate,  ethyl  octanoate,  and  ethyl
decanoate.  Acetate  esters,  formed  from  acetate  (acid  group)

and an alcohol group (either ethanol or a complex alcohol from
amino  acid  metabolism),  include  esters  such  as  ethyl  acetate
and isoamyl acetate[77]. 

Acids
Acids  such  as  octanoic  acid  and  decanoic  acid  have  been

identified  in  tea  wine,  tea  vinegar,  and  kombucha[19,70,72].  The
fermentation of kombucha leads to the formation of a bacterial
cellulose film on the solution's surface, which restricts the avai-
lable  oxygen  and  thus  influences  the  presence  of  fatty  acids,
either by depleting or converting them[51,78]. During the fermen-
tation period from the 7th to the 10th day, especially when using
raw Pu-erh tea as the base, a notable reduction in alcohols and
aldehydes  are  observed,  while  the  concentration  of  acids
increase.  By  the  end  of  the  fermentation  process,  around  day
14, the volatile composition is predominantly characterized by
acids  and  esters,  indicating  a  significant  transformation  in  the
chemical profile of the tea over the fermentation period[52]. 

Bacterial cellulose

The  Symbiotic  Culture  of  Bacteria  and  Yeast  (SCOBY)  in
kombucha produces a floating layer of bacterial  cellulose (BC),
a  sustainable  and  renewable  biomaterial  that  is  garnering
significant research interest[79,80]. BC is particularly valued for its
potential applications in food packaging, where its antioxidant
properties  are  highly  beneficial[81,82].  Genera  such  as Koma-
gataeibacter and Gluconacetobacter within  the  AAB  group  are
recognized for their ability to produce large quantities of extra-
cellular  cellulose[83].  This  production  can  also  be  achieved
through  the  combined  fermentation  of  strains  such  as Bret-
tanomyces  bruxellensis and Komagataeibacter spp.,  or  through
co-culture  methods  involving Saccharomyces  cerevisiae and
Komagataeibacter rhaeticus[84,85]. Moreover, AAB can synthesize
water-soluble cellulose polysaccharides from substrates includ-
ing  glucose,  fructose,  ethanol,  and  glycerol.  This  process  in-
volves the formation of uridine diphosphate glucose (UDPGlc),
which then polymerizes into the β-1,4-glucan chain characteris-
tic  of  bacterial  cellulose[86,87].  Tea,  particularly  green tea serves
as a nitrogen source in this process and is noted for producing
a  higher  yield  of  BC  with  enhanced  hydrogen-donating
capabilities[88]. Plant xanthines in black tea, such as theaflavins,
thearubigins, and caffeine have also been shown to boost cellu-
lose  production[89].  Furthermore,  incorporating  phytochemi-
cals  such  as  carotenoids,  alkaloids,  tannins,  flavonoids  and
anthocyanins  into  the  BC  matrix  can  endow  the  material  with
specific  properties,  notably  enhancing  its  antioxidant  and
antimicrobial activities[89,90]. 

Characteristics of fermented tea beverages
prepared from various tea types

Different types of tea,  including black,  green, white,  oolong,
dark,  and  summer  teas,  serve  as  the  primary  raw  materials  in
the production of fermented beverages such as kombucha, tea
wine,  and tea  vinegar[15,21,22,30−33,35−39,55,72] (Table  1).  Generally,
fermentation  enhances  the  phenolic  content  and  antioxidant
capacity  of  these  drinks[58].  In  the  case  of  kombucha,  the
fermentation  process  notably  affects  polyphenols  when  using
black  tea,  leading  to  a  greater  variety  of  phenolic
compounds[51]. Specifically, phenolic compounds newly formed
in black tea kombucha represent 42.72% of the total phenolics,
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compared  to  a  mere  0.97%  in  green  tea  kombucha[30].
Moreover,  green  tea  kombucha  features  elevated  levels  of
epicatechin,  catechin,  and  kaempferol  relative  to  its  black  tea
kombucha[91]. The abundant amino acids in green tea promote
sugar  consumption,  boosting alcohol  production and enhanc-
ing  yeast  fermentation.  Consequently,  wines  derived  from

green  tea  display  higher  concentrations  of  total  and  specific
catechins (EC, EGC, ECG, and EGCG) than those produced from
black, oolong, and dark teas[31].

Overall,  while  kombucha,  tea  wine,  and  tea  vinegar  can  be
produced  from  six  predominant  tea  types,  an  assessment  of
factors  such  as  taste,  fermentation  duration,  and  polyphenol

 

Table 1.    Kombucha, tea wine, and tea vinegar prepared from different types of tea.

Beverage Fermentation conditions Substrate Results Ref.

Kombucha 3% (w/v) SCOBY,
100 mL/L kombucha,
fermented at 25 °C for 10 d.

Green tea pH = 3.2, total acid: 0.36% (w/v acetic acid), alcohol: 7.29 g/L,
total phenols: 0.70 mg GAE/mL, theaflavin: 0.028 (% w/v),
theobromine: 1.330 (% w/v).

[30]

Black tea pH = 3.5, total acid: 0.32% (w/v acetic acid), alcohol: 4.90 g/L,
total phenol: 1.09 mg GAE/mL, theaflavin: 0.151 (% w/v),
theobromine: 1.998 (% w/v).

Kombucha 30 g SCOBY, 100 mL kombucha,
fermented at 27 °C for 14 d.

Black tea Days 7 and 14 of fermentation: acetic acid: 3.18, 9.18 (mg/mL),
Alcohol: 4.69, 5.83(mg/mL).
Days 0, 7 and 14 of fermentation:
polyphenolics: 79.38, 64.81, 67.20 (mg/g DW),
flavonoids: 17.97, 14.46, 13.87 (mg/g DW), and
total catechins: 2.184 ,0.99, 0.464 (mg/g DW).

[33]

Green tea Days 7 and 14 of fermentation: acetic acid: 4.22, 7.65 (mg/mL),
alcohol: 2.81, 4.18 (mg/mL).
Days 0, 7 and 14 of fermentation:
polyphenolic compounds: 74.40, 100.33, 67.40 (mg/g DW),
flavonoids: 16.57, 18.49, 15.11 (mg/g DW),
total catechins: 18.253, 9.770, 11.844 (mg/g DW).

Kombucha 10% SCOBY and kombucha,
28 ° C fermented for 1, 7, 14 d.

Green tea Tea soup: pH = 5.54, alcohol: 0, acidity: 20.12 (mg acetic acid/L),
TFC: 254.1 (mg/L), TPC: 269.0 (mg/L).
At 1, 7, 14 d fermentation:
pH = 3.50, 2.61, 2.49, alcohol: 0.2%, 3.0%, 2.75%,
acidity: 610.34, 7,039.21, 9,147.4 (mg acetic acid/L),
TFC: 196.2, 146.8, 181.3 (mg/L), TPC: 277.6, 299.6, 320.1 (mg/L).

[29]

Black tea Tea soup: pH = 5.34, Alcohol: 0, acidity: 23.5 (mg acetic acid/L),
TFC: 231.7 (mg/L), TPC:183.1 (mg/L),
At 1, 7, 14 d fermentation: pH = 3.54, 2.62, 2.53,
Saccharose: 10.88, 9.5, 7.5 (Brix-g/100 mL),
alcohol: 0.3%, 3.25%, 2.0%,
acidity: 501.02, 7,039.08, 9,083.03 (mg acetic acid/L),
TFC: 149.1, 90.5, 126.7 (mg/L), TPC: 201.0, 219.5, 206.0 (mg/L).

White tea Tea soup: pH = 6.53, alcohol: 0, acidity: 21.09 (mg acetic acid/L)
TFC: 209.3 (mg/L), TPC: 184.6 (mg/L);
At 1, 7, 14 d fermentation: pH = 3.56, 2.53, 2.37,
saccharose: 10.13, 10.13, 9.5 (°Brix-g/100 mL),
alcohol: 0.4%, 3.5%, 3.0%,
acidity: 620.13, 7,048.06, 9,132.20 (mg acetic acid/L)
TFC: 132.6 (mg/L), 83.8 (mg/L),111.6 (mg/L),
TPC: 200.8 (mg/L), 205.6 (mg/L), 228.1 (mg/L).

Pu'er tea Tea soup: pH = 5.58, alcohol: 0, acidity: 20.42 (mg acetic acid/L),
TFC: 359.9 (mg/L), TPC: 229.5 (mg/L),
At 1, 7, 14 d fermentation: pH = 3.62, 2.38, and 2.32,
alcohol: 0.4%, 3.5%, 3.0%,
acidity: 600.09, 7,059.47, 9,071.02 (mg acetic acid/L),
TFC: 292.5, 198.1, 242.5 (mg/L), TPC: 219.8, 270.5, 271.9 (mg/L).

Kombucha 10% (v/v) kombucha, fermented at
room temperature for 15 d.

Green tea pH = 2.94, total acid: 11.72 g/L,
alcohol free, glucuronic acid: 1.37 g/L, gluconic acid: 41.42 g/L,
DSL: 3.44 g/L, ascorbic acid: 0.61 g/L, acetic acid: 10.42 g/L,
succinic acid: none.

[35]

Black tea pH = 2.70, total acid: 16.75 g/L,
alcohol free, glucuronic acid: 1.58 g/L, gluconic acid: 70.11 g/L,
DSL: 5.23 g/L, ascorbic acid: 0.70 g/L, acetic acid: 11.15 g/L,
succinic acid: 3.05 g/L.

Oolong tea pH = 2.89, Total acid: 12.24 g/L, no alcohol,
glucuronic acid: 0.07 g/L, gluconic acid: 48.75 g/L, DSL: 4.02 g/L,
ascorbic acid: 0.60 g/L, acetic acid: 10.48 g/L, succinic acid: none.

Tea wine 25°Brix, 0.5% yeast,
fermentation at 25 °C.

Black tea Alcohol 14.0% vol, theanine content: 0.241 mg/mL. [38]

Tea wine The sugar level was 17 °Bx, 0.3 %
yeast, fermentation at 24 °C for 13 d.

Green tea The alcohol content was 8.5 %vol, the concentration of tea
polyphenols was 2,902.35 mg/L.

[36]

Tea vinegar 4% alcohol by total volume, 5%
acetic acid strain, 30 °C for 9 d.

Black tea Theaflavins were significantly decreased, thearubigins were
decreased, and theabrownines were increased.

[22]

Tea vinegar 0.9% yeast, initial sugar 15%. The
initial alcohol content was 6% vol,
9% acetic acid bacteria, fermentation
at 28 °C for 12 d.

Summer and
fall green

tea fragments

The acidity content was 59.10 g/L, tea polyphenol content was
2.95 g/L, alcohol content was 0.08% vol, amino acid nitrogen
content was 0.14 g/dL, and caffeine content was 0.80%.

[72]

GAE: Gallic acid equivalent, DW: Dry Weight, TPC: total polyphenols content, TFC: total flavonoids content.
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content  highlights  specific  advantages  of  black  tea.  Neverthe-
less, green tea is distinguished by its higher catechin levels and
superior  antioxidant  properties,  making  its  transition  from  tea
soup  to  fermented  tea  beverages  during  microbial  fermenta-
tion (Fig. 2). 

Health benefits and functional activities of
fermented tea beverages

Fermented  tea  beverages,  including  kombucha,  tea  wine,
and  tea  vinegar,  owe  their  health  benefits  to  bioactive  com-
pounds  that  are  produced  during  the  fermentation  process.
These  health  benefits  encompass  antioxidant  properties,  anti-
bacterial  activity,  anti-inflammatory  effects,  and  blood  sugar
regulation.  Additionally,  these  beverages  contribute  to  gut
health by promoting the growth of beneficial bacteria (Table 2).
Fermented  tea  beverages  may  also  aid  in  detoxification  and

support  liver  health,  attributed  to  the  increased  levels  of
polyphenols, organic acids, and other metabolites produced by
microbial fermentation. 

Antioxidant properties
Fermentation  generally  increases  phenolic  content  and

antioxidant  activity[58].  Kombucha,  for  example,  demonstrates
strong  antioxidant  properties[35].  Green  tea  kombucha,  after
seven  days  of  fermentation,  exhibits  less  DPPH  radical  inhibi-
tion  than  unfermented  green  tea,  while  black  tea  kombucha
has  higher  antioxidant  activity  compared  to  its  unfermented
counterpart[34,48,100].  This  may  be  due  to  the  higher  phenolic
content  in  black  tea  kombucha[93].  Green  tea  kombucha  is
found  to  have  the  highest  antioxidant  capability  among  kom-
buchas  made  from  different  tea  types[29,47].  Similarly,  with
green  tea  wine  having  significantly  higher  ABTS  values  com-
pared  to  other  tea  wines[31].  Tea  vinegar's  antioxidant  and

 

Yeast fermentation pathway
Fermentation pathway common to yeast and acetic acid bacteria

Acetic acid bacteria fermentation pathway

 
Fig. 2    Fermentation processes in tea beverages: from raw materials to finished products. (1) In the production of kombucha, tea wine, and
tea vinegar, commonly used tea leaf raw materials include various types of tea such as green, black, oolong, dark, and white teas, processed
differently,  as  well  as  seasonally  surplus  summer  tea  leaves.  (2)  These  teas  provide  the  substrate  for  fermentation.  For  kombucha,  sugar  tea
soup, yeast, and a mix of acetic acid bacteria are added to initiate fermentation. In contrast, the addition of yeast alone ferments into tea wine
while  combining  the  ethanol  from  yeast  fermentation  with  acetic  acid  bacteria  further  produces  tea  vinegar[16].  (3)  During  fermentation,
glucose  and  fructose  are  converted  into  ethanol  by  yeast  and  transformed  into  gluconic  and  glucuronic  acid  by  acetic  acid  bacteria.
Additionally,  ethanol  is  oxidized  to  acetic  acid[14,27].  Throughout  the  microbial  metabolism  process,  various  compounds  such  as  alcohols,
ketones,  aldehydes,  acids,  amino  acids,  caffeine,  and  polyphenols  in  the  tea  undergo  transformations,  being  preserved,  increased,  or
decreased.  Caffeine  is  converted  into  theobromine  and  theophylline,  serving  as  nitrogen  sources  for  the  microbes.  Amino  acids  provide
nitrogen  and  are  transformed  into  alcohols,  while  aldehydes  convert  into  alcohols  and  acids.  Reactions  between  alcohols  and  acids  with
ethanol  and acetic  acid  result  in  the formation of  new ethyl  esters  and acetate  compounds[15,30,31,33,35,55,72].  Tea  polyphenols,  predominantly
flavonoids,  and  phenolic  acids[67],  undergo  significant  changes:  catechin  ester  bonds  break,  (–)epigallocatechin  gallate  hydrolyzes  into
epigallocatechin and gallic acid, and chlorogenic acid converts into caffeic acid and quinic acid[19]. This intricate fermentation process not only
alters the chemical composition of the raw materials but also enhances the flavor and nutritional value of the final products, underscoring the
uniqueness and complexity of tea beverage fermentation.
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antibacterial  functions  surpass  those  of  tea  soup  and  conven-
tional  food  vinegar[101],  likely  due  to  its  rich  phenolic  and
organic acid content[22].
 

Anti-inflammatory effects
Kombucha intervention significantly reduces serum levels of

lipopolysaccharide  (LPS),  interleukin  (IL)-6,  IL-1β,  and  tumor

 

Table 2.    Healthy benefits of fermented tea beverage kombucha in vivo.

Model Intervention and dosage Significant results and biological activity Ref.

Glycemic index and
insulin index after a
standard
carbohydrate meal

Sample: 11 healthy adults (four males and seven females),
Period: 120 min after test meals
Group 1: 330 ml of soda water;
Group 2: diet lemonade soft drink;
Group 3: organic kombucha.
Additional capillary blood samples were collected at regular intervals
(15, 30, 45, 60, 90, and 120 min) after commencement of the reference
solution or test meal.

Soda water (GI: 86 and II: 85)
soft drink (GI: 84 and II: 81)
kombucha (GI: 68, and II: 70)
↓GI (Glycemic index)
↓II (insulin index).

[92]

HFHF Sample: 40 wistar rats,
Period: 10 weeks,
n = 10 for all groups, ad libitum consume,
Group 1: standard diet (AIN-93M);
Group 2: high-fat and high-fructose diet (HFHF);
Group 3: HFHF + GTK diluted in water (30% v/v);
Group 4: HFHF + BTK diluted in water (30% v/v).

GTK, BTK: ↑propionic acid
↑Firmicutes: Bacteroidetes,
↑Erysipelotrichaceae,
↓Bacteroidaceae ,
↓S24-7, Desulfovibrionaceae.
GTK: ↓Proteobacteria.
BTK: ↑Euryarchaeota, Lachnospiraceae.

[93]

HFHF Sample: 32 wistar rats,
Period: 10 weeks, ad libitum consume,
Group 1: AIN-93M: standard diet (n = 8);
Group 2: HFHF (n = 24);
then regroup as follows: HFHF; HFHF + GTK diluted in water (30% v/v);
HFHF + BTK diluted in water (30% v/v).

GTK, BTK: improving the insulin
sensitivity, reduced the percentage of
lipid vesicles in the liver, reverting the
liver steatosis from grade 2 to 1, active
CPT1 express,
↑glucose tolerance, TAC in plasma and
liver, SOD and CAT in liver,
↓ALT, NO, NLR,
GTK: ↑ADIPO-R2, BTK: ↑SREBP1c.

[94]

LPS-induced sepsis Sample: Specific pathogen-free C57BL/6 adult mice,
Period: 60 d,
n = 10 per group, with equal numbers of male and female.
Group 1: free-drinking water, the sham;
Group 2: free-drinking kombucha (FD), (replaced every 2 d);
Group 3: intragastric administration (IA) of kombucha (100 μL/100 g daily);
Group 4: free-drinking water, LPS-induced sepsis (LPS);
Group 5: FD + LPS;
Group 6: IA + LPS.
At day 60, Group 1−3 injected phosphate-buffered saline, Group 4−6
injected LPS (20 mg/kg).
Kombucha was added to drinking water at a volume ratio of 1:20.

↑CD4+ T cells, B cell, macrophages,
↓CD8+ T cells,
↓IL-1β, TNF-α, CCL-2, IL-10, and CXCL10
in the lung tissues, alleviated the
symptoms of lung histopathological
damage
↓pIκBα, p-NF-κB expression.
inhibits LPS-induced NF-κB activation.
↓Bacteroidetes,
↑Cyanobacteria and Alistipes,
Prevotellaceae enrich in IA and FD
group.

[95]

High fat high sugar
diet injected with
Streptozotocin to
Type 2 Diabetes

Sample: 60 Kunming mice,
Period: day 40 to 68 (4 weeks), randomly divided into five groups ( n = 12).
The mice feed with HFHSD was intraperitoneally injected with STZ (50
mg/kg·bw) 4 times (day 28, day 31, day 34 and day 37) to induce T2DM.
Group 1: the normal control (NC), normal diet and gavage administration
with 11.1 mL/kg·bw saline;
Group 2: DC, HFHSD and gavage administration with 11.1 mL/kg·bw saline;
Group 3: MET, HFHSD and gavage administration with 0.13 g/kg·bw
metformin;
Group 4: KT, HFHSD and gavage administration with 11.1 mL/kg·bw
kombucha;
Group 5: tea soup (TS), HFHSD and gavage administration with 11.1
mL/kg·bw tea soup.

↓HOMA-IR, ↑HOMA- β, ↓AST, ALT.
↑liver glycogen content,
↓pancreatic index,
↑GPR41/GPR43 mRNA express,
↑GLP-1, PYY,
↑ZO-1, Claudin-1, Occludin,Muc2,
↓IL-1β, IL-6, TFN-α mRNA in intestinal
inflammation,
↓LPS, TNF-α and IL-6 in serum.
↑Firmicutes, Lactobacillus,
Butyricicoccus, Bifidobacterium,
↓Proteobacteria.
↑acetic acid and butyric acid in SCFAs.

[96]

NAFLD Sample: 12 male C57BLKS db/db mice,
Group 1: Control, the control diet (n = 4); MCD, the methionine/choline-
deficient (MCD) diet (n = 8) for 4 weeks;
Group 2: MCD + water (n = 4);
Group 3: MCD + KT, Kombucha powder 2 g/kg by oral administration,
every 24 h for 3 weeks (n = 4).

↓Fat accumulation in the livers.
↓Firmicutes,
↓Erysipelotrichia,
↓Allobaculum,
Turicibacter and Clostridium,
↑Bacteroidetes, ↑Lactobacillus,
↑Mucispirillum.

[97]

High-fat diet NAFLD Sample: 20 male C57BL/6 mice,
Period: 12 weeks (At the end of the 10th week, for nine consecutive days),
n = 5 for all groups.
Group 1: RC, the control group + tap water;
Group 2: RC + K, control group + kombucha (0.2 mL containing 107–108

microorganisms/mL);
Group 3: HFD, HFD + tap water;
Group 4: HFD + kombucha (HFD + K).

Reduced the presence of intra
hepatocyte lipid droplets, collagen
deposition in the liver's perivascular
spaces, and hepatic FXR gene
expression.

[98]

DSS induced the
leaky gut syndrome

Sample:16 male NMR mice,
Period: day 7 to 21 (14 d);
Old mice: normal group (n = 8); DSS colitis induction group (n = 8): DSS no
treatment group and DSS + fKT.
Young mice: normal group (n = 8); DSS colitis induction group (n = 8): DSS
no treatment group and DSS + fKT.

Ameliorates tissue changes associated
with PMNs infiltration, crypt loss,
epithelial defects, mucosal destruction,
apoptosis, edema, and increased
mucosal thinness due to DSS.
↑ZO-1 and ZO-2 express.

[99]
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necrosis  factor  (TNF)-α cytokines,  and  markedly  decreases  the
expression levels of inflammatory factors IL-1β,  IL-6, and TNF-α
mRNA in the colon[95,96]. It significantly restores T cell levels and
macrophage  counts,  elevates  CD4+  T  cell  and  B  cell  levels,
significantly lowers CD8+ T cell levels, markedly suppresses the
upregulation of CCL-2,  IL-10,  and CXCL10, decreases phospho-
rylated-IκBα (pIκBα)expression levels and inhibits nuclear factor
kappa-light-chain-enhancer  of  activated  B  cells  (NF-κB)signal
transduction[95]. 

Blood sugar regulation
In human clinical trials, consuming unpasteurized kombucha

significantly  reduces  Glycemic  Index (GI  )  and Insulin  Index (II)
after  a  standard  high-GI  diet  for  2  h[92].  In  animal  models
induced by a high-fat diet, kombucha can reduce weight, signi-
ficantly  decrease  fasting  blood  glucose  (FBG)  and  food  intake,
reduce  HOMA-IR,  increase  HOMA-β,  raise  glucagon-like
peptide-1  (GLP-1)  and peptide  YY (PYY)  levels  in  the  intestine,
significantly  repair  pancreatic  damage,  and  protect  the
pancreas[95,96].  It  improves  insulin  sensitivity,  lowers  insulin
resistance, and enhances glucose tolerance[94,98]. 

Liver protection
Kombucha  intervention  can  reduce  total  fat  tissue  in  high-

fat,  high-sugar  diet  mice,  decrease  serum  triglyceride  levels,
significantly  reduce  AST  levels,  enhance  glycogen  synthesis,
and  effectively  improve  liver  function[96].  It  restores  liver  fat
degeneration  from  grade  2  to  grade  1,  increases  plasma  and
liver  total  antioxidant  capacity  (TAC),  reduces  the  neutrophil/
lymphocyte  ratio  (NLR),  and  inflammatory  marker  levels.  Black
tea  kombucha  reduces  SREBP1c  expression,  while  green  tea
kombucha  increases  ADIPO-R2  expression[94].  Kombucha
decreases citrate synthase and phosphofructokinase-1 enzyme
activity,  downregulates  G  protein-coupled  bile  acid  receptor
(Gpbar1,  also  known  as  TGR5)  and  farnesol  X  receptor  (FXR)
gene  expression,  reduces  liver  collagen  fiber  deposition,  and
liver fat accumulation[97,98]. 

Regulation of gut microbiota
Both  green  tea  and  black  tea  kombucha  can  regulate  the

intestinal microbiota,  improving intestinal health in Wistar rats
fed  a  high-fat,  high-fructose  (HFHF)  diet[93].  Kombucha  can
restore colon damage in Type 2 diabetes mellitus (T2DM) mice,
significantly increase the relative expression levels of tight junc-
tion  proteins  (ZO-1,  Claudin-1,  Occludin),  and  mucin  proteins
(Muc2), improving intestinal barrier damage[96].  Kombucha can
improve  tissue  changes  associated  with  "leaky  gut  syndrome"
induced  by  dextran  sodium  sulfate  (DSS),  such  as  polymor-
phonuclear  cells  (PMNs)  infiltration,  crypt  loss,  epithelial
defects, upregulating ZO-1 and ZO-2 expression[99].

In  HFHF  and  T2DM  animal  models,  kombucha  can  increase
the ratio of Firmicutes to Bacteroidetes, decrease Proteobacte-
ria,  significantly  increase  intestinal  microbial  richness,  such  as
Lactobacillus, Butyricicoccus, Lachnospiraceae, Bifidobacterium,
and  others[93,96,97].  It  can  significantly  increase  the  content  of
short-chain  fatty  acids  (SCFAs)  acetate,  butyrate,  and  pro-
pionate,  and  promote  the  growth  of  bacteria  producing
propionate, thereby exerting anti-inflammatory effects[93,95,96]. 

Antibacterial effects
The  antibacterial  activity  of  kombucha  is  similar  to  that  of

acetic  acid,  exhibiting  inhibitory  effects  on  intestinal  patho-
genic  bacteria  (Escherichia  coli, Shigella  dysenteriae, Salmonella

Typhi,  and Vibrio  cholerae)[35,102].  Black  tea  kombucha  shows
strong  inhibitory  effects  on Candida  krusei, C.  glabrata, C.  albi-
cans, C. tropicalis,  and Hemophilus influenzae[34].  The main anti-
bacterial  compounds  present  in  the  polyphenolic  fraction  of
kombucha were catechin and isorhamnetin[102].  These findings
suggest  that  acetic  acid  and  polyphenols  in  kombucha  offer
significant  potential  health  benefits  in  inhibiting  intestinal
pathogenic bacteria. 

Conclusions and outlook

As consumer health awareness increases, kombucha's popu-
larity  has  surged  in  the  global  beverage  market.  Simultane-
ously,  low-alcohol  beverages  have  gained  traction  among
younger and female consumers, enhancing their market value.
Additionally, vinegar — rich in amino acids and various organic
acids — has become a popular pre-meal choice. In response to
the growing demand for  health-focused and natural  products,
tea  wine  and  tea  vinegar  are  carving  out  niches  as  innovative
trends.

The  advanced  utilization  of  summer  and  autumn  teas
through  microbial  fermentation  is  another  notable  develop-
ment.  This  process  not  only  reduces  the  bitterness  and  astrin-
gency  by  lowering  catechin  levels  but  also  encourages  the
transformation  of  organic  acids,  alcohols,  amino  acids,  and
other  substances,  thus  creating  uniquely  flavored  tea  bever-
ages. Moreover, fermentation decreases the caffeine content in
these  drinks,  categorizing  them  distinctly  as  fermented  pro-
ducts. The flavor profile of these beverages is greatly enhanced
by volatile compounds, which are key contributors.

However,  the  fermentation  conditions  and  the  type  of  tea
used can significantly affect the formation and balance of these
compounds.  Research  into  how  bioactive  components  in  tea
are  transformed  by  yeasts  and  acetic  acid  bacteria  is  highly
promising.  Moreover,  using  metabolic  engineering  to  amplify
the  biotransformation  of  phenolic  compounds,  especially  to
increase  phenolic  acid  content,  is  an  area  ripe  for  further
exploration. 
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