Open Access

https://doi.org/10.48130/bpr-0025-0026

Beverage Plant Research 2025, 5: e021

Genome-wide identification of the MIKC^C-type genes in *Vanilla planifolia* and expression studies in the development of the rostellum

Fan Su^{1,2,3#}, Lin Yan^{1,2,3#}, Yizhang Xing¹ and Jing Li^{1*}

- ¹ Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Xinglong Tropical Garden, Wanning 571533, China
- ² Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Xinglong Tropical Garden, Wanning 571533, China
- ³ Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Xinglong Tropical Garden, Wanning 571533, China
- # Authors contributed equally: Fan Su, Lin Yan
- * Corresponding author, E-mail: lij812260238@outlook.com

Abstract

Vanilla planifolia, a highly valued spice in the beverage, food, and cosmetics industries, is faced with a significant challenge. Its unique flower structure restricts natural pollination and impedes industrial progress. MADS-box transcription factors are essential in multiple biological processes, especially in the formation of flower organ structures. In response, we launched investigations to identify the MADS-box gene family in *V. planifolia* and explored their functions in the development of the gynostemium and rostellum. Through genome-wide screening, 47 VpMADS genes were identified, with 22 members classified into the MIKC^C subgroup. Based on genomic data, we analyzed the locations, structures, and conserved motifs of the genes. All MIKC^C-type genes were grouped into 10 phylogenetic clusters. Gene duplication analysis revealed that segmental duplications were the main driver of MADS-box gene expansion in *V. planifolia*. Samples were collected and underwent RNA-seq to identify differentially expressed genes. qRT-PCR was also used to validate differentially expressed genes. Weighted gene co-expression network analysis (WGCNA), and Gene Ontology (GO) enrichment analysis were conducted to study co-expressed genes related to MADS-box genes in the gynostemium. Overall, this study provides fundamental insights into the MADS-box gene family in *V. planifolia*, serving as a vital reference for future research on the development of the gynostemium and rostellum in this plant.

Citation: Su F, Yan L, Xing Y, Li J. 2025. Genome-wide identification of the MIKC^C-type genes in *Vanilla planifolia* and expression studies in the development of the rostellum. *Beverage Plant Research* 5: e021 https://doi.org/10.48130/bpr-0025-0026

Introduction

Vanilla planifolia Andrews, a perennial climbing vine belonging to the Orchidaceae family, is native to the tropical rainforests of Mexico, Central America, the West Indies, and northern South America^[1,2]. Widely acclaimed worldwide as 'the King of Natural Food Flavors', V. planifolia has been extensively utilized in the production of high-end cigarettes, famous wines, and top-gradete as. It also serves as a key raw material in the food, beverage, and cosmetics industries. Furthermore, V. planifolia is recognized as a natural herb and has been included in the pharmacopeias of European and American countries. The annual global consumption of V. planifolia exceeds 2,000 tons^[3–5]. With the continuous improvement of people's living standards, the demand for V. planifolia is steadily increasing. The presence of the rostellum structure renders it challenging for V. planifolia to be pollinated by insects when it is outside its native range^[6], and its unique structure has become a major impediment to the industrial development of V. planifolia. Additionally, the rostellum, a characteristic trait of orchids, is extremely small and develops synchronously with other flower organs, thus presenting obstacles to experimental research and sequencing.

The MADS-box transcription factors (TFs) gene family, so named because of its possession of an evolutionarily conserved MADS domain, has been widely detected across a diverse spectrum of eukaryotes. Generally, the MADS-box gene family can be classified into two lineages: type I and type II. Type I genes are primarily involved in the development of seeds, embryos, and female gametophytes^[7]. Type II genes, characterized by a conserved MIKC structure, encode proteins. At the amino-terminus of these proteins is the highly conserved DNA-binding MADS domain (M). The central

region consists of a less conserved I domain and a moderately conserved K domain, both of which are crucial for protein-protein interactions and the formation of coiled-coil structures. The variable carboxyl-terminal (C) region is thought to potentially function as a transactivation domain^[8,9]. Type II genes, also referred to as MIKC genes^[10–12], can be further sub-divided into MIKC^c and MIKC^c subtypes. Notably, MIKC^c genes are well-known for their roles in the 'ABCDE' model^[13].

The classic 'ABC' model of floral organogenesis was first proposed according to the genetic studies in *Antirrhinum majus* and *Arabidopsis thaliana*^[14] and was subsequently defined as the 'ABCDE' model after incorporation of class D, class E, and MIKC^C genes^[15,16]. The MADS-box gene family is believed to play a crucial regulatory role in the flower development and act synergistically during the process of primordial floral organogenesis: the A + E class genes determine the development of sepals; the class B + C + E genes determine the development of petals; the class B + C + E genes specify stamens; the C + E genes specify the carpels^[17,18]. Studies have revealed that MIKC^C genes play a role in each category of the ABCDE model, including AP1 (APETALA1) in A, AP3 (APETALA3) and PI (PISTILLATA) in B, AG (AGAMOUS) in C, STK (SEEDSTICK) in D, and SEP1-4 (SEPALLATA1-4) in E^[19–21].

Studies have shown that the MADS-box gene family in orchid plants bears a high degree of similarity to that of *A. thaliana*. Moreover, homologous genes corresponding to their respective groups can also be identified within orchids^[22,23]. While the 'ABCDE' model is generally conserved across species^[24,25], there are still numerous differences in the composition, function, and evolutionary relationships of MADS-box genes among various species. Additionally, whether the development of some unusual flower structures of the

Orchidaceae family are related to the MADS-box gene family merits further investigation.

In this study, a genome-wide identification and functional analysis of the MADS-box gene family in *V. planifolia* was carried out. All the VpMADSs were identified using 'HMMER' and 'BLASTP', and the MIKC^C genes were selected for subsequent analysis. Concurrently, gene characterizations, chromosomal locations, gene structures, and conserved motifs were also examined. Phylogenetic relationships were investigated in comparison with AtMADSs (MADS-box proteins from *A. thaliana*) and OsMADSs (MADS-box proteins from *A. thaliana*) and OsMADSs (MADS-box proteins from *Oryza sativa*) through the NJ method, and gene duplications were also explored. Moreover, the expression patterns of VpMADSs during the process of flower development were evaluated, which will offer valuable insights for further functional studies of these VpMADSs in *V. planifolia*.

Materials and methods

Plant materials

The vanilla plants for this experiment were planted in the germplasm nursery of the Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (Wanning, China). Before they flowered, flower buds were divided into four stages according to size. For stage 1 (S1), two samples were collected, one was the whole flower, and the other flowers without gynostemium. For stage 2 (S2), in addition to the above two samples, another sample of gynostemium was added. For stage 3 (S3) and stage 4 (S4), in addition to the above three samples, other rostellum samples were added. For each stage, more than five buds were prepared for sample collection. Each sample was collected with three replicates, placed in liquid nitrogen, frozen, and then stored at -80 °C for RNA-sequencing (Majorbio, Shanghai, China).

RNA isolation and quality assessment

Total RNA was extracted from tissue samples using TRIzol® Reagent (Thermo Fisher Scientific, USA) following the manufacturer's instructions, followed by genomic DNA removal using DNase I (Takara). RNA quality and integrity were evaluated using a NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific, USA), and an Agilent Bioanalyzer 5300 (Agilent Technologies, USA), respectively. Samples meeting stringent quality criteria (OD_{260/280} ratio: 1.8–2.2; OD_{260/230} ratio: \geq 2.0; RNA integrity number RIN \geq 6.5) were selected for library construction.

Library construction and RNA sequencing

Library preparation and sequencing were performed at Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd. (Shanghai, China). Stranded mRNA libraries were constructed using the Illumina® Stranded mRNA Prep, Ligation protocol with 1 μ g of total RNA input. Briefly, mRNA was isolated by polyA selection using oligo(dT) beads and subsequently fragmented. Double-stranded cDNA was synthesized using random hexamer primers, followed by end-repair, phosphorylation, and adapter ligation. Size selection was performed using magnetic beads to isolate cDNA fragments of 300–400 bp, followed by 10–15 cycles of PCR amplification. Libraries were quantified using Qubit 4.0 and sequenced on an Illumina NovaSeq 6000 platform with 2 \times 150 bp paired-end reads.

Data sources preparation

The genomic sequences of *V. planifolia* were obtained from NCBI database (National Center for Biotechnology Information, www.ncbi. nlm.nih.gov), with GenBank assembly version of GCA_016413885.1. The genomic data of *A. thaliana* were obtained from TAIR database (accessed on 30 December 2022), and sequences of OsMADS for *O.*

sativa were downloaded from PlantTFDB database (http://planttfdb.gao-lab.org/)^[26].

Transcript analysis

Raw sequencing reads were processed using 'fastp'^[27] with default parameters for quality control and adapter trimming. High-quality reads were aligned to the reference genome using HISAT2 in orientation mode^[28]. Transcript assembly was then performed using StringTie through a reference-guided approach^[28]. Transcript abundance was quantified using RSEM^[29] and normalized to transcripts per million reads (TPM).

Identification and characterization of the *V. planifolia* MADS-box gene family

Both 'HMMER' and 'BLASTP' were performed to accurately predict *MADS-box* genes *V. planifolia*[30,31]. For the 'HMMER' search, the profiles of the SRF (serum response factor) domain (PF00319) and the MEF2 (myocyte enhancer factor-2) domain (PF09047) were retrieved from the Pfam database (http://pfam.xfam.org/)[32]. The well-characterized *A. thaliana* protein sequences of the MADS-box gene family were collected from PLantTFDB as queries for 'BLASTP' search (e-value $\leq 1 \times 10^{-10}$). The protein structural integrity was confirmed using an online program called SMART[33]. The ExPASy Proteomics Server toolkit was used to predict physicochemical properties, including protein lengths, molecular weights, isoelectric points (pl), instability index, aliphatic index, and grand average of hydropathicity (GRAVY)[34]. Subcellular locations were predicted using the WoLF PSORT tool (www.genscript.com/wolf-psort.html).

Gene structures, conserved motif predictions, and phylogenetic analysis

Gene structures including CDS, UTR, and intron were displayed by GSDS (v2.0) (http://gsds.gao-lab.org/) with annotation information that extracted from NCBI (GCA_016413885.1)^[35]. The conserved motifs of MADS proteins were predicted using an online toolkit of MEME^[36]. Multiple sequence alignment of MADS-box protein sequences was performed using MUSCLE v3.8, and a neighborjoining tree was also generated using MEGA 11 with 1,000 bootstrap replicates^[37,38]. IQTREE (v2.0) was also adopted to reconstruct the maximum likelihood tree^[39], and guarantee a more reliable phylogenetic relationship.

Chromosomal localizations, and detection of gene duplications

All MADS-box genes were mapped to chromosomes, according to their annotations in the genome. Both tandem duplications and segmental duplications were predicted according to the Plant Genome Duplication Database^[40]. The all-against-all 'BLASTP' comparison (e-value \leq 1 \times 10 $^{-10}$) was performed to give similarities among all genes. MCScanX was used to detect segment duplications and results were manually confirmed^[41]. Tandem duplications were accepted as those genes next to each other, or separated by one unrelated gene.

Estimation of synonymous (Ks), and nonsynonymous (Ka) substitutions per site and their ratio (Ka/Ks)

All duplicated gene pairs were used to estimate Ka, Ks, and Ka/Ks. Coding sequences from duplicated genes were aligned using 'PRANK'^[42]. The estimation of Ka, Ks, and Ka/Ks was developed using the KaKs_Calculator (v3.0)^[43], and the MA model was adopted.

Expression profiles, WGCNA analysis, and GO enrichment

The expression profiles of *MADS-box* genes response to different stages (S1 to S4) were analyzed. Furthermore, gene co-expression correlations were also displayed with R package WGCNA (Weighted

Gene Co-expression Network Analysis)^[44]. All the genes that were aligned to the *V. planifolia* genome through RNA-seq sequencing were used as the primary gene set. Then genes with extremely low expression were manually filtered out, and the expression data of all remaining genes were used as input for WGCNA analysis. Based on the WGCNA software, through further processing, the genes were clustered into different modules. The modules show the correlation with different tissues and the degree of strength of the correlation. GO enrichment analyses were performed with DAVID^[45], and the input gene set from each WGCNA module that contained *VpMADS* genes.

Real-time quantitative PCR (qRT-PCR) analysis

Whole vanilla flowers at four developmental stages (S1–S4) were collected and dissected into different tissues according to the transcriptome sampling method. Samples were immediately frozen in liquid nitrogen and stored at -80 °C. Total RNA was extracted using the Vazyme VeZol-Pure Total RNA Isolation Kit (Cat# RC202-01). Approximately 100 mg of powdered tissue was lysed in 1 mL Trizol reagent following the manufacturer's protocol. First-strand cDNA was synthesized using the Vazyme HiScript IV 1st Strand cDNA Synthesis Kit (Cat# R412-01) with the reaction components as follows: 1 μ L of total RNA, 7 μ L RNase-free water, and 2 μ L 5 \times gDNA wiper Mix were incubated at 42 °C for 2 min; then 5 μ L 4 \times HiScript IV RT SuperMix, 1 μL Oligo (dt)20VN, and 2 μL Random Primers were added, followed by incubation at 37 °C for 15 min and 85 °C for 5 s. qRT-PCR was performed using the Vazyme SupRealQ Ultra Hunter SYBR qPCR Master Mix (Cat# Q713-02) on an ABI QuantStudio 6 instrument. The 20- μ L reaction mixture contained 1 μ L of 100-fold diluted cDNA, 10 μ L 2 \times Master Mix, 1 μ L each of forward and reverse primers, and 7 μL ddH₂O. Thermal cycling conditions were 95 °C for 30 s, followed by 40 cycles of 95 °C for 3–10 s and 60 °C for 10-30 s, with a melting curve analysis. Relative gene expression levels were calculated using the comparative CT method, and biological replicates were analyzed for mean values and linear regression. Fourteen flowering-related genes and nine MADS-box genes were selected for validation. Log2-transformed values of transcriptome counts and qRT-PCR expression levels were subjected to linear regression analysis, with R² > 0.8 indicating a strong correlation between the two datasets. The primers were shown in Supplementary Table S1.

Results

Identification and characterization analysis of the MADS-box gene family in *V. planifolia*

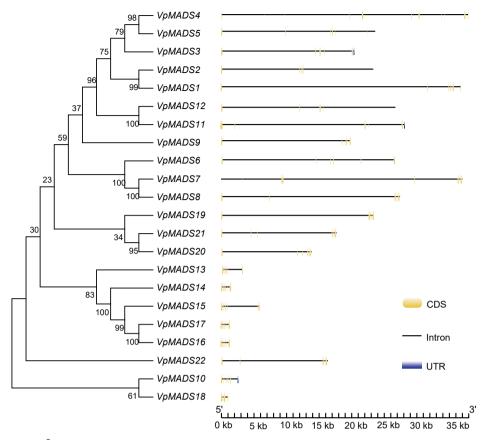
Based on the results of 'HMMER' and 'BLASTP', a total of 47 MADSbox genes were identified. The chromosome locations, molecular weights, number of amino acids, exon numbers, pl, instability index, aliphatic index, GRAVY, and predicted subcellular locations are all presented in Table 1. As demonstrated in Table 1, the lengths of these MADS-box proteins ranged from 53 aa (KAG0449578.1) to 397 aa (KAG0468859.1). The molecular weights were between 6.09 kDa (KAG0449578.1), and 43.42 kDa (KAG0468859.1), and the pls varied from 3.95 (KAG0468269.1) to 11.87 (KAG0500929.1), respectively. The instability indices were between 30.65 and 98.81 and six VpMADSs (VpMADS4, VpMADS5, VpMADS14, VpMADS15, VpMADS16, VpMADS17) were lower than 40. Nearly all VpMADSs exhibited negative GRAVY values, except for VpMADS21, suggesting that the majority of VpMADSs were hydrophilic, while VpMADS21 was hydrophobic (Table 1). It was predicted that nine MADS-box proteins might be expressed in the chloroplast, mitochondrion, and cytoplasm. In contrast, the other 38 members were predicted to be expressed in the nucleus (Table 1). Additionally, SMART results indicated that there were 22 genes belonging to the MIKC^C type, which were named VpMADS1 to VpMADS22. Since the 'ABCDE' model is derived from MIKC^C genes, we primarily concentrated on the MIKC^C type genes in this study, and the subsequent analyses were also centered around this type.

Gene structures and conserved motif analysis

In *V. planifolia*, three MIKC^C-type VpMADS genes (*VpMADS3*, *VpMADS10*, and *VpMADS11*) were found to possess 3'UTRs (Fig. 1). All *VpMADS* genes consisted of multiple exons, with *VpMADS4* having the highest number of 13 exons and *VpMADS2* having the least number of five exons (Table 1, Fig. 1). The gene lengths ranged from approximately 1 kb (VpMADS18) to 37 kb (*VpMADS4*). Through phylogenetic analysis, it was observed that most VpMADSs with similar gene structures were grouped into the same clusters, suggesting that they might have comparable functions (Fig. 1).

Conserved motif analysis was carried out using The MEME suite (https://meme-suite.org/meme/), and the results are presented in Fig. 2. Among the top 10 motifs, all VpMADSs encompassed motif 1, within which the MADS conserved domain was situated. Nearly all VpMADSs contained motif 3, except VpMADS10. Both motif 2 and motif 5 were present in 20 MIKCC-type VpMADSs, where VpMADS5 and VpMADS10 lacked motif 2, and VpMADS18 and VpMADS22 lacked motif 5 (Fig. 2). Additionally, VpMADSs possessing similar conserved motifs might have comparable functions, as exemplified by VpMADS14, VpMADS15, VpMADS16, and VpMADS17 (Fig. 2).

Multiple sequence alignment and phylogenetic analysis


V. planifolia represents a monocotyledonous plant species. To investigate its evolutionary trajectory and the classification pattern of the MADS-box gene family, A. thaliana and O. sativa were selected as reference species to reconstruct the phylogenetic relationships, as depicted in Fig. 3. Overall, VpMADSs, OsMADSs, and AtMADSs were clustered into 14 subgroups. Specifically, VpMADSs shared eight common groups, namely SEP-like, RSB1-like, AG-like, SOC1like, SQUA-like, ANR1-like, SVP-like, and P1/AP3, with OsMADSs and AtMADSs. Notably, two groups, FLC-like and AGL15/18, were not present in both V. planifolia and O. sativa. Additionally, two groups, XAL1-like and TT16-like, consisted solely of OsMADSs and AtMADSs, with no corresponding VpMADS homologous genes. In the case of the GOA-like group, there was only one VpMADS10 and one GOA, and no OsMADSs were involved, as shown in Fig. 3. There was also a particular group, designated as 'unique', which encompassed both OsMADSs and VpMADSs but did not include AtMADSs. Among the ten groups that contained VpMADSs, the P1/AP3 group exhibited the highest abundance of VpMADSs, while the GOA-like and SOC1like groups had the lowest number of VpMADSs, as illustrated in Fig. 3.

Chromosomal localizations and gene duplications

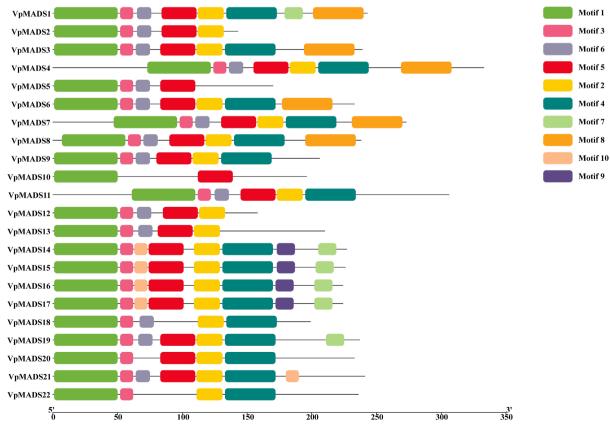
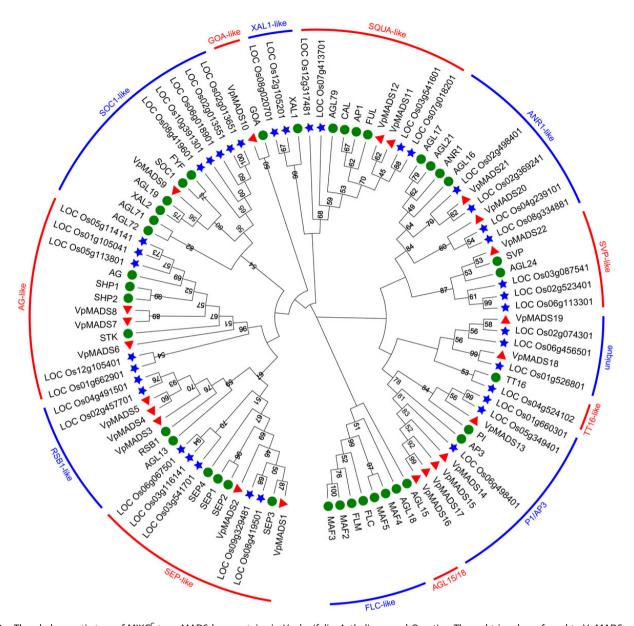

The chromosomal distributions of 22 VpMADSs are presented in Fig. 4. These genes are distributed unevenly across 12 chromosomes and four scaffolds. Both CM028164.1 and CM028165.1 harbor three VpMADSs, which represent the highest number of members. Simultaneously, there are two VpMADSs located on both CM028169.1 and CM028173.1, while the remaining chromosomes or scaffolds possess only one member each (Fig. 4). Gene duplications within the *V. planifolia* genome were also computed and documented in Supplementary Table S2. Through MCScanX searching and manual screening, 48 pairs of duplications were identified as segment duplications. These duplications encompassed 35 VpMADSs, and some duplicated pairs between MIKC^C and other

 Table 1.
 Characterization information of MADS-box genes in V. planifolia.


1 VMMODS HPPOZ 028996 KAGGAGGGGG S70268-181668999 8 143 16.77 9 59 8 6.6 3 VMMODS HPPOZ 02896 KAGGAGGGGG KAGGAGGGGG 4 1459176-117594 8 129 17.7 10.18 6.05 7 5.7 4 VMMODS HPPOZ 002876 KAGGAGGGGG VARADS HPPOZ 002876 KAGGAGGGGG VARADS HPPOZ 002876 KAGGAGGGGGG VARADS HPPOZ 002876 KAGGAGGGGGG VARADS HPPOZ 002876 KAGGAGGGGGGG VARADS HPPOZ 002876 KAGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Number	Gene name	Gene ID	Protein ID	Chromosome	Location	Exon	Lengths (aa)	Molecular weight (kDa)	slq	Instability index	Aliphatic index	GRAVY	Subcellular locations
VpWMXDS HPPQ_2003268 KAGGGGSSSI CAMBRIGH 4101-20030 14.3 16.7 10.8 46.03.5 VpWMXDS HPPQ_200326 KAGGGSSSI CAMBRIGH 419.1176-41971594 8 239 27.4 10.18 46.03.5 VpWMXDS HPPQ_200326 KAGGGSSSI CAMBRISTSI 173.2561-13164518 13 23.3 27.4 10.18 46.03 VpWMXDS HPPQ_200467 KAGGGSSI CAMBRISTSI 173.2561-1316418 13 23.3 27.4 10.8 8.8 VpWAMDS HPPQ_200467 KAGGGSSISAI MPSQ_200468 15 23.3 27.4 55.83 VpWAMDS HPPQ_200467 KAGGGSSISAI JPMSQ_200468 15 23.2 23.7 7 46.0 58.9 VpWAMDS HPPQ_200467 KAGGGSSISAI JPMSQ_200568 15 23.2 27.7 46.0 53.2 VpWAMDS HPPQ_200467 KAGGGSSISAI JPMSQ_200568 15 23.2 27.7 46.0 23.2 27.4 46.0	-	VpMADS1	HPP92_008009	KAG0491146.1	CM028166.1	53926398-53889497	8	243	27.70	9.13	59.86	81.15	-0.627	pnu
VpMANDS HPPQ_200822 KAGCHGR/F771 MORZBIGATI 13126511 31 33 37.84 8.46 8.86 VpMANDS HPPQ_200827 KAGCHGR/F771 VPMANDS PPPQ_200827 KAGCHGR/F771 PPPQ_200827 TPPQ_200827 TPPQ_	7	VpMADS2	HPP92_025895	KAG0452056.1	Scaffold	4610–28001	2	143	16.72	9.95	50.35	86.57	-0.671	nncl
VPAMDS4 HPPQ2_00457 KACGM5795 TATABLES 13.3 33.3 33.4 8.88 37.28 VPAMDS5 HPPQ2_00457 KACGM59463.1 CANADERS 17.0 19.4 10.2 33.3 33.4 33.8 33.2 VPAMDS5 HPPQ2_00459 KACGM59477.1 CANADERS 17.0 19.4 10.2 33.7 10.0 10.4 10.2 33.7 33.7 10.0 <td>m</td> <td>VpMAD53</td> <td>HPP92_002365</td> <td>KAG0502293.1</td> <td>CM028164.1</td> <td>41951176–41971594</td> <td>8</td> <td>239</td> <td>27.47</td> <td>10.18</td> <td>46.05</td> <td>75.19</td> <td>-0.724</td> <td>nncl</td>	m	VpMAD53	HPP92_002365	KAG0502293.1	CM028164.1	41951176–41971594	8	239	27.47	10.18	46.05	75.19	-0.724	nncl
VPAMADS HPPA2_00545 KAGG45582 7 170 19.48 10.28 37.22 VPAMADS HPPA2_00521 KAGG45792.7 CWORSIGS 17.2200-1905954 7 170 19.48 10.10 36.34 VPAMADS HPPA2_00521 KAGG466437.7 CWORSIGS 17.20664-7467554 17.23 31.77 10.01 36.34 VPAMADS HPPA2_00524 KAGG466431.7 CWORSIGS 17.20664-7467554 17.20 31.77 744 95.05 VPAMADS HPPA2_00524 KAGG4664370 CWORSIGS 17.20664-7467554 17.20 31.77 744 95.05 VPAMADS HPPA2_00524 KAGG4664370 CWORSIGS 460244-4687526 6 15.0 12.0 9.5 48.9 VPAMADS HPPA2_005464 CWORSIGS 460244-468756 7.20464-2552 7.2 7.2 7.2 7.2 9.7 9.7 VPAMADS HPPA2_00546 KAGG464864 7.2 7.2 2.2 2.2 2.2 2.2 2.2 3.2 3.2	4	VpMADS4	HPP92_008272	KAG0486177.1	CM028167.1	13125651-13163619	13	333	37.84	8.46	38.89	76.55	-0.664	nucl
VPAMADS HPPQ2, 101641 KAGGATYSTOL (MOXB169) 17 300-154 55.83 VPAMADS HPPQ2, 101641 KAGGAGGATYT (MOXB164) 17 300-154 17.71 966 58.97 VPAMADS HPPQ2, 101841 KAGGAGGATYT (MOXB164) 17 300-154 17.71 966 58.97 VPAMADS HPPQ2, 101856 KAGGAGGATYT (MOXB165) 17 300-154 17.71 966 58.97 VPAMADS HPPQ2, 101856 KAGGAGGATYT (MOXB165) 17 300-154 17 300-156 49.99 48.99 VPAMADS HPPQ2, 101856 KAGGAGGAGAT CARCAGGAGATA 17 300-166 18.91 18.91 19.99 48.99 VPAMADS HPPQ2, 101856 KAGGAGGAGATA CARCAGGAGATA 17 300-167 17 300-167 17 30-167	2	VpMADS5	HPP92_004657	KAG0493663.1	CM028165.1	19723207-19699540	7	170	19.48	10.28	37.52	76.94	-0.710	nncl
WAMADOS HPROZ. 1096461 CAROLOGORIANIA VORMANIA SALA PROMISORAL PROPEZ, 1096471 VORMANIA SALA PROMISORAL PROPEZ, 109627 VORMANIA SALA PROPEZ, 109627 VORMANIA SALA PROPEZ, 109627 VORMANIA SALA VORMANIA SALA <td>9</td> <td>VpMADS6</td> <td>HPP92_012311</td> <td>KAG0477592.1</td> <td>CM028169.1</td> <td>913908-940568</td> <td>7</td> <td>233</td> <td>27.02</td> <td>8.74</td> <td>55.83</td> <td>78.84</td> <td>-0.738</td> <td>nucl</td>	9	VpMADS6	HPP92_012311	KAG0477592.1	CM028169.1	913908-940568	7	233	27.02	8.74	55.83	78.84	-0.738	nucl
WAMADISTORDERS HAMADISTORMERS HAMADIS	7	VpMADS7	HPP92_019641	KAG0465477.1	CM028173.1	1750461-7467554	=	273	31.37	10.01	58.54	73.66	-0.897	nucl
ψρΑΜΚΟΣΙ ΗΡΡΑΣ (201658) ΚΑΚΩΘΑΘΘΙΚΕΙ ΚΑΚΩΘΑΘΙΚΕΙ ΚΑΚΩΘΙΚΕΙ ΚΑΚΩΘΑΘΙΚΕΙ ΚΑΚΩΘΙΚΕΙ ΚΑΚΩΘΑΘΙΚΕΙ ΚΑΚΩΘΙΚΕΙ ΚΑΚ	∞	VpMADS8	HPP92_000523	KAG0500451.1	CM028164.1	7310328-7337810	8	238	27.74	99.6	58.97	76.68	-0.912	pnu
VPMMOSS1 HPP92 018845 KAGG4938A0 COMOSB1671 355618 BE-355648B B 196 35.00 10.00 48.99 VPMMOSS1 HPP92 01884 KAGG478BGG COMOSB1671 355618 BE-355548B B 196 35.00 10.00 48.99 VPMMOSS1 HPP92 01884 KAGG478BGG COMOSB1671 45.90 46.90 46.90 46.90 VPMMOSS1 HPP92 01874 KAGG478BGG COMOSB1771 12.70 2.16 9.73 36.05 48.99 VPMADSS HPP92 01878 KAGG4958BG COMOSB171 12.7023-1-12881BS 7 2.44 9.73 36.05 <td>6</td> <td>VpMADS9</td> <td>HPP92_004659</td> <td>KAG0493665.1</td> <td>CM028165.1</td> <td>19759650-19739731</td> <td>7</td> <td>206</td> <td>23.77</td> <td>7.44</td> <td>59.50</td> <td>88.50</td> <td>-0.594</td> <td>pnu</td>	6	VpMADS9	HPP92_004659	KAG0493665.1	CM028165.1	19759650-19739731	7	206	23.77	7.44	59.50	88.50	-0.594	pnu
VPMANDS151 HPP92 OI 1854 KACKGA878866.1 CMO281661.3 330441-3993329.6 18.43 989 48.19 VPMANDS151 HPP92 OI 1854 KACKGA87886.1 CMO281661.3 340441-3993236.7 7.21 2.44 9.93 44.19 VPMANDS15 HPP92 OI 10.05 KACKGA643886.1 CMO28167.1 12.37241-12.485518.2 7.22 2.44 9.93 48.19 VPMANDS15 HPP92 OI 10.05 KACKGA494994.1 CMO28177.1 1237241-123818.2 7.22 2.61 9.93 33.14 VPMANDS16 HPP92 OI 10.05 KACKGA49996.0 CMO2817.1 1237248-12388.6 7.22 2.57 2.89 33.14 VPMANDS2 HPP92 OI 10.05 KACKGA4718.2 CACKGA7718.2 CACKGA7718.2 CACKGA7718.2 CACKGA7718.2 2.44 9.93 33.14 VPMANDS2 HPP92 OI 10.05 KACKGA47718.2 CACKGA7718.2 CACKGA7718.2 CACKGA7718.2 2.24 2.24 2.57 8.99 33.14 VPMANDS2 HPP92 OI 10.05 KACKGA4771.2 CACKGA7718.2 CACKGA7718.2	10	VpMADS10	HPP92_018645	KAG0469317.1	CM028172.1	35561818-35564488	8	196	22.62	9.65	49.77	93.06	-0.501	nncl
VPMADS151 HPP02_101874 KAGG048384_1 CM0281701 496054-44687786 6 158 184.3 989 48.19 VPMADS14 HPP02_107426 KAGG043840 CM028170 2454612-4-4687786 6 1246 973 36.00 VPMADS14 HPP02_107426 KAGG0438841 CM028170 1238188 7 22 26.11 94 37.36 VPMADS15 HPP02_107426 KAGG0438861 CM0281771 127281-28868 7 22 26.11 94 37.36 VPMADS18 HPP02_10786 KAGG04389601 CM028171 127281-28868 7 224 25.75 8.89 33.14 VPMADS18 HPP02_107866 KAGG0471721 CM028171 157277228 8.60468731 8.83 4.453 VPMADS2 HPP02_107896 KAGG0488991 CM028171 15727737 3.74 6.86 53.86 VPMADS2 HPP02_107897 KAGG0488991 CM028171 15727712 3.74 4.83 3.110 VPMADS2 HPP02_10	1	VpMADS11	HPP92_013585	KAG0478866.1	CM028169.1	39304241-39332580	80	306	35.00	10.09	48.99	84.54	-0.727	chlo
VpMADS14 HPPQ2_005378 KAGGGFR3843 LANGS1671 324461-3442900 7 210 3446 973 54.0 VpMADS14 HPPQ2_014026 KAGGGFR3863 CMO281771 1239231-12381185 7 224 25.72 8.59 33.06 VpMADS15 HPPQ2_027518 KAGGGFR3865.1 CMO281771 1239231-12381185 7 224 25.72 8.59 33.46 VpMADS15 HPPQ2_02758 KAGGGFR385.1 CMO28172.1 23870-25818 6 237 26.6 55.70 VpMADS29 HPPQ2_00588 KAGGGFR321.2 CMO28172.1 228909-228582 8 237 6.89 9.95 34.45 VpMADS21 HPPQ2_00898 KAGGGFR321.1 CMO2817.1 228909-228582 8 237 26.9 9.9 34.53 VpMADS21 HPPQ2_00888 KAGGGFR321.1 CMO2817.1 228909-2285822 8 237 24.4 25.7 8 44.5 44.5 8.3 3.1 4 45.0 44.5 44.5 8.3 </td <td>12</td> <td>VpMADS12</td> <td>HPP92_011874</td> <td>KAG0483790.1</td> <td>CM028168.1</td> <td>46902542-46875786</td> <td>9</td> <td>158</td> <td>18.43</td> <td>68.6</td> <td>48.19</td> <td>89.49</td> <td>-0.715</td> <td>pnu</td>	12	VpMADS12	HPP92_011874	KAG0483790.1	CM028168.1	46902542-46875786	9	158	18.43	68.6	48.19	89.49	-0.715	pnu
WOMADS14 HPPP2_01025189 KAGG4949901 CAMD281701 4454904-466550 7 227 26.12 9.79 30.65 VDMADS16 HPPP2_010218 KAGG4949991 CAMD281770 445499733-1-2286185 7 224 25.72 8.59 32.46 VDMADS16 HPPP2_0102588 KAGG4995341 CARIORS 1721 2289233-1-228617 6.26 55.70 8.59 32.46 VDMADS18 HPPP2_010268 KAGG4957221 CAMD281721 228923923-2285926 8 233 26.90 9.59 33.14 VDMADS20 HPPP2_010895 KAGG4477151 CAMD281721 2287278-2285926 8 234 25.70 9.55 9.31 VDMADS21 HPPP2_010895 KAGG465731.1 CAMD28172.2 2280044-2586247 8 244 23.70 9.69 9.44 3.51 VDMADS21 HPPP2_010895 KAGG4687891 CAMD28172.1 2280474-2586478 9 23.2 6.66 5.70 9.03 4.41 9.41 3.70 9.03 9.41 9.4 <td>13</td> <td>VpMADS13</td> <td>HPP92_005378</td> <td>KAG0494384.1</td> <td>CM028165.1</td> <td>34246112-34242902</td> <td>7</td> <td>210</td> <td>24.46</td> <td>9.73</td> <td>54.20</td> <td>80.33</td> <td>-0.847</td> <td>nucl</td>	13	VpMADS13	HPP92_005378	KAG0494384.1	CM028165.1	34246112-34242902	7	210	24.46	9.73	54.20	80.33	-0.847	nucl
WOMMADSSI HPPP2_075128 KAGG499931 Carfield 1379291-1288158 7 226 26.11 94 37.58 VOMMADSI HPPP2_07728 KAGG499931 KAGG499931 Scaffold 23370-25817 7 224 25.72 8.59 33.44 VDMADSI HPPP2_07758 KAGG499560.1 CM028173.1 23870-25817 7 224 25.72 8.59 32.46 VDMADSI HPPP2_070986 KAGG497172.1 CM028173.1 278708-1585228 8 233 26.90 9.95 44.53 VDMADSI HPPP2_0708185 KAGG40772.1 CM02817.1 278209-25882 8 234 6.86 52.95 53.86 42.11 VDMADSI HPPP2_0708187 KAGG408881.1 CM02817.1 27880477-2586449 2.04 9.95 44.21 VDMADSIS HPPP2_070888.1 CM02817.1 27880477-2586449 2.05 2.24 5.96 5.95 4.05 VDMADSIS HPPP2_070888.1 CM02817.6 174789-27288477-2428491 1.06	14	VpMADS14	HPP92_014026	KAG0474340.1	CM028170.1	4454990-4456550	7	227	26.12	6.79	30.65	76.43	-0.690	pnu
VPMANDS16 HPP92 022288 KAGGH49996.0 Scaffold 27238—28666 7 244 25.77 8.99 33.14 VPMANDS18 HPP92 022288 KAGGH49596.0 CMO28175.1 S7870—28.17 7 27.44 6.66 55.70 VPMANDS19 HPP92 02288 KAGGH49596.0 CMO28173.1 15727789–178120 6 23.3 2.6.90 9.95 5.77 VPMANDS20 HPP92 02818 KAGGH4771.1 15727789–178120 8 23.3 2.6.90 9.95 5.031 VPMANDS21 HPP92 02818 KAGGH47715.1 15727789–17812 8 241 27.70 9.95 5.031 VPMANDS2 HPP92 02818 KAGGH4888.1 CMO2817.2 132694–126237 1 2.2 2.2 5.0 9.95 5.031 VPMANDS2 HPP92 02818 KAGGH4888.8 CMO2817.2 1326944–1327112 2 22.2 2.2 2.2 3.2 1.0 9.95 5.0 9.93 4.4 4.4 3.0 9.94 9.5 9.0	15	VpMADS15	HPP92_025189	KAG0453885.1	CM028177.1	12379231-12385185	7	226	26.11	9.4	37.58	71.19	-0.907	nucl
VyMANDS1A HPP92 202258 KAGGAGGSG CARGAGGG 2387-2331 7 24 25.75 8.95 32.46 VyMADS1B HPP92 202568 KAGGAGGSG CARGAGGGG CARGAGGGG 6 23.70 6 6 25.70 9.95 45.81 VpMADS1B HPP92 201868 KAGGAGGST S. 237 27.74 6.86 53.86 49.82 32.86 46.83	16	VpMADS16	HPP92_027258	KAG0449499.1	Scaffold	27238-28686	7	224	25.72	8.59	33.14	75.76	-0.816	pnu
VpMANDS18 HPPP2_C01668 KAGG4G9S9601 LROW028173.1 157780864-1578130 6 199 23.30 6.25 55.70 VpMANDS19 HPPP2_C01668 KAGG4G9S731.1 LROW028173.1 1578084-1578138 6 23.3 26.90 9.95 44.53 VpMANDS2 HPPP2_C018818 KAGG4G8T31.1 CM028173.1 22873092-22889226 8 23.4 26.90 9.95 44.53 VpMANDS2 HPPP2_C018818 KAGG4G8SB3.1 CM028172.1 22873092-22889326 8 23.4 26.90 9.95 44.53 VpMANDS2 HPPP2_C01817 KAGG4G8SB3.1 CM028172.1 22601594-2286343 1 20.6 22.59 52.95 VpMANDS2 HPPP2_C01821 KAGG4G8SB3.1 CM02817.2 22601594-128217 2.0 22.5 58.9 57.61 VpMANDS2 HPPP2_C01821 KAGG4G8SB3.1 CM02817.1 2.860544-2580443 1 2.2 22.5 5.2 5.7 VpMANDS2 HPPP2_C01821 KAGG4G8SB3.1 CM02817.4 2.860544-258043 <td>17</td> <td>VpMADS17</td> <td>HPP92_027253</td> <td>KAG0449534.1</td> <td>Scaffold</td> <td>23870-25317</td> <td>7</td> <td>224</td> <td>25.75</td> <td>8.59</td> <td>32.46</td> <td>75.31</td> <td>-0.827</td> <td>pnu</td>	17	VpMADS17	HPP92_027253	KAG0449534.1	Scaffold	23870-25317	7	224	25.75	8.59	32.46	75.31	-0.827	pnu
VpMANDSS HPPQ2 (1989) KAGQ4657121. CMO28173.1. 15727789-15551238 6 237 25.44 6.85 53.86 VpMANDSS HPPQ2 (1989) KAGQ4671521. CMO28173.1 12873092-2285922. 8 234 27.70 9.55 9.63 VpMANDSS HPPQ2 (1981) KAGQ467851.1 CMO38172.1 287809-180657 8 234 27.70 9.55 9.63.1 VpMANDSS HPPQ2 (18187) KAGQ468889.1 CMO28172.2 25629447-586247.3 2 22.20 9.59 9.59 9.03 VpMANDSS HPPQ2 (18187) KAGQ468889.1 CMO28172.1 25806044-2580447 1 20.6 22.20 9.59 5.41 VpMANDSS HPPQ2 (18187) KAGQ468889.1 CMO2817.2 2580644-1327115 2 2 2 2 2 1 4 4.95 9.50 3 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <t< td=""><td>18</td><td>VpMADS18</td><td>HPP92_022688</td><td>KAG0459560.1</td><td>CM028175.1</td><td>27880086-27881205</td><td>9</td><td>199</td><td>23.30</td><td>97.9</td><td>55.70</td><td>90.10</td><td>-0.734</td><td>pnu</td></t<>	18	VpMADS18	HPP92_022688	KAG0459560.1	CM028175.1	27880086-27881205	9	199	23.30	97.9	55.70	90.10	-0.734	pnu
VpMMDS20 HPPP2_01885 KAGG445731.1 CARBSH_10805_22028188 KAGG445731.1 CARBSH_10805_22028188 KAGG44571.2 CARBSH_10805_22028188 KAGG44571.2 CARBSH_10805_27 8 241 27.70 9.95 9.453 VpMMDS21 HPPP2_018818 KAGG044715.1 Scaffold 16.2889-180657 8 246 26.67 9.49 5.255 VpMMDS23 HPPP2_018217 KAGG468889.1 CM028172.1 25661964-25804-3 1 206 2.259 6.949 5.255 VpMMDS24 HPPP2_018217 KAGG468818.1 CM028172.1 2580644-1258054.3 1 206 2.259 5.89 5.761 VpMMDS24 HPPP2_018217 KAGG468818.1 CM028172.1 2580644-1257121.2 2 225 2.475 9.93 4.441 4.51 VpMMDS28 HPPP2_018217 KAGG464888.1 CM028172.1 2580644-1327121.2 2 225 2.475 9.32 5.646 VpMMDS28 HPPP2_018217 KAGG4648.4 CM028172.1 2723238.8 1.65 1.74	19	VpMADS19	HPP92_016068	KAG0471522.1	CM028171.1	15727789-15751238	9	237	27.44	98.9	53.86	85.61	-0.701	pnu
VPMADDS21 HPP92_003818 KAGGA47715.1 ScaffIdd 162889–1806657 8 241 27.70 955 50.31 VPMADDS22 HPP92_0036381 KAGGA688891 CM028172.1 25621584–180665 8 236 26.7 9.49 52.95 VPMADDS24 HPP92_018187 KAGGA688891 CM028172.1 2580644–258054473 1 20.0 22.20 10.51 49.06 VPMADDS24 HPP92_018126 KAGGA688891 CM028172.1 258064475–25804159 1 20.0 22.20 10.51 49.06 VPMADDS24 HPP92_01826 KAGGA688891 CM028172.1 258064475–25804159 1 20.0 22.53 8.38 5.761 VPMADDS28 HPP92_01891 KAGGA688891 CM028172.1 2580475–252378 1 20.0 22.53 8.38 5.751 VPMADDS34 HPP92_01891 KAGGA68681 CM02817.1 75222885–7522378 1 30.3 3.416 3.55 7.52 VPMADDS34 HPP92_01818 KAGGA6646441 CM02817.1 <td>20</td> <td>VpMADS20</td> <td>HPP92_019895</td> <td>KAG0465731.1</td> <td>CM028173.1</td> <td>22873092-22859226</td> <td>80</td> <td>233</td> <td>26.90</td> <td>9.95</td> <td>44.53</td> <td>80.39</td> <td>-0.768</td> <td>nncl</td>	20	VpMADS20	HPP92_019895	KAG0465731.1	CM028173.1	22873092-22859226	80	233	26.90	9.95	44.53	80.39	-0.768	nncl
VPMADS22 HPP92_003653 KAGG053851.1 CM028164.1 71467560-71483956 8 236 2.667 949 5.255 VPMADS23 HPP92_01817 KAGG468889.1 CM028172.1 25621594-25623473 2 397 43.42 8.10 9.06 VPMADS24 HPP92_01817 KAGG46888.1 CM028172.1 25806747-2580473 1 206 22.59 5.89 5.761 VPMADS24 HPP92_018217 KAGG46888.1 CM028172.1 2580644-1327121 2 2 2 2 2 3 3 5.10 4 9 5.06 VPMADS28 HPP92_017891 KAGG46888.2 CM02817.1 2580644-137121 2 2 2 2 3 3 4 4 3 6 4 3 6 4 9 5 6 6 6 6 6 9 9 5 6 6 6 9 9 5 6 6 6 9 9 6	21	VpMADS21	HPP92_028185	KAG0447715.1	Scaffold	162889-180657	80	241	27.70	9.55	50.31	88.96	0.673	nncl
VPMADDS2 HPP92_018187 KAGG4688S9.1 CM028172.1 25621944-25653433 2 397 43.42 8.33 51.10 VPMADDS2 HPP92_018217 KAGG4688S9.1 CM028172.1 25806044-2580743 1 20.0 22.59 5.89 57.61 VPMADDS2 HPP92_018217 KAGG4688S9.1 CM028172.1 258064775-25804139 1 20.0 22.59 5.89 57.61 VPMADDS2 HPP92_018217 KAGG4688S9.1 CM028172.1 258064775-25836 2 22.7 25.29 5.89 57.61 VPMADDS2 HPP92_01759 KAGG468269.1 CM028172.1 7523285-752378 1 22.5 24.75 9.34 49.59 VPMADDS3 HPP92_01789 KAGG46264.1 CM02817.1 7523285-752378 1 9.3 34.16 3.95 75.21 VPMADDS3 HPP92_01789 KAGG46264.1 CM02817.1 36372575-5658 1 1 19.3 21.6 3.9 7.6.1 VPMADDS3 HPPP2_02018 KAGG46266.1 CM02	22	VpMADS22	HPP92_003653	KAG0503581.1	CM028164.1	71467560-71483956	8	236	26.67	9.49	52.95	85.97	-0.676	pnu
VPMADS24 HPP92_018217 KAG0468891 CM0281721 25806044-28005443 1 201 22.20 10.51 49.06 VPMADS25 HPP92_018217 KAG04688891 CM0281721 2580475-2804139 1 206 22.59 5.89 5.761 VPMADS25 HPP92_017521 KAG04696891 CM0281661 47024798-47015510 2 225 24.75 9.33 43.41 VPMADS28 HPP92_007597 KAG04624641 CM028171.1 84.0257828-4723288 1 333 34.16 3.95 5.74 VPMADS29 HPP92_007597 KAG04624641 CM028171.1 84.02752-4936913 1 62 71.15 11.24 45.57 VPMADS3 HPP92_007597 KAG04624641 CM028174.1 24936725-24936913 1 62 71.15 11.24 46.35 VPMADS3 HPP92_007591 KAG0462464.1 CM028174.1 303222552 1 194 21.89 43.17 VPMADS3 HPP92_00751 KAG0465666.1 CM028174.1 303222552	23	VpMADS23	HPP92_018187	KAG0468859.1	CM028172.1	25621594-25623473	7	397	43.42	8.33	51.10	75.47	-0.390	nucl
VPMADS25 HPP92 O18216 KAGG46688881 CM0281721 25804775-28604159 1 206 22.59 5.89 57.61 VPMADS26 HPP92 O14103 KAGG46688811. CM0281721 1369344-13271121 2 227 25.23 8.38 42.41 VPMADS28 HPP92_015891 KAGG4668291. CM028171.1 8420535-8419862 1 225 24.75 9.32 56.46 VPMADS28 HPP92_015891 KAGG462464.1 CM028171.1 2430385-7523378 1 62 71.15 11.24 49.35 VPMADS31 HPP92_01789 KAGG46264.1 CM028174.1 34936725-24936913 1 62 71.15 11.24 46.35 VPMADS31 HPP92_01178 KAGG46264.1 CM028174.1 3010375-340461 1 193 3.416 3.95 75.21 VPMADS32 HPP92_01178 KAGG46264.1 CM028174.1 3010375-34040 1 18 21.89 44.43 43.19 VPMADS33 HPP92_0101862 KAGG46636.1 M0028174.1	24	VpMADS24	HPP92_018217	KAG0468889.1	CM028172.1	25806044-25805443	_	201	22.20	10.51	49.06	84.48	-0.359	nncl
VpMADS26 HPPP2_0024103 KAG0456315.1 CM028176.1 13269344-13271121 2 227 25.23 8.38 42.41 VpMADS27 HPPP2_00753 KAG046869.1 CM028166.1 47024798-47015510 2 285 30.46 7.84 46.59 VpMADS29 HPPP2_00759 KAG046886.0 CM02817.1 7523285-752338 1 303 34.16 9.32 5.21 VpMADS29 HPPP2_017597 KAG04686.0 CM02817.1 7523285-752338 1 303 34.16 9.35 5.21 VpMADS31 HPPP2_017591 KAG04686.0 CM02817.1 24936725-24936913 1 62 71.15 11.24 46.35 VpMADS31 HPPP2_020176 KAG046266.1 CM0281741 24936725-24936913 1 62 71.15 11.24 46.35 VpMADS34 HPPP2_020174 KAG046266.1 GM0281741 30109707-3011017 1 136 15.02 84.9 48.3 VpMADS34 HPPP2_020172 KAG046266.1 CM0281741 301	25	VpMADS25	HPP92_018216	KAG0468888.1	CM028172.1	25804775-25804159	_	206	22.59	5.89	57.61	99.69	-0.424	nucl
VpMADS27 HPPP2_007552 K.GG0490689.1 CM02816.1 47024798-47015510 2 285 30.46 7.84 49.59 VpMADS28 HPPP2_007552 K.GG0490689.1 CM02817.1.1 723288-752.378 1 225 24.75 9.32 56.46 VpMADS29 HPPP2_017597 K.GG0468264.1 CM02817.1 723288-752.378 1 225 24.75 9.32 56.46 VpMADS31 HPPP2_017994 K.GG046264.1 CM02817.1 24936725-24936913 1 62 71.15 11.24 46.35 VpMADS31 HPPP2_021141 K.GG046264.1 CM02817.4 3010375-3101017 1 194 21.89 4.43 49.19 VpMADS33 HPPP2_021141 K.GG046266.1 CM02817.4 30109707-30110117 1 136 15.02 8.49 49.19 VpMADS34 HPPP2_021141 K.GG046266.1 CM02817.4 30109707-30110117 1 186 15.02 8.49 1.16 VpMADS34 HPPP2_01047 K.GG046266.1 CM02817.1	79	VpMADS26	HPP92_024103	KAG0456315.1	CM028176.1	13269344-13271121	7	227	25.23	8:38	42.41	69.25	-0.348	chlo
VpMADS28 HPP92_015891 KAG0471345.1 CM02817.1.1 8420535-8419862 1 225 24.75 9.32 56.46 VpMADS29 HPP92_017597 KAG0468264.1 CM02817.1.1 7523285-752378 1 303 34.16 3.95 75.21 VpMADS23 HPP92_0207940 KAG0462644.1 CM028174.1 24936752-3004316 1 193 21.65 43.5 45.19 VpMADS3 HPP92_020139 KAG0462664.1 CM028174.1 3016375-30104316 1 193 21.65 43.5 45.19 VpMADS3 HPP92_021120 KAG0462665.1 CM028174.1 3016375-301041 1 193 21.65 44.3 44.34 44.34 VpMADS3 HPP92_021120 KAG0462665.1 CM028174.1 3010370-301011 1 14 21.89 44.3 43.42 VpMADS3 HPP92_0211067 KAG04606265.1 CM02817.1 1774641-17746100 1 181 20.59 31.94 48.82 VpMADS3 HPP92_01047 KAG0460927.1 <t< td=""><td>27</td><td>VpMADS27</td><td>HPP92_007552</td><td>KAG0490689.1</td><td>CM028166.1</td><td>47024798-47015510</td><td>7</td><td>285</td><td>30.46</td><td>7.84</td><td>49.59</td><td>76.35</td><td>-0.161</td><td>chlo</td></t<>	27	VpMADS27	HPP92_007552	KAG0490689.1	CM028166.1	47024798-47015510	7	285	30.46	7.84	49.59	76.35	-0.161	chlo
VPMADS29 HPP92_017597 KAG0468269.1 CM028172.1 7523285-752378 1 30.3 34.16 3.95 75.21 VPMADS30 HPP92_021120 KAG0462464.1 CM028174.1 34936725-24936913 1 62 71.15 11.24 46.35 VPMADS31 HPP92_0201120 KAG0462644.1 CM028174.1 3103735-30104316 1 193 21.65 43.35 49.19 VPMADS31 HPP92_021123 KAG0462647.1 CM028174.1 30103707-30110117 1 136 15.02 8.49 48.32 VPMADS34 HPP92_021123 KAG0462647.1 CM028174.1 30109707-30110117 1 136 15.02 8.49 48.32 VPMADS34 HPP92_011637 KAG0462647.1 CM028172.1 37502006-35292752 1 248 27.44 6.35 2.15 VPMADS34 HPP92_011637 KAG0462647.1 MO28164.1 1746641-17746100 1 18 20.59 11.87 9.88 VPMADS4 HPP92_010457 KAG0482873.1 CM028164.1<	78	VpMADS28	HPP92_015891	KAG0471345.1	CM028171.1	8420535-8419862	_	225	24.75	9.32	56.46	79.47	-0.323	mito
VpMADS30 HPP92_020940 KAG0462464.1 CM028174.1 24936725-24936913 1 62 71.15 11.24 46.35 VpMADS31 HPP92_0201940 KAG0462644.1 CM028174.1 30103735-30104316 1 193 21.65 43.3 49.19 VpMADS32 HPP92_021141 KAG0462664.1 CM028174.1 30109707-30110117 1 194 21.89 44.33 49.19 VpMADS33 HPP92_021113 KAG0462665.1 CM028174.1 30109707-30110117 1 136 15.02 849 48.32 VpMADS34 HPP92_01104 KAG0462667.1 CM028174.1 30109707-30110117 1 136 15.02 849 51.65 VpMADS34 HPP92_011667 KAG04689301.1 CM028172.1 3529206-35292752 1 27.44 5.06 54.23 VpMADS34 HPP92_010107 KAG0500975.1 CM028164.1 1724641-17746100 1 181 20.59 11.18 VpMADS34 HPP92_010107 KAG0500975.1 CM028164.1 18592118-18591250	29	VpMADS29	HPP92_017597	KAG0468269.1	CM028172.1	7523285-7522378	_	303	34.16	3.95	75.21	66.40	-0.351	cyto,nucl
VPMADDS31 HPP92_021120 KAG0462644.1 CM028174.1 30103735-30104316 1 193 21.65 4.35 49.19 VPMADDS32 HPP92_021120 KAG0462665.1 CM028164.1 65572515-65571935 1 194 21.89 44.3 43.42 VPMADDS32 HPP92_001141 KAG0462665.1 CM028174.1 30102070-3010117 1 136 15.02 8.49 48.82 VPMADS34 HPP92_001123 KAG0462647.1 CM028174.1 30109707-3010117 1 136 15.02 8.49 48.82 VPMADS34 HPP92_01166.7 KAG0466901.1 TA746641-17746100 1 181 20.59 11.87 98.81 VPMADS34 HPP92_01047 KAG050092.1 CM028164.1 17522-154509 1 290 31.94 8.37 71.18 VPMADS38 HPP92_01047 KAG046097.1 CM02816.1 18592118-18591250 1 290 31.94 8.37 71.18 VPMADS34 HPP92_01067 KAG0460973.1 CM02816.1 2052211-259934	30	VpMADS30	HPP92_020940	KAG0462464.1	CM028174.1	24936725-24936913	-	62	71.15	11.24	46.35	81.77	-0.715	cyto
VPMADS32 HPP92_003394 KAGG503322.1 CM028164.1 65572515-65571935 1 194 21.89 4.43 43.42 VPMADS33 HPP92_021141 KAGG462665.1 CM028174.1 3022958-3032255 1 136 15.02 849 51.65 VPMADS34 HPP92_021141 KAGG469301.1 CM028174.1 3109070-30110117 1 36 15.02 849 51.65 VPMADS35 HPP92_01087 KAGG469301.1 CM028172.1 35292066-3529252 1 248 27.44 5.06 54.23 VPMADS35 HPP92_01087 KAGG4699301.1 CM028172.1 185292118-18591250 1 290 31.94 8.37 71.18 VPMADS38 HPP92_010957 KAGG482873.1 CM028164.1 15592721-25993493 2 22.2 6.96 9.85 55.03 VPMADS39 HPP92_010957 KAGG486738.1 CM028176.1 25992721-25993493 2 22.9 18.14 9.8 4.3.3 VPMADS40 HPP92_010957 KAGG486738.1 CM028176.1 </td <td>31</td> <td>VpMADS31</td> <td>HPP92_021120</td> <td>KAG0462644.1</td> <td>CM028174.1</td> <td>30103735-30104316</td> <td>-</td> <td>193</td> <td>21.65</td> <td>4.35</td> <td>49.19</td> <td>81.92</td> <td>-0.244</td> <td>nncl</td>	31	VpMADS31	HPP92_021120	KAG0462644.1	CM028174.1	30103735-30104316	-	193	21.65	4.35	49.19	81.92	-0.244	nncl
VPMADS3 HPP92_021141 KAG0462665.1 CM028174.1 30322552 1 136 15.02 849 48.82 VpMADS34 HPP92_021123 KAG0462647.1 CM028174.1 30109707-30110117 1 136 15.02 849 51.65 VpMADS34 HPP92_01123 KAG046301.1 CM028172.1 35292006-35292752 1 248 27.44 5.06 54.23 VpMADS36 HPP92_010401 KAG0500995.1 CM028164.1 1774640-17746100 1 181 20.59 11.87 98.81 VpMADS36 HPP92_010407 KAG0500975.1 CM028164.1 17746400 1 181 20.59 11.87 98.81 VpMADS38 HPP92_01047 KAG04071961.1 CM028164.1 177464010 1 181 20.59 11.87 98.81 VpMADS48 HPP92_01097 KAG0482873.1 CM028164.1 25992721-2599349 2 22 6.96 9.85 5.50 VpMADS40 HPP92_01097 KAG0482873.1 CM028166.1 20592721-259	32	VpMADS32	HPP92_003394	KAG0503322.1	CM028164.1	65572515-65571935	_	194	21.89	4.43	43.42	88.56	-0.268	nucl
VpMADS34 HPP92_021123 KAG0462647.1 CM028174.1 30109707-30110117 1 136 15.02 8.49 51.65 VpMADS35 HPP92_018629 KAG04669301.1 CM028172.1 35292006-35292752 1 248 27.44 5.06 54.23 VpMADS36 HPP92_01001 KAG0500929.1 CM028164.1 17746401 1 181 20.59 11.87 98.81 VpMADS37 HPP92_010407 KAG0471961.1 CM028164.1 17540641-17746100 1 181 20.59 11.87 98.81 VpMADS39 HPP92_010507 KAG0471961.1 CM028161.1 25992721-25993493 2 20.9 9.25 5.03 VpMADS40 HPP92_010507 KAG04756738.1 CM028176.1 20692383-20699955 5 158 18.14 9.28 5.06 VpMADS41 HPP92_02453 KAG0456745.1 CM028176.1 20692383-20699955 5 158 10.50 9.24 5.56 VpMADS42 HPP92_012718 KAG04456738.1 CM028166.1 4959940-	33	VpMADS33	HPP92_021141	KAG0462665.1	CM028174.1	30322958-30322552	_	136	15.02	8.49	48.82	71.91	-0.425	chlo
VpMADS35 HPP92_018629 KAG0469301.1 CM028172.1 35292066-35292752 1 248 27.44 5.06 54.23 VpMADS36 HPP92_001001 KAG0500929.1 CM028164.1 17746641-17746100 1 181 20.59 11.87 98.81 VpMADS36 HPP92_001004 KAG0500975.1 CM028164.1 1859218-1891250 1 290 31.94 8.37 71.18 VpMADS38 HPP92_001047 KAG04802873.1 CM028171.1 25992721-25993493 2 232 26.96 9.85 55.03 VpMADS39 HPP92_010957 KAG0482873.1 CM028176.1 20634534-20642107 5 158 18.14 9.28 55.03 VpMADS40 HPP92_024526 KAG0456738.1 CM028176.1 20692383-2069955 5 158 18.14 9.28 55.03 VpMADS41 HPP92_024533 KAG0456745.1 CM028166.1 49599440-4959952 1 64 7.44 10.46 7.37 VpMADS44 HPP92_0205155 KAG0490846.1 CM028167	34	VpMADS34	HPP92_021123	KAG0462647.1	CM028174.1	30109707-30110117	_	136	15.02	8.49	51.65	77.57	-0.421	nncl
VpMADS36 HPP92_001001 KAG0500929.1 CM028164.1 17746641-17746100 1 181 20.59 11.87 98.81 VpMADS37 HPP92_001047 KAG0500975.1 CM028164.1 18592118-18591250 1 290 31.94 8.37 71.18 VpMADS38 HPP92_01047 KAG0471961.1 CM028171.1 25992721-2593493 2 232 26.96 9.85 55.03 VpMADS39 HPP92_010957 KAG0482873.1 CM028168.1 21521752-21514509 10 334 38.02 5.63 55.03 VpMADS40 HPP92_024526 KAG0486738.1 CM028176.1 20692383-20699955 5 15.8 18.14 9.28 58.00 VpMADS41 HPP92_024578 CM028176.1 20692383-20699955 5 158 18.22 9.24 55.56 VpMADS42 HPP92_004709 KAG0487014.1 CM028166.1 382940-049599250 1 64 7.44 10.46 7.43 VpMADS44 HPP92_025155 KAG04495781.1 CM028167.1 11703492	35	VpMADS35	HPP92_018629	KAG0469301.1	CM028172.1	35292006-35292752	-	248	27.44	2.06	54.23	86.45	-0.328	mito
VpMADS37 HPP92_001047 KAG0500975.1 CM028164.1 18592118-18591250 1 290 31.94 8.37 71.18 VpMADS38 HPP92_01057 KAG0471961.1 CM028171.1 25992721-2593493 2 232 26.96 9.85 55.03 VpMADS38 HPP92_01057 KAG0482873.1 CM028176.1 20634534-2064107 5 158 18.14 9.28 55.03 VpMADS40 HPP92_024526 KAG0456738.1 CM028176.1 20634534-2064107 5 158 18.14 9.28 58.00 VpMADS41 HPP92_02453 KAG045799.1 CM028176.1 20692383-20699955 5 158 18.22 9.24 55.56 VpMADS42 HPP92_024578 KAG0477999.1 CM028166.1 49599440-49599250 1 64 7.44 10.46 74.37 VpMADS44 HPP92_0205155 KAG04857014.1 CM028167.1 11703058-11704492 2 62 7.08 10.81 42.97 VpMADS45 HPP92_027213 KAG0449578.1 CM028165.1 </td <td>36</td> <td>VpMADS36</td> <td>HPP92_001001</td> <td>KAG0500929.1</td> <td>CM028164.1</td> <td>17746641-17746100</td> <td>-</td> <td>181</td> <td>20.59</td> <td>11.87</td> <td>98.81</td> <td>70.17</td> <td>-0.703</td> <td>chlo</td>	36	VpMADS36	HPP92_001001	KAG0500929.1	CM028164.1	17746641-17746100	-	181	20.59	11.87	98.81	70.17	-0.703	chlo
VpMADS38 HPP92_016507 KAG0471961.1 CM028171.1 25992721_2593493 2 23.2 26.96 9.85 55.03 VpMADS39 HPP92_010957 KAG0482873.1 CM028168.1 21521752_21514509 10 334 38.02 5.63 55.03 VpMADS40 HPP92_010957 KAG0482873.1 CM028176.1 20634534-20642107 5 158 18.14 9.28 58.00 VpMADS41 HPP92_02453 KAG0456745.1 CM028176.1 20692383-2069955 5 158 18.14 9.28 58.00 VpMADS41 HPP92_02453 KAG0477999.1 CM028166.1 2692383-20699955 5 158 18.22 9.24 55.56 VpMADS42 HPP92_007709 KAG0490846.1 CM028166.1 4959940-40-49599250 1 64 7.44 10.46 74.37 VpMADS44 HPP92_009109 KAG0487014.1 CM028167.1 11703058-11704492 2 62 7.08 10.81 42.97 VpMADS46 HPP92_027213 KAG0449578.1 CM028165	37	VpMADS37	HPP92_001047	KAG0500975.1	CM028164.1	18592118-18591250	_	290	31.94	8.37	71.18	75.41	-0.388	chlo
VpMADS39 HPP92_010957 KAG0482873.1 CM028168.1 21521752-21514509 10 334 38.02 5.63 52.66 VpMADS40 HPP92_024526 KAG0456738.1 CM028176.1 20634534-20642107 5 158 18.14 9.28 58.00 VpMADS41 HPP92_02453 KAG0456745.1 CM028176.1 20692383-2069955 5 158 18.14 9.28 58.00 VpMADS41 HPP92_02453 KAG0477999.1 CM028166.1 20692383-2069955 5 158 18.22 9.24 55.56 VpMADS42 HPP92_007709 KAG0477999.1 CM028166.1 4959940-49599250 1 64 7.44 10.46 74.37 VpMADS44 HPP92_007709 KAG0487014.1 CM028167.1 11703058-11704492 2 62 7.08 10.81 42.97 VpMADS44 HPP92_027213 KAG0449578.1 Scaffold 20952-21112 1 53 6.09 11.03 79.68 VpMADS45 HPP92_004675 KAG0449578.1 CM028165.1	38	VpMADS38	HPP92_016507	KAG0471961.1	CM028171.1	25992721-25993493	7	232	26.96	9.85	55.03	72.33	-0.736	nucl
VpMADS40 HPP92_024526 KAG0456738.1 CM028176.1 20634534-20642107 5 158 18.14 9.28 58.00 VpMADS41 HPP92_02453 KAG0456745.1 CM028176.1 20692383-2069955 5 158 18.22 9.24 55.56 VpMADS42 HPP92_02453 KAG0477999.1 CM028169.1 8293060-8290817 3 93 10.50 9.88 43.58 VpMADS43 HPP92_012718 KAG0490846.1 CM028166.1 49599440-49599250 1 64 7.44 10.46 74.37 VpMADS44 HPP92_009109 KAG0487014.1 CM028167.1 11703058-11704492 2 62 7.08 10.81 48.70 VpMADS46 HPP92_027213 KAG0449578.1 Scaffold 20952-21112 1 53 6.09 11.03 62.05 VpMADS47 HPP92_004675 KAG049378.1 CM028165.1 20125812-2011937 5 157 18.10 10.82 79.68	39	VpMADS39	HPP92_010957	KAG0482873.1	CM028168.1	21521752-21514509	10	334	38.02	5.63	52.66	78.50	-0.678	nncl
VpMADS41 HPP92_024533 KAG0456745.1 CM028176.1 20692383-2069955 5 158 18.22 9.24 55.56 VpMADS42 HPP92_012718 KAG0477999.1 CM028169.1 8293060-8290817 3 93 10.50 9.88 43.58 VpMADS43 HPP92_007709 KAG0490846.1 CM028166.1 49599440-49599250 1 64 7.44 10.46 74.37 VpMADS44 HPP92_009109 KAG0487014.1 CM028167.1 33211407-33248681 9 292 32.97 8.6 42.97 VpMADS45 HPP92_025155 KAG0443571.1 11703058-11704492 2 62 7.08 10.81 48.70 VpMADS46 HPP92_027213 KAG0449578.1 CM028165.1 20952-21112 1 53 6.09 11.03 62.05 VpMADS47 HPP92_004675 KAG0493681.1 CM028165.1 20125812-2011937 5 157 18.10 10.82 79.68	40	VpMADS40	HPP92_024526	KAG0456738.1	CM028176.1	20634534-20642107	2	158	18.14	9.28	58.00	58.10	-0.872	nncl
VpMADS42 HPP92_012718 KAG0477999.1 CM028169.1 8293060-8290817 3 93 10.50 9.88 43.58 VpMADS43 HPP92_007709 KAG0490846.1 CM028166.1 49599440-49599250 1 64 7.44 10.46 74.37 VpMADS44 HPP92_009109 KAG0487014.1 CM028167.1 33211407-33248681 9 292 32.97 8.6 42.97 VpMADS45 HPP92_025155 KAG048781.1 CM028177.1 11703058-11704492 2 62 7.08 10.81 48.70 VpMADS46 HPP92_027213 KAG0449578.1 Scaffold 20952-21112 1 53 6.09 11.03 62.05 VpMADS47 HPP92_004675 KAG0493681.1 CM028165.1 20125812-20119937 5 157 18.10 10.82 79.68	41	VpMADS41	HPP92_024533	KAG0456745.1	CM028176.1	20692383-20699955	2	158	18.22	9.24	55.56	58.10	-0.875	nncl
VpMADS43 HPP92_007709 KAG0490846.1 CM028166.1 49599440~49599250 1 64 7.44 10.46 74.37 VpMADS44 HPP92_009109 KAG0487014.1 CM028167.1 33211407~33248681 9 292 32.97 8.6 42.97 VpMADS45 HPP92_025155 KAG0453851.1 CM028177.1 11703058~11704492 2 62 7.08 10.81 48.70 VpMADS46 HPP92_027213 KAG0449578.1 Scaffold 20952~21112 1 53 6.09 11.03 62.05 VpMADS47 HPP92_004675 KAG0493681.1 CM028165.1 20125812~20119937 5 157 18.10 10.82 79.68	42	VpMADS42	HPP92_012718	KAG0477999.1	CM028169.1	8293060-8290817	m	93	10.50	9.88	43.58	93.33	-0.269	nucl
VpMADS44 HPP92_009109 KAG0487014.1 CM028167.1 33211407—33248681 9 292 32.97 8.6 42.97 8.6 42.97 VpMADS45 HPP92_025155 KAG0453851.1 CM028177.1 11703058—11704492 2 62 7.08 10.81 48.70 VpMADS46 HPP92_027213 KAG0449578.1 Scaffold 20952—21112 1 53 6.09 11.03 62.05 VpMADS47 HPP92_004675 KAG0493681.1 CM028165.1 20125812—20119937 5 157 18.10 10.82 79.68	43	VpMADS43	HPP92_007709	KAG0490846.1	CM028166.1	49599440-49599250	-	64	7.44	10.46	74.37	88.44	-0.608	nncl
VpMADS45 HPP92_025155 KAG0453851.1 CM028177.1 11703058—11704492 2 62 7.08 10.81 48.70 VpMADS46 HPP92_027213 KAG0449578.1 Scaffold 20952—21112 1 53 6.09 11.03 62.05 VpMADS47 HPP92_004675 KAG0493681.1 CM028165.1 20125812—20119937 5 157 18.10 10.82 79.68	4	VpMADS44	HPP92_009109	KAG0487014.1	CM028167.1	33211407-33248681	6	292	32.97	9.8	42.97	93.84	-0.020	nncl
VpMADS46 HPP92_027213 KAG0449578.1 Scaffold 20952–21112 1 53 6.09 11.03 62.05 VpMADS47 HPP92_004675 KAG0493681.1 CM028165.1 20125812–20119937 5 157 18.10 10.82 79.68	45	VpMADS45	HPP92_025155	KAG0453851.1	CM028177.1	11703058-11704492	7	62	7.08	10.81	48.70	84.84	-0.369	nncl
VpMADS47 HP92_004675 KAG0493681.1 CM028165.1 20125812–20119937 5 157 18.10 10.82 79.68	9 !	VpMADS46	HPP92_027213	KAG0449578.1	Scaffold	20952–21112	- -	23	60.9	11.03	62.05	88.30	-0.232	nucl
	47	VpMADS47	HPP92_004675	KAG0493681.1	CM028165.1	20125812-20119937	2	157	18.10	10.82	79.68	64.01	-0.810	nucl

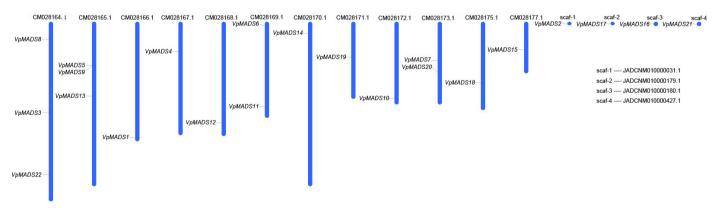

Fig. 1 Gene structures of MIKC^C-type *VpMADS* genes with exons, introns, and UTRs.

Fig. 2 Conserved motif analysis of MIKC^C-type VpMADSs.

Fig. 3 The phylogenetic tree of MIKC^C-type MADS-box proteins in *V. planifolia, A. thaliana,* and *O. sativa*. The red triangles referred to VpMADSs, green circles referred to AtMADSs, and blue stars referred to OsMADSs. Two adjacent groups were alternately distinguished by bands of two colors.

Fig. 4 Gene distributions of MIKC^C type *VpMADSs* in *V. planifolia*.

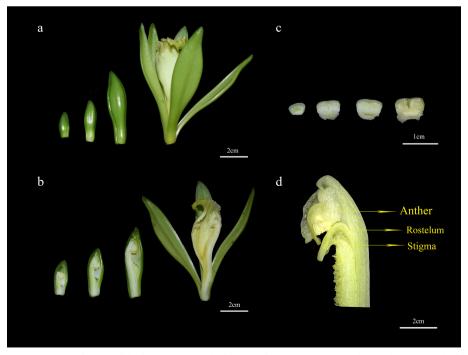
types were also detected. Segment duplications serve as the primary driving force for the expansion of the *MADS-box* genes in *V. planifolia*, while only two pairs of tandem duplications could be

observed (Supplementary Table S2). Moreover, it was demonstrated that the Ka values were mainly concentrated in the range of 0.5 to 0.8, the Ks values were mainly clustered around 1.8 to 2.4, and the

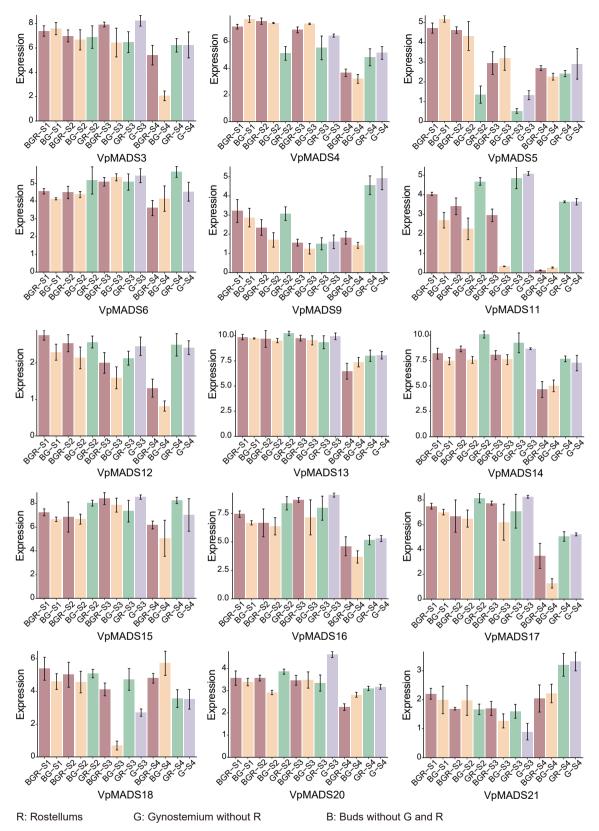
Ka/Ks values were predominantly centered around 0.2 to 0.5 (Supplementary Fig. S1). The aforementioned results suggested that VpMADSs have been subject to negative selection during the evolutionary process.

RNA-sequencing and expression profiles of VpMADSs during bud formation

In this study, a novel sampling approach for the small rostellum was adopted to conduct RNA-seg seguencing. Figure 5 illustrates the four stages, where A and B respectively depict the overall and internal differences among the four stages. For the sake of convenient representation, we use 'R' to denote the rostellum, 'G' to represent the gynostemium excluding the rostellum, and 'B' to stand for the buds with both the rostellum and the gynostemium removed. The composition of tissues in each sample is indicated by a combination of the corresponding letters. For example, a complete bud is represented as 'BGR'. To investigate the gene expression during rostellum development, samples including the whole flower (BGR), a whole flower without the gynostemium (BG), gynostemium (GR), and avnostemium without the rostellum (G) were collected for subsequent RNA-seq sequencing. In phase S1, only BG and BGR were gathered and compared. During the S2 stage, as the buds grew slightly larger, G samples were incorporated. In the S3 and S4 stages, with the further development of the flower, G and GR samples were added at both stages. Consequently, we were able to acquire differential expression genes from different tissues and stages, which effectively circumvented the challenge of obtaining flower organ samples.


Based on the RNA-seq results, 15 genes with differential expression profiles were obtained, as depicted in Fig. 6. The expression levels of *VpMADS3*, *VpMADS4*, *VpMADS5*, *VpMADS11*, *VpMADS12*, *VpMADS13*, *VpMADS14*, *VpMADS16*, and *VpMADS17* in BGR exhibited a significant decrease from the S1 to S4 phase, particularly prominent in the S4 stage (Fig. 6). In contrast, the expressions of *VpMADS9*, and *VpMADS21* displayed an opposite tendency, showing an evident up-regulated expression profile in the S4 stage. The

expression profiles of most genes were comparable in both GR and G, yet significantly differed from that in BG (VpMADS9, VpMADS11, VpMADS14, VpMADS17). In numerous instances, there was no significant difference in expression between BG and BGR; nevertheless, certain genes, such as VpMADS3, VpMADS11, VpMADS17, and VpMADS18 were remarkably differentially expressed in specific stages between BG and BGR (Fig. 6).


WGCNA and GO enrichment analysis

It is widely acknowledged that Weighted Gene Co-expression Network Analysis (WGCNA) can group genes into diverse modules in accordance with their co-expression relationships. On the basis of this, 11 modules were acquired and named black, brown, red, magenta, yellow, turquoise, blue, green, pink, purple, and gray respectively (Fig. 7). In total, there were seven modules that encompassed VpMADSs. Specifically, two members were included in the brown module (VpMADS1, VpMADS13), three in the yellow module (VpMADS7, VpMADS8, VpMADS9), four in the turquoise module (VpMADS5, VpMADS12, VpMADS14, VpMADS22), four in the blue module (VpMADS2, VpMADS3, VpMADS4, VpMADS20), two in the green module (VpMADS6, VpMADS18), one in the pink module (VpMADS15), and three in the purple module (VpMADS11, VpMADS16, VpMADS17) (Supplementary Table S3). As illustrated in Fig. 7, the correlations between the modules and traits were also presented. Among the seven modules containing VpMADSs, the majority, namely purple, pink, green, blue, yellow, and brown, demonstrated a significantly positive correlation with GR or G tissues.

Gene ontology (GO) analysis was performed for the modules (yellow, brown, grey, blue, green, purple, and turquoise) containing VpMADSs. For each module, except for the purple and gray modules in which fewer than 20 GO terms were enriched, the top 20 GO terms were presented (Fig. 8). Seven modules were enriched with GO terms related to cell differentiation, cell division, development, growth, auxin response, and others. These terms were associated with the growth and development of shoots, meristems, cells, and flowers (Fig. 8).

Fig. 5 Different periods and structures of *V. planifolia* flowers. (a) Whole flower in four stages S1 to S4 (from left to right); (b) flower internal structure S1 to S4 (from left to right); (c) rostellum S1 to S4 (from left to right); (d) magnified view of flower internal structure.

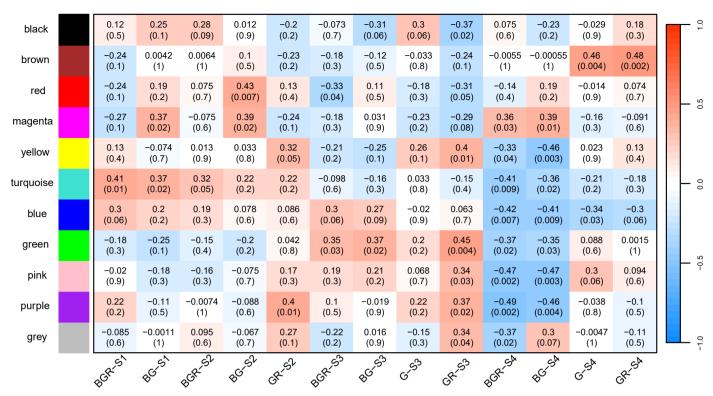
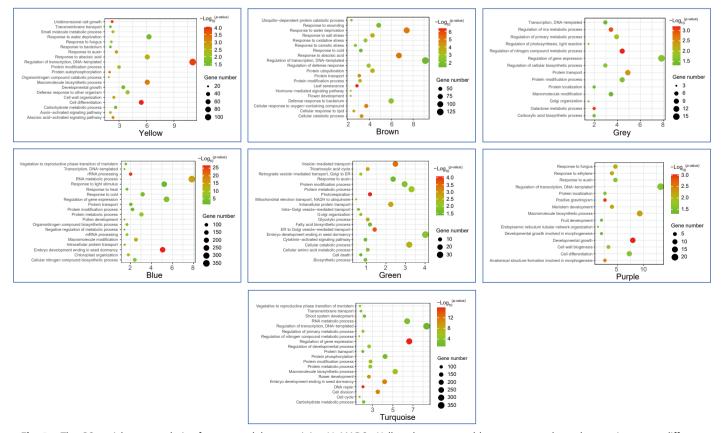


Fig. 6 The expression profiles of *VpMADS*s from RNA-seq data. The X-axis represented tissues including R (rostellum), G (gynostemiums without rostellums), and B (buds without gynostemium and rostellum). S1–S4 refer to the four stages displayed in Fig. 5. The Y-axis represented expression values after being standardized.


gRT-PCR analysis

To further ensure the accuracy of the results, we repeated the sample collection using the same sampling method and performed

real-time quantitative PCR (qRT-PCR) validation on nine out of the 15 VpMADS genes screened by RNA-seq and conducted a correlation analysis between the expression results of RNA-seq and

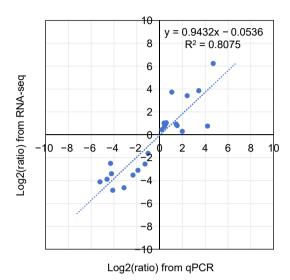

Fig. 7 The correlations between gene modules and tissues from WGCNA results. Each gene module was assigned a particular color. Greater than zero was a positive correlation, and less than zero was a negative correlation. The values in the module represent the magnitude of the correlation, and the values in parentheses denote the *p*-value.

Fig. 8 The GO enrichment analysis of seven modules containing VpMADSs. Yellow, brown, grey, blue, green, purple, and turquoise meant different modules in WGCNA analysis.

qRT-PCR (Fig. 9; Supplementary Table S4). The results showed a high positive correlation between the two methods for these nine genes, with an R-value of 0.8075.

As shown in Fig. 10, the expression intensity of the two genes *VpMADS4* and *VpMADS5* are significantly higher in the early stages S1 and S2 than in stages S3 and S4, and they tend to be more

Fig. 9 Coefficient analysis of fold change data between qPCR and RNA-seq.

strongly expressed in buds outside the GR or G. Both genes exhibit a significant decrease in expression intensity at stages S2 and S3, but their expression values increase at stage S4, particularly notably in the G or GR, and this trend is highly consistent with the profile of RNA-seq. For *VpMADS9*, its expression intensity in GR and R at stage S4 increases significantly, which is consistent with the results of RNA-seq. The expression intensity of *VpMADS9*, *VpMADS11*, and *VpMADS13* in G may be lower than that in GR, indicating a decrease in their expression intensity after removing R. VpMADS15 is mainly expressed in GR and G at the S4 stage. The expression of *VpMADS16* and *VpMADS17* decreases significantly at the S4 stage.

Discussion

V. planifolia, akin to the vast majority of orchid plants, exhibits a comparable pollination mechanism. It relies on fragrant pollen to attract bees or butterflies. This explains why some introduced orchid plants encounter challenges in natural pollination when local natural pollination conditions are lacking^[46,47]. As a result, investigating the genetic formation mechanism of the rostellum in orchid plants to resolve pollination issues represents a significant scientific leap. MADS-box genes are intricately linked to flower development. Their diverse combination mechanisms are likely the key determinant in the formation of different flower organs in plants. It has been documented that the MADS-box gene family participates in the formation of styles. The rostellum develops on the gynostemium, and its growth and development show a high level of temporal and spatial

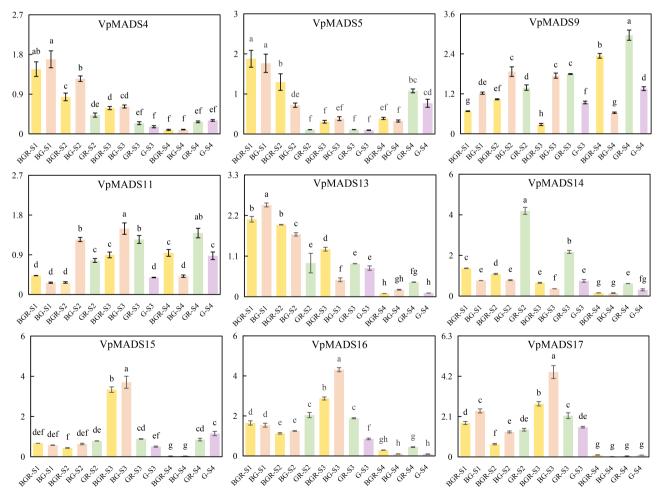


Fig. 10 The expression profiles of qRT-PCR results.

synchronization with the gynostemium. Hence, we postulate that VpMADSs might also play a pivotal role in the growth and development of the rostellum in *V. planifolia*.

Phylogenetic analysis revealed a relatively close phylogenetic relationship among VpMADSs and AtMADSs, which was consistent with previous studies on orchid plants^[22,48,49]. Eight groups possessed homologous genes in V. planifolia when compared with A. thaliana (Fig. 3). Given that both V. planifolia and O. sativa are monocotyledonous plants, they share certain characteristics of the MADSbox gene family typical of monocotyledonous plants. For instance, neither of them contains any FLC-like homologous genes (Fig. 3). Additionally, two VpMADS genes and three OsMADS genes were clustered into a single subgroup (termed the 'unique group'), suggesting that they might possess some unique functions distinct from those of other monocotyledonous plants (Fig. 3). Moreover, not every monocotyledonous plant has MADS-box genes in each subgroup. It was observed that VpMADS10 belongs to the GOA-like group, yet there are no homologous genes in O. sativa. Simultaneously, two OsMADSs (LOC_Os08g020701 and LOC_Os12g105201) are in the XAL1-like group, while no corresponding genes are present in V. planifolia (Fig. 3).

MIKC^C-type genes, being key genes, actively participate in plant flower development and serve as major constituents of the 'ABCDE' model. In this study, our focus was on the MIKC^C-type MADS-box genes in V. planifolia. According to the 'ABCDE' model, MADS-box genes are widely implicated in the formation of flower organs. The functions of MADS-box genes in A. thaliana have been elucidated, whereas numerous unknown functions are still being uncovered in other monocotyledonous plants. Since the gynostemium is formed through the metamorphosis of the pistil stigma, it might also be involved in the development of the rostellum. The SQUAlike subgroup encompasses two VpMADS genes (VpMADS11 and VpMAMS12) (Fig. 3). One of them (VpMADS11) is clustered into the purple module, and the other (VpMADS12) is clustered into the turquoise module (Fig. 8). These two genes might play a crucial role in the formation of the gynostemium in *V. planifolia*, as they not only exhibit a significantly high expression in G or GR (Fig. 6) but also the modules in which they are located are highly positively correlated with G or GR (Fig. 8). Moreover, many GO terms related to flower development are also enriched in both modules (Figs 8, 9). Additionally, it has been reported that AG-like genes are involved in the regulation of gynoecium and ovule development^[22,50]. This research also indicates that AG-like genes VpMADS6/7/8 are significantly highly expressed in G or GR tissues (Fig. 6). The yellow module, which contains VpMADS7 and VpMADS8, enriches several types of GO terms including auxin, cell differentiation, and developmental growth (Figs 8, 9). Meanwhile, the results of WGCNA analysis also suggest that the yellow module might be positively correlated with the growth and development of GR in V. planifolia (Fig. 9).

This study also introduced a novel sampling approach. The strategy of retention and exclusion might prove to be an effective means for samples that are challenging to collect. The limited number of flowers and the diminutive size of rostellum in *V. planifolia* pose difficulties in obtaining sufficient samples for RNA-seq sequencing, particularly during the early flower bud stages. Consequently, we aimed to ascertain whether the expression of a specific organ was modified by manipulating the gynoecium to either remove or retain the rostellum and by manipulating the flower bud to remove or retain certain parts. Through this, we could deduce the role of a gene in a particular organ. It was evident from the expression profiles obtained using this method that it was effective to a certain degree. Since the BG tissue represents the remaining portion of BGR after the removal of the gynoecium, the expression profiles

of some VpMADSs in BGR were notably higher than in BG, implying that these genes might be highly expressed in the gynoecium (Fig. 6). In reality, most of these genes under such circumstances were precisely highly expressed in either G or GR tissues (VpMADS7/8/11/17/22), suggesting that these genes might exhibit G- or GR-specific expression (Fig. 6).

The expression profiles of qRT-PCR further validated the results of RNA-seq, and overall, the expression trends of RNA-seq were similar to those of qRT-PCR. VpMADS genes may play different roles at different stages. For example, *VpMADS5* may play a role in the development of G or GR at the S4 stage. *VpMADS9* and *VpMADS14* may play key roles in the development of R, as they are not only highly expressed in GR but also show a significant decrease in expression in G after removing R. *VpMADS13*, *VpMADS16*, and *VpMADS17* may primarily function in G or GR from S1 to S3, with their roles decreasing at the S4 stage. *VpMADS9* and *VpMADS11* may play key roles in R development, as they are highly expressed in GR across multiple stages and show a significant decrease in expression in G after removing R.

In general, the expression levels of VpMADSs exhibited a gradual decline from S1 to S4 (Fig. 6). This phenomenon might be attributed to the fact that the MADS-box is a crucial gene family in flower development and plays a significant role in the formation of flower organs^[51,52]. Consequently, the expression of VpMADSs diminishes as the flowers progress towards maturity. Conversely, certain VpMADSs, such as *VpMADS9/10/21*, displayed an increasing expression at elevated levels during the S4 stage (Fig. 6). Additionally, we hypothesized that the regulatory mechanism of VpMADSs on the rostellum and gynoecium might not be different. Moreover, based on the similar expression profiles of many VpMADSs in G and GR tissues, it can be inferred that the development of the rostellum and gynoecium might occur concurrently (Fig. 6).

Conclusions

In this research, a comprehensive and in-depth analysis of the MADS-box gene family in V. planifolia was conducted. This encompassed whole genome-wide identification, gene characterization, gene structure dissection, conserved domain analysis, phylogenetic relationship reconstruction, gene duplication determination, and gene expression evaluation. A total of 47 VpMADS genes were successfully identified, with 22 of them falling into the MIKC^C types, which could further be categorized into 10 subgroups. It was discovered that the expression profiles of VpMADSs exhibited significant disparities between the gynostemium and the bud-without-gynostemium. This strongly indicates that VpMADSs are likely to play a crucial and indispensable role in the development of the gynostemium and the rostellum. Moreover, the strategies of retaining and removing certain specific tissues could prove highly beneficial and instrumental in the functional study of tissues that are otherwise difficult to analyze. All of the aforementioned findings not only offer novel and valuable insights into the MADS-box gene family in V. planifolia but also propose potential functions of the VpMADS genes in relation to rostellum development, thereby laying a solid foundation for further research and understanding in this field.

Author contributions

The authors confirm contribution to the paper as follows: conceptualization, methodology, software, formal analysis: Li J; investigation, resources, writing—review and editing: Su F, Yan L, Xing Y; writing—original draft: Su F, Li J. All authors reviewed the results and approved the final version of the manuscript.

Data availability

The RNA-seq sequencing data is available in the NCBI database via accession number PRJNA985237.

Acknowledgments

This research was funded by the Hainan Provincial Natural Science Foundation of China (321QN326), Hainan Provincial Natural Science Foundation of China (321QN328), and the Hainan Province Science and Technology Special Fund (ZDYF2022XDNY268).

Conflict of interest

The authors declare that they have no conflict of interest.

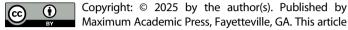
Supplementary information accompanies this paper at (https://www.maxapress.com/article/doi/10.48130/bpr-0025-0026)

Dates

Received 29 October 2024; Revised 5 June 2025; Accepted 9 June 2025; Published online 23 July 2025

References

- Schlüter PM, Arenas MAS, Harris SA. 2007. Genetic variation in Vanilla planifolia (Orchidaceae). Economic Botany 61:328–36
- Hu Y, Resende MF, Jr, Bombarely A, Brym M, Bassil E, et al. 2019. Genomics-based diversity analysis of vanilla species using a Vanilla planifolia draft genome and genotyping-by-sequencing. Scientific Reports 9:3416
- Jean Gabriel F, Laurent J. 1999. Vanilla planifolia: History, botany and culture in reunion island. Agronomie 19:689–703
- Lubinsky P, Bory S, Hernández Hernández J, Kim SC, Gómez-Pompa A. 2008. Origins and dispersal of cultivated vanilla (*Vanilla planifolia Jacks*. [Orchidaceae])1. *Economic Botany* 62:127–38
- Bythrow JD. 2005. Vanilla as a medicinal plant. Seminars in Integrative Medicine 3:129–31
- Childers NF, Cibes HR, Hernandez-Medina E. 1959. Vanilla-the orchid of commerce. In *The Orchids. A Scientific Survey*, ed. Withner CL. New York: The Ronald Press Company. pp. 477–508
- Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM. 2011. The emerging importance of type I MADS-box transcription factors for plant reproduction. *The Plant Cell* 23:865–72
- Riechmann JL, Meyerowitz EM. 1997. MADS domain proteins in plant development. Biological Chemistry 378:1079–101
- Kaufmann K, Melzer R, Theißen G. 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. *Gene* 347:183–98
- Theißen G, Kim JT, Saedler H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. *Journal of Molecular Evolution* 43:484–516
- Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, et al. 2000.
 MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. *The Plant Journal* 24:457–66
- De Bodt S, Raes J, Van de Peer Y, Theißen G. 2003. And then there were many: MADS goes genomic. Trends in Plant Science 8:475–83
- 13. Sun W, Wan H, Huang W, Yousaf Z, Huang H, et al. 2023. Characterization of B-and C-class MADS-box genes in medicinal plant *Epimedium sagittatum*. *Medicinal Plant Biology* 2:1
- Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. *Nature* 353:31–37
- Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–3


- 16. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of *Arabidopsis thaliana* functions in floral organ and meristem identity. *Current Biology* 14:1935–40
- 17. Theißen G. 2001. Development of floral organ identity: stories from the mads house. *Current Opinion in Plant Biology* 4:75–85
- 18. Theißen G, Saedler H. 2001. Floral quartets. *Nature* 409:469–71
- Alhindi T, Al-Abdallat AM. 2021. Genome-wide identification and analysis of the MADS-box gene family in American beautyberry (*Callicarpa americana*). *Plants* 10:1805
- 20. Chen M, Nie G, Yang L, Zhang Y, Cai Y. 2021. Homeotic transformation from stamen to petal in lilium is associated with MADS-box genes and hormone signal transduction. *Plant Growth Regulation* 95:49–64
- Krizek BA, Fletcher JC. 2005. Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics 6:688–98
- Teo ZWN, Zhou W, Shen L. 2019. Dissecting the function of MADS-box transcription factors in orchid reproductive development. Frontiers in Plant Science 10:1474
- 23. Li Y, Zhang B, Yu H. 2022. Molecular genetic insights into orchid reproductive development. *Journal of Experimental Botany* 73:1841–52
- Kim S, Koh J, Yoo MJ, Kong H, Hu Y, et al. 2005. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. *The Plant Journal* 43:724

 –44
- Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, et al. 2000. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell 5:569–79
- Jin J, Tian F, Yang DC, Meng YQ, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040–D1045
- Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* 34:i884–i890
- Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11:1650–67
- Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 12:323
- 30. Ghahramani Z. 2001. An introduction to hidden Markov models and Bayesian networks. *International Journal of Pattern Recognition and Artificial Intelligence* 15:9–42
- 31. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. *BMC Bioinformatics* 10:421
- El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, et al. 2019. The pfam protein families database in 2019. *Nucleic Acids Research* 47:D427–D432
- 33. Letunic I, Bork P. 2018. 20 years of the SMART protein domain annotation resource. *Nucleic Acids Research* 46:D493–D496
- Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. 2003.
 ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31:3784

 –88
- 35. Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. *Bioinformatics* 31:1296–97
- Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Research* 37:W202–W208
- 37. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32:1792–97
- Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022–27
- Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution* 32:268–74
- Lee TH, Tang H, Wang X, Paterson AH. 2013. PGDD: a database of gene and genome duplication in plants. *Nucleic Acids Research* 41:D1152–D1158
- Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic Acids Research* 40:e49

- Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31:3406–15
- 43. Zhang Z. 2022. KaKs_Calculator 3.0: calculating selective pressure on coding and non-coding sequences. *Genomics, Proteomics & Bioinformatics* 20:536–40
- 44. Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics* 9:559
- 45. Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nature Protocols* 4:44–57
- 46. Arditti J. 1980. Aspects of the physiology of orchids. *Advances in Botanical Research*. 7:421–655
- 47. Jersáková J, Johnson SD, Kindlmann P. 2006. Mechanisms and evolution of deceptive pollination in orchids. *Biological Reviews of the Cambridge Philosophical Society* 81:219–35
- 48. Aceto S, Gaudio L. 2011. The MADS and the beauty: genes involved in the development of orchid flowers. *Current Genomics* 12:342–56

- 49. Tsai WC, Chen HH. 2006. The orchid MADS-box genes controlling floral morphogenesis. *The Scientific World Journal* 6:1933–44
- Brazel AJ, Fattorini R, McCarthy J, Franzen R, Rümpler F, et al. 2023.
 AGAMOUS mediates timing of guard cell formation during gynoecium development. PLoS Genetics 19:e1011000
- Saedler H, Becker A, Winter KU, Kirchner C, Theissen G. 2001. MADS-box genes are involved in floral development and evolution. *Acta Biochimica Polonica* 48:351–58
- 52. Shen G, Yang CH, Shen CY, Huang KS. 2019. Origination and selection of ABCDE and *AGL6* subfamily MADS-box genes in gymnosperms and angiosperms. *Biological Research* 52:25

is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.