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Abstract

The tea plant (Camellia sinensis) is economically and nutritionally important because of its bioactive compounds. Photosynthesis directly affects tea's growth
and productivity, requiring a detailed study of its relationship with cultivation outcomes. We developed a novel computational pipeline for constructing
three-dimensional (3D) canopy photosynthesis models of tea plant, leveraging multi-view stereo 3D reconstruction. The ISBNet architecture was optimized
for precise leaf-stem segmentation from point cloud data, achieving 0.897 average precision (AP) for leaves and 0.793 AP for stems. We then created a plant
leaf morphology-adapted meshing algorithm optimized for plant leaf morphology, achieving an average mesh reduction of approximately 96% while
maintaining morphological fidelity compared with conventional meshing methods. We generated multiple tea plant canopies representing distinct
planting patterns, and used a ray tracing algorithm to simulate the spatiotemporal distribution of light within these structures. Canopy photosynthesis
simulation revealed significant cultivar-specific differences, with 'Yuehuang 1' exhibiting the highest photosynthetic activity. Dense planting (10 cm
spacing) significantly enhanced canopy photosynthetic rates compared with wider spacing (20 cm), and a strong linear correlation (r = 0.99) was identified
between total leaf area and daily canopy photosynthetic rate across cultivars. This work establishes a methodological foundation for precision agriculture
optimization in perennial crops, providing quantitative guidance for maximizing tea plantations' productivity through optimal cultivar selection and spatial
configuration.
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Introduction

The tea plant (Camellia sinensis), a highly important economic
crop, is extensively cultivated worldwide. It serves as the primary
raw material for the tea industry and occupies a crucial position in
both the international tea market and the domain of human health,
owing to its notable medicinal attributes!'l. With the continuous
growth of consumer demand for high-quality tea products, the
breeding of tea plant has become increasingly important?. In
recent years, remarkable advancements have been made in tea
breeding technology. This progress has enabled the selection of tea
varieties with desirable traits such as drought resistance, disease
resistance, high yield potential, and excellent quality2-41,

Photosynthesis is of utmost importance for the growth and devel-
opment of tea plant®. Consequently, investigations of the relation-
ship between photosynthesis and tea plant's growth have long
been a significant subject in the field of tea science. Nevertheless,
traditional methods for evaluating photosynthesis, hampered by
technological and methodological constraints, typically demand a
substantial amount of labor and timel®l. To overcome these limita-
tions, canopy photosynthesis models have been developed to simu-
late the impacts of environmental factors (such as photosynthetic
photon flux density [PPFD]) and plant traits on photosynthetic
performance, providing an effective research tool:8l, While canopy
models have been developed for various crops like corn, rice,
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soybeans, and sugarcanel®4, tea plant present unique challenges
because of their perennial woody nature, complex branching
patterns, and dense, multi-layered canopy structure with overlap-
ping leaves that create intricate light interception patterns. Unlike
annual crops with relatively simple, regular architectures, tea plant
canopies require specialized modeling approaches. A major limita-
tion in applying these models is constructing an accurate three-
dimensional (3D) canopy architecture. Traditional methods rely
on manual measurement of a plant's architectural traits, such as
leaf length, plant height, and tiller numbers!’], which is time-
consuming and labor-intensive. Three-dimensional point cloud
technology offers a solution, enabling automated plant reconstruc-
tion and canopy modeling!'®l. However, plant organ segmentation
remains challenging, as traditional algorithms like skeleton extrac-
tion and mesh tessellation are highly dependent on the plant type
and parameter settings. Although end-to-end automated plant
point cloud segmentation and the development of efficient triangu-
lar tessellation algorithms have been used in major crops, the
method for developing a canopy model of the tea plant has not
been developed.

Deep learning has revolutionized 3D point cloud processing
by overcoming the limitations of traditional methods such as
clustering'7=191,  threshold  processing!?°-22,  and  edge
detection[23-25], which struggle with complex plant structures.
PointNet(26] pioneered direct feature learning from raw point cloud
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data, while PointNet++[271 advanced this with hierarchical feature
extraction, enabling multi-scale learning of both fine-grained details
and global structures28l, These developments have enabled various
applications: Attention and Structure Aware (ASAP)-PointNet with
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) for cabbage phenotyping!??, PartNet-based methods for
lettuce leaf segmentation!3%, and PointNet++ with Hierarchical
Aggregation for Instance Segmentation (HAIS) for corn analysis'l.

Building upon PointNet++'s local feature extraction framework,
ISBNet32! introduces instance-aware segmentation strategies and
dynamic receptive fields through its novel network architecture.
This advancement enables direct discrimination of adjacent plant
organs with similar semantic labels—a critical capability for complex
tea plant structures—without requiring post-processing. The archi-
tecture's enhanced feature learning mechanisms allow for precise
identification and segmentation of distinct botanical entities within
3D point clouds, especially for addressing the challenges posed by
densely overlapping plant structures. This model has demonstrated
superior performance on multiple publicly available point cloud
datasets, including S3DIS, STPLS3D, and ScanNetV2, thereby show-
ing its accuracy and robustness in complex scenarios. Consequently,
in this study, the ISBNet model is employed for the instance
segmentation of tea plant point clouds.

After accurately segmenting the 3D point cloud of the tea plant,
the subsequent crucial step entails the utilization of an efficient
meshing algorithm to construct a 3D model. This model is employed
for simulating the absorption and distribution of light within the

A 3D canopy photosynthesis model for tea plant

traditional meshing methods, such as Delaunay triangulation(33],
alpha shapel34, and ball pivoting3], are extensively applied in 3D
reconstruction tasks, they frequently encounter issues of low effi-
ciency and overly complex models when dealing with intricate
biological structures. This is primarily because these algorithms have
to process a substantial amount of redundant point cloud data and
have not been optimized for the distinctive morphological features
of plants. Consequently, there is an urgent necessity for a novel
meshing algorithm specifically tailored to plants.

In this study, we have developed a novel pipeline for construct-
ing a canopy photosynthesis model for tea plant. This pipeline
encompasses 3D point cloud segmentation using deep learning, a
new meshing algorithm (the precision leaf mesh algorithm [PLMA])
optimized for plant structures, a ray tracing algorithm, and a 3D
canopy photosynthesis model specifically tailored for tea plant.

Materials and methods

Overview of the modeling pipeline

This study established an integrated computational framework
for constructing a 3D canopy photosynthesis model for tea plant by
synergizing multi-view stereo 3D reconstruction, deep learning, and
a novel meshing algorithm (the PLMA) tailored to plant leaf
morphology (Fig. 1). Initially, tea saplings were imaged using a
commercially available multi-view stereo system (A-CTP, MilletHill
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Fig. 1 Schematic overview of the computational workflow for canopy photosynthesis analysis in tea plant. The workflow progresses through the
following stages. (1) Multi-view stereo imaging generates a high-resolution 3D point cloud of tea saplings. (2) Raw point clouds undergo preprocessing
via Excess Green Index (ExG) filtering and voxel-based downsampling to remove noise and optimize the data density. (3) Instance-aware semantic
segmentation using the ISBNet architecture isolates individual leaves from stems within the refined point cloud. (4) Application of the plant leaf meshing
algorithm (PLMA) constructs biologically accurate triangular mesh models for segmented leaves. (5) Canopy architectural models are generated
by integrating plant-specific 3D reconstructions with predefined planting configurations. (6) The FastTracer ray tracing platform simulates the
spatiotemporal distribution of light (photosynthetic photon flux density, PPFD) within the canopy, enabling calculation of the photosynthetic rates and
establishing quantitative assessment metrics for architectural optimization of tea plant.
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through photogrammetric reconstruction. The acquired point
clouds were preprocessed using Excess Green Index (ExG) filtering,
static noise removal, and voxel-grid downsampling methodologies.
Subsequently, the ISBNet architecture was applied to achieve
precise organ-level segmentation, isolating individual leaves from
stems within the point cloud data. The segmented leaf point clouds
were then transformed into high-fidelity triangular mesh models via
the PLMA, enabling the simultaneous extraction of key phenotypic
parameters. Finally, the FastTracer ray tracing engine was employed
to simulate the spatiotemporal distribution of light within the
reconstructed canopies, thereby quantifying canopy-level photo-
synthetic efficiency. This framework significantly improves the preci-
sion and scalability of phenotyping and photosynthetic modeling of
tea plant, facilitating advancements in genomic selection, precision
agriculture, and functional-structural plant phenomics.

Data collection
Plant material and imaging

Four tea plant varieties (Camellia sinensis cv. 'Tezao Naibai',
'Yuehuang 1', 'Longjing 43', and 'Zijuan'), exhibiting distinct pheno-
typic architectures and leaf morphologies, were sampled for this
study. Multi-view stereo imaging was conducted using a multi-view
six-stereo (MVS-06) system (MilletHill Biotech, Shanghai, China)
equipped with six Canon EOS 1300D digital single-lens reflex (DSLR)
cameras. During image acquisition, each camera captured nine
images per acquisition cycle, followed by incremental 40° rotations
of the automated turntable to achieve full 360° coverage. This
protocol yielded 54 high-resolution images per plant.

Three-dimensional reconstruction and preprocessing
Three-dimensional point clouds were reconstructed from the
acquired images using Agisoft Metashape (v1.6.1, Agisoft LLC, St.
Petersburg, Russia). The reconstruction achieved high fidelity with
average point densities of 20,000-300,000 points per plant and
millimeter spatial resolution, effectively capturing fine-scale morpho-
logical features of the leaves and branching architecture. The recon-
structed point clouds preserved detailed leaf surface textures,
including the venation patterns and serrated leaf edges characteris-
tic of tea plant. Complex structural elements such as overlapping
leaves, intricate branch bifurcations, and emerging buds were accu-
rately reproduced with millimeter-level precision (Supplementary
Fig. S1). Each point cloud dataset included XYZ spatial coordinates,
red—green-blue (RGB) spectral values, and surface normal vectors.
Raw point cloud data underwent preprocessing in the CERS Suite
(MilletHill Biotech), involving Excess Green Index (ExG) filtering to
isolate plant structures from background artifacts, static noise
removal to eliminate spurious points, and voxel-grid downsampling
(5-mm resolution) to optimize the computational efficiency while
preserving morphological fidelity. The point clouds' accuracy was
validated through manual inspection of the key morphological land-
marks and a comparison with reference measurements, ensuring
the precision of the spatial coordinates within a tolerance of £ 2 mm.

Dataset curation and annotation

A manually annotated training dataset was constructed using
CloudCompare software (v2.13) to enable supervised deep learning.
Each point cloud was assigned to two semantic classes (stem and
leaf) with instance-level labels distinguishing individual leaves. The
final dataset comprised 160 tea plant specimens, representing
diverse architectural phenotypes, to train the ISBNet model for
instance segmentation and validate the PLMA.
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The ISBNet model for instance segmentation of
tea plant organs

Given the robust performance and adaptive capabilities of the
ISBNet model (Fig. 2a) in processing complex 3D datasets, this study
investigated its applicability to botanical point cloud analysis
through systematic hyperparameter optimization (e.g., voxel size).
The model's architecture comprises four core components, as
described below.

Three-dimensional backbone network

Input point cloud data P € R¥*® are processed by the backbone
network to extract per-point features F € R¥*P, where D denotes
the features' dimensionality. This module hierarchically encodes
global contextual and local geometric information, ensuring multi-
scale spatial feature representation, which is critical for intricate
plant morphologies.

Point-wise predictor

Features from the backbone network are processed through a
point-wise predictor to generate semantic predictions, including
the axis-aligned bounding boxes F,,, € R¥® and mask features
Frasc € RV These outputs feed into a box-aware dynamic convo-
lution module for instance refinement.

Sampling-based instance-wise encoder

This component employs instance-aware farthest point sampling
(IA-FPS) with local feature aggregation to transform point-wise
features into instance-level representations, F € RK*P_ This strategy
enhances feature discriminability while maintaining coverage across
heterogeneous instance scales.

Box-aware dynamic convolution

By integrating the 3D bounding box priors with dynamic convolu-
tion operators, this module modulates prediction discrepancies
between candidate points to produce instance-specific binary
masks, achieving sub-organ segmentation precision.

Data loader development

To accommodate the structural characteristics of plant point
clouds, we customized the ISBNet framework by developing a dedi-
cated data loader. This tool synchronizes RGB spectral data with XYZ
spatial coordinates, ensuring dimensional consistency and the
integrity of the input for tea plant datasets.

Parameter optimization

We conducted systematic hyperparameter optimization, focusing
on the voxel scale (voxel_size = 1/voxel_scale). Empirical trials across
scaling factors (150-400, in increments of 50) revealed a precision—
efficiency trade-off: Finer voxel scales (150-250) preserved morpho-
logical details at higher computational costs, whereas coarser scales
(300-400) improved throughput but reduced edge fidelity. We iden-
tified an optimal parameter setting that performs best in terms of
balancing segmentation accuracy and computational efficiency.

Architectural enhancements

Beyond hyperparameter tuning, we modified the data ingestion
pipeline and architectural framework to better align with the plant
point cloud's properties. Specifically, we adjusted the spatial config-
uration parameters (e.g., spatial_shape) and optimized the spatial
cropping strategy by reducing cropping ranges to plant-appropri-
ate dimensions, addressing the smaller volumes that are characteris-
tic of individual plant specimens. Point density thresholding was
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Fig. 2 Workflow of high-precision 3D instance segmentation and phenotypic trait extraction for tea plant. (a) Architectural workflow of the ISBNet model
for high-precision 3D instance segmentation of tea plant point clouds. (b) Workflow of the PLMA for constructing 3D leaf models from tea plant point
clouds. (c) lllustration of phenotypic parameter extraction from plant leaf models processed by the PLMA.

implemented to handle uneven density distributions, ensuring that
cropped regions maintained sufficient point density for effective
training. These preprocessing modifications improved the model's
ability to capture complex plant structural patterns while maintain-
ing computational efficiency. Batch size was calibrated to optimize
GPU memory allocation without compromising training stability.

Model training

A curated dataset of 160 tea plant saplings was partitioned into
120 training and 30 validation samples. To mitigate overfitting and
enhance generalizability, the training samples were augmented via
three biologically constrained strategies: (1) Leaf rotations with
stem-anchored transformations centered at leaf-stem junction
points, applying lateral rotations within a + 30° range and vertical
rotations within a = 10° range; (2) global spatial random transla-
tion applied to the entire plant point cloud; and (3) point cloud
density normalization by standardizing samples to a range of
20,000-100,000 points through adaptive sampling. These biologi-
cally constrained augmentation parameters ensured morphological
realism while providing sufficient training variation, generating four
transformations per sample.

Training was executed on a cloud-based computational platform
featuring an AMD EPYC 7551P CPU (8 cores), 24 GB RAM, and an
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NVIDIA RTX 3090 GPU (24 GB VRAM), hosted on a Linux Ubuntu
20.04 environment. The model underwent 300 training epochs
with an initial learning rate of 0.001. A cosine annealing scheduler
dynamically adjusted the learning rate, facilitating accelerated
convergence while minimizing loss oscillations.

Triangular meshing of leaves

To construct canopy photosynthesis models, point cloud data
must be converted into triangular mesh representations capable
of simulating light absorption dynamics and calculating the leaf
surface area. Although conventional algorithms (e.g., alpha shape,
Delaunay triangulation, and ball pivoting) have been widely
adopted for 3D reconstruction, they exhibit pronounced limitations
when processing botanical point clouds. First, they are subject to
noise artifacts and nonuniform distributions. Noise and irregular
point spacing generate extraneous triangular facets, uneven edges,
and topological discontinuities in leaf meshes. Though parameter
tuning (e.g., the alpha radius) can mitigate these issues, optimal
configurations are species-dependent. Second, they are prone to
geometric distortions. Sparse or unevenly sampled point clouds
often produce nonplanar geometric approximations (e.g., cubic arti-
facts), introducing significant errors in leaf area estimation and
subsequent ray tracing simulations. Lastly, they (3) Computational
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Overhead. Excessive triangle counts from traditional meshing
impose prohibitive computational costs for large-scale canopy light
simulations.

To address these limitations, we introduce the precision leaf mesh
algorithm (PLMA), a novel triangular meshing framework tailored to
plant leaf point cloud morphologies. The PLMA is designed to elimi-
nate redundant vertices while preserving maximal geometric fidelity
through three sequential stages (Fig. 2b) as follows.

Geometric alignment

Leaf point clouds undergo rotational transformations using
Rodrigues rotation to align the principal leaf vein (constructed from
the basal point P, closest to the stem and the farthest tip point
Pyip) with the z-axis. The leaf vector is first normalized as:

ip— b d
W=M7 7 =10,0,1] )
Hptip _phaa'c“
The rotation axis and angle are calculated through cross-product
and dot-product operations:

= Vieaf x?, 6 = arccos (‘Tnf) 7) ?2)

The Rodrigues rotation matrix R is then constructed to align the
leaf vector with the z-axis direction:

3

where, [], denotes the skew-symmetric matrix operator, standardizing
the spatial orientation and eliminating any modeling deviations
caused by natural leaf curvature.

R=1+ sin@[—u)]X + (1 —cosb) [TZK

Edge and vein detection

The aligned leaf is uniformly divided into N segments (N = 10)
along the z-axis. For each segment k, local point sets are extracted
within tolerance zones defined as:

Ov=pePlZy—e<pz<Zi+e}, &=0.1XLsgmen 4)

Within each Q,, k keypoints are systematically identified corre-
sponding to k longitudinal axes (columns) across the leaf width. The
selection of the longitudinal axis number (three to five columns) is
based on three criteria. (1) Leaf morphological complexity: Simple
elongated leaves (aspect ratio: > 3:1) utilize three columns for
computational efficiency, while complex broad leaves (aspect ratio:
< 2:1) require five columns for adequate surface representation.
(2) Point cloud density: Sparse datasets (< 1,000 points/cm?) are
processed with three columns to prevent overparameterization,
while dense datasets (> 5,000 points/cm?) use five columns for
enhanced geometric fidelity. (3) Computational efficiency, which
balancing triangle generation rates with processing constraints for
large-scale canopy simulations.

Topologically structured meshing

Triangle construction follows a systematic connectivity algorithm
ensuring anatomical fidelity. The connectivity pattern generates
triangular facets between adjacent segments as follows:

Tiorar = 8+8X(N-2)=8N-8 5)
where, the basal and tip segments each contribute four triangular
facets, and each intermediate segment pair generates eight facets. All
triangular orientations follow the right-hand rule to ensure consistent
normal vectors for accurate ray tracing computations.

Acquisition of phenotypic leaf traits
Leveraging the PLMA framework developed in this study, we
quantitatively extract critical morphometric traits from leaf point
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clouds. The algorithm performs segment-wise analysis of leaf point
clouds, precisely identifying the base, tip, and vein node coordi-
nates required to derive leaf length, width, and projected surface
area.

Leaflength

Leaf length is computed as the cumulative Euclidean distance
between sequential vein nodes along the principal axis (Fig. 2c). The
calculation is formalized as:

n—1
L= Zi:l \/(XH-I =X+ Giet =37 + @ie1 — 20) (6)
where, (x; y; z) denotes the 3D coordinates of the i-th vein node, and
n represents the total number of nodes.

Leaf width

The leaf width is defined as the maximum lateral distance within
each segment corresponding to a specific Z-value of the leaf. As
illustrated by the red lines in Fig. 2¢, the width W of the leaf at each
segment associated with a particular Z-value is calculated using the
following formula. This formula incorporates width measurements
from all segments corresponding to the different Z-values of the
leaf.

W =max; (maxpi,ijSz (= x)*+(; _yi)2) @)

Leaf area

The estimation of leaf area is performed using the triangular
meshing model of the leaf. As illustrated in Fig. 2¢, the model
comprises triangles generated by connecting key points across
segments. The area of each triangle is computed using the cross-
product method, which accurately quantifies the total area enclosed
by the leaf.

LN P S OO o B
akzz (Pk—Pk)X Px — Pk ®)

A= Z:l:lak (9)

This algorithm is of significant importance for plant phenotypic
analysis and presents a novel, nondestructive, and precise approach
to measuring leaf morphology. By directly extracting key points
from the point cloud data, this method mitigates potential damage
to plant specimens and provides accurate data support for subse-
quent genetic and environmental adaptability studies.

Construction of the canopy photosynthesis
model

In this study, canopy models were developed for four tea plant
sapling varieties: 'Yuehuang 1', 'Longjing 43', 'Tezao Naibai', and
'Zijuan' (Supplementary Fig. S2). Three planting configurations were
simulated: (1) A compact layout with 20-cm plant spacing within a
60 cm x 80 cm plot configuration (arranged in four rows with five
saplings per row) (Fig. 3a); (2) a denser compact layout with 10-cm
plant spacing within a 30 cm x 40 cm plot configuration (four rows
with five saplings per row) (Fig. 3a); and (3) a typical planting pattern
characterized by 150-cmrow spacingacrossfourrows, withaspacing of
30 cm between individual saplings in each paired row (Fig. 3b).

FastTracer softwareldl was utilized to conduct ray tracing on
these 3D canopy models, simulating light distribution under differ-
ent configurations. Canopy modeling facilitates the understanding
of how planting density and arrangement influence light intercep-
tion within the canopy, thereby impacting photosynthetic
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Fig. 3 Multi-scale modeling of the canopy photosynthesis characteristics of tea plant. (a) Schematic representations of canopy photosynthesis models for
four tea plant cultivars ('Yuehuang 1', 'Longjing 43', 'Tezao Naibai', and 'Zijuan') are presented for two planting configurations: 10-cm inter-plant spacing
(first row, left to right) and 20-cm inter-plant spacing (second row). Each row displays the 3D models in sequential columns corresponding to the listed
cultivars. (b) Canopy photosynthesis models for the four tea plant cultivars under a typical planting configuration, depicting the spatial arrangement.
Each paired row configuration features a wide inter-row spacing of 150 cm, with an inter-plant spacing of 30 cm between adjacent saplings within the

paired rows.

efficiency. This analysis is critical for optimizing planting configura-
tions to maximize photosynthetic efficiency and plant growth.

Canopy photosynthesis

Based on the photosynthetic photon flux density (PPFD)
values derived from the canopy model, the classical nonrectangular
hyperbola leaf photosynthesis model37] was utilized to compute the
photosynthetic rate for each leaf mesh. The mathematical formula-
tion of the model is as follows:

A_<I>*I+Pmax— (D] + Prax)” — 4505 D s ] 5 Py
2%6

In the model, A denotes the leaf photosynthetic rate (umol
CO, m=2s71); | is the incident PPFD (umol CO, m=2s71); P, is the
maximum leaf photosynthetic assimilation rate under light satura-
tion (umol CO, m=2s71); @ is the quantum yield of assimilation
(umol CO, umol photons™); and 8 is the convexity of the light
response curve (dimensionless), describing the steepness of the
transition in the curve; and R, represents the rate of dark respiration
(umol CO, m=2.s71),

All parameters were determined from mature leaves during repre-
sentative growing season conditions (clear sky, 33-35 °C; May 2016)
using an LI-6400XT system (LI-COR Biosciences, USA). The fitted
curve (Supplementary Fig. S3) illustrates the transition from light-
limited to light-saturated photosynthesis.

Fitting the model yielded the following parameters: The quan-
tum yield of assimilation (®) was determined to be 0.08696 mol
CO, mol photons-'), the maximum leaf photosynthetic assimilation

-R;  (10)
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rate under light saturation (P,,,) was 11.12 pumol CO, m=2s71, the
convexity of the light-response curve (8) was 0.03926, and the dark
respiration rate (R,) was 3.06544 umol CO, m=2-s~1. The coefficient of
determination (R?) for the regression was 0.9991, and it had a root
mean square error (RMSE) of 0.1323. These metrics demonstrate
excellent agreement between the model's predictions and the
experimental data, validating the model's reliability for subsequent
analysis and applications.

Statistical analysis

In this study, statistical analysis was conducted using Python
scripts, with data processing performed using commonly used
libraries such as NumPy, Pandas, and Scikit-learn. The performance of
the ISBNet model was evaluated using multiple metrics, including
average precision (AP), AP@0.25, and AP@0.50, to assess the segmen-
tation effectiveness of the model on the point cloud data of tea plant.
Additionally, precision (AR) and recall (RC-25, RC-50) metrics were
used to comprehensively evaluate the model's performance.

After performing light ray tracing on the canopy photosynthesis
model, we conducted linear regression analysis to explore the rela-
tionship between total canopy leaf area and PPFD. Pearson's correla-
tion coefficient was used to evaluate the correlation between leaf
area and light intensity. All statistical analyses were carried out using
Python, with the results of the regression and correlation analysis
providing a clear quantitative relationship between total canopy
leaf area and PPFD.
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Results

Performance of the ISBNet model for organ
segmentation in tea plant

To evaluate the predictive capabilities of the ISBNet model, a
training dataset including 3D point clouds from 120 tea plant
saplings and a validation dataset of point clouds from 30 indepen-
dent saplings were utilized. Following training, the model was
applied to unlabeled plant point cloud data for instance segmenta-
tion, enabling the identification of distinct plant organs (stems and
leaves). Quantitative analysis revealed that the ISBNet model
achieved accurate leaf segmentation when compared with manu-
ally annotated ground-truth point clouds (Fig. 4a). The voxel size
was configured to 150 in the ISBNet model. Leaf-specific precision
and recall metrics were calculated for individual plant, with both
metrics exceeding 0.7 for all specimens and reaching maxima of
0.99. Small leaves and branches were identified as potential factors
influencing segmentation performance. These results validate the
effectiveness of the ISBNet model in plant point cloud segmenta-
tion tasks, providing a robust foundation for subsequent pheno-
typic feature extraction and plant physiological research.
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The valuation metrics used in this study to quantify the model's
segmentation performance included the AP at various intersection
over union (loU) thresholds. Specifically, AP_50% and AP_25%
denote the average precision calculated at loU thresholds of 50%
and 25%, respectively. Additionally, AP represents the mean preci-
sion computed across loU thresholds ranging from 50% to 95% in
5% increments (Table 1). These metrics assess the model's capacity
to detect instances with high spatial overlap. Furthermore, average
recall (AR) and the area under the recall curve (RCA) were calculated
at different loU thresholds. AR_50% and AR_25% specifically refer to
the area under the recall curve at loU thresholds of 50% and 25%,
respectively (Table 1). These metrics evaluate the model's ability to
accurately detect instances and its robustness to instances with
varying degrees of overlap.

This study investigated the influence of voxel-scale parameter
adjustments on the performance of the ISBNet model in point cloud
instance segmentation in tea plant. Precision and recall metrics were
computed across voxel scales ranging from 150 to 400, with an opti-
mal voxel scale of 350 identified (Table 1 and Fig. 4b, c). Given the
inverse relationship between voxel scale and voxel size (i.e., voxel
size = 1/voxel scale), larger voxel-scale values correspond to smaller
voxel sizes, which are critical for capturing fine structural details. The
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Fig. 4 Instance segmentation and performance evaluation of tea plant point clouds using ISBNet. (a) Schematic representation of the 3D point cloud
segmentation workflow for tea plant saplings. Raw 3D point cloud data were acquired via multi-view stereo imaging (XYZ + RGB data). Ground-truth
annotation: Expert-annotated labels were generated using CloudCompare v2.13, distinguishing stems (blue) and individual leaves (distinct colors) for
supervised training. ISBNet Segmentation Output: Instance-aware semantic segmentation results, demonstrating precise organ-level separation with
minimal boundary artifacts. This comparative visualization validates the model's capability to replicate the accuracy of manual annotation while enabling
automated high-throughput phenotyping. Accuracy of (b) leaf segmentation across different voxel scale settings and (c) stem segmentation under

varying voxel scales.

Lu et al. Beverage Plant Research 2026, 6: e001

Page 7 of 14



Beverage Plant
Research

Table 1. Segmentation performance of the ISBNet model trained under
different voxel size configurations for plant organ detection.

\S’;’jg' gr'gga AP AP 50% AP 25% AR RC_50% RC_25%
150 Lleaf 0815 0918 0942 0862 0930 0954
Stem 0618 0968 0968 0713 1000  1.000
200  Leaf 0854 0944 0967 0897 0955 0975
Stem 0657 0903 0903 0805 1000  1.000
250  Leaf 0884 0964 0975 0924 0973 0983
Stem 0732 0903 0903 0862 1000  1.000
300 Leaf 0889 0969 0983 0932 0977 0992
Stem 0793 0953 0953 0855 1000  1.000
350  Leaf 0897 0970 0983 0944 0978  0.990
Stem 0789 0926 0926 0893 1000  1.000
400 Leaf 0755 0898 0935 0866 0941 0976
Stem 0711 0953 0953 0789 1000  1.000

Evaluation metrics include average precision (AP) across all intersection over
union (loU) thresholds, AP at 50% and 25% loU thresholds (AP_50%, AP_25%),
average recall (AR), and recall curve area (RCA) at 50% and 25% loU thresholds
(RC_50%, RC_25%).

modeling results show that increasing the voxel scale (and concomi-
tantly decreasing the voxel size) enhances precision and recall in
leaf instance segmentation. This improvement is attributed to the
ability of smaller voxels to accurately resolve leaf edges and
morphological details, particularly in cases involving complex leaf
shapes or dense leaf arrangements. For stem segmentation tasks,
higher voxel scales also yield superior results, indicating that
reduced voxel sizes are equally important for preserving stems'
geometric continuity and structural integrity. Regarding training
stability, when voxel scales of 350 and 400 were employed, the
model achieved peak accuracy within 50-150 training epochs but
experienced abrupt performance degradation thereafter, with all
metrics dropping to zero. This phenomenon is hypothesized to arise
from overfitting to noise and fine-grained details in the training data
at high voxel resolutions, resulting in compromised generalization
capability. Additionally, smaller voxel sizes may exacerbate issues
related to gradient instability (e.g., vanishing or exploding gradi-
ents) during training, which could be mitigated through optimizer
parameter tuning or the implementation of gradient clipping tech-
nigues.

Performance of the PLMA

The meshing algorithm (PLMA) significantly enhances the effi-
ciency of extracting plants' phenotypic information by simplifying
complex 3D point clouds while preserving the critical morphologi-
cal features. This capability is vital for downstream applications such
as ray tracing, photosynthesis efficiency evaluation, and other plant
phenomics studies.

A visual comparison of the leaf meshing process is presented in
Fig. 5a, demonstrating the transformation from the original point
cloud to the meshed model using the PLMA. The "Real-leaf" panel
displays the raw 3D point cloud data, while "Alpha-shape", "Delau-
nay-2.5D", and "Ball-pivoting" illustrate the results from traditional
meshing methods. In contrast, "PLMA-3", "PLMA-4", and "PLMA-5"
represent the meshing outcomes generated by the PLMA with vary-
ing numbers of longitudinal axes (three, four, and five, respectively).
As the number of longitudinal axes increases, the mesh model main-
tains the overall leaf morphology while improving the precision of
geometric detail, offering flexibility for refined leaf shape modeling.
To quantitatively evaluate computational efficiency, we compared
processing times between the PLMA and traditional meshing meth-
ods using identical leaf point cloud data (See the detailed results in
Supplementary Table S1). The PLMA achieved substantial reduc-
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tions in mesh complexity with only 84-112 triangular facets com-
pared with 1,337-19,495 facets for traditional methods, while main-
taining reasonable processing times and morphological fidelity. An
example of complete tea plant meshing is shown in Fig. 5b.

Plant architectural traits extracted by the model

This section highlights the results of the quantitative analysis of
the phenotypic features of tea plant sapling leaves obtained
through the application of meshed models. Detailed measurement
data are summarized in Supplementary Table S2, including key
metrics such as leaf area, leaf length, and leaf width. These results
are derived from precise calculations of the corresponding geomet-
ric parameters within the meshed models. The data in Supplemen-
tary Table S2 show that the model can extract features from multi-
ple leaves within a plant. The quantified phenotypic features serve
as crucial indicators for assessing plant growth conditions and
biological functions. These precise phenotypic data enable
researchers to gain a deeper understanding of the canopy photo-
synthetic efficiency of tea plant saplings at specific growth stages
and their responses to environmental changes. Additionally, these
quantified results provide solid data support for the application of
computer vision technology in the field of precision agriculture,
enhancing the potential for targeted interventions and manage-
ment strategies.

Canopy photosynthesis simulation for various
planting patterns

In this study, we utilized the PLMA triangulation algorithm to
construct a plant canopy model, performed canopy light simulation
using the FastTracer ray tracing program, and calculated the canopy
photosynthetic rate. FastTracer has been validated for accuracy in
canopy light simulation studies, showing a strong correlation with
field measurements in various crop systems['438-401 This process
allowed us to accurately capture phenotypic information closely
related to photosynthesis. By employing this method, we success-
fully quantified the PPFD received by the plant canopy, which is a
key indicator for assessing plants' photosynthetic capabilities and
growth conditions. PPFD is a measure of the amount of light, in
terms of photons, that falls on a given surface area per unit of time,
which directly impacts the plant canopy's photosynthesis and
growth. We specifically analyzed the canopy's PPFD values, includ-
ing direct, diffuse, and scattered light, on Day 249 of 2015 in
Songjiang District, Shanghai.

The canopy model of the four tea cultivars ('Longjing 43', 'Tezao
Naibai', 'Yuehuang 1', and 'Zijuan') were constructed with plant
spacings of 10 and 20 cm (Fig. 5¢), and a typical planting configura-
tion (Fig. 5d). The color in the model shows the simulated PPFD
absorbed by the canopy at 12:00 PM. From the model, we can see
clearly the impact of cultivar and plant spacing on the canopy light
distribution. The effect of the meshing model's setting (e.g., PLMA-3,
-4, and -5) on the light distribution was simulated with the model,
and the results show that the canopy's light distribution was not
significantly influenced by the meshing settings.

The effects of leaf meshing parameters on the
calculation of canopy photosynthesis

Figure 6a-d presents the diurnal photosynthetic rate variations of
four tea plant cultivars, namely 'Longjing 43' (LJ, Fig. 6a), 'Tezao
Naibai' (NB, Fig. 6b), 'Yuehuang 1' (YH, Fig. 6¢), and 'Zijuan' (ZJ, Fig.
6d), under two inter-plant spacing conditions (10 vs. 20 cm) using
the PLMA-3, PLMA-4, and PLMA-5 configurations. At 10-cm spacing,
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Fig. 5 (a) Comparison of meshing performance across conventional algorithms and the PLMA for tea plant leaves. Traditional methods: Alpha shape,
Delaunay triangulation, and ball pivoting, which exhibit excessive triangulation and geometric distortions (e.g., cubic artifacts, edge discontinuities). The
PLMA with 3, 4, and 5 keypoint columns. This comparative framework validates the PLMA's adaptability in optimizing the trade-off between geometric
accuracy and computational efficiency for canopy photosynthesis modeling. (b) Visualization of the whole plant's point cloud and the meshing effects
using the PLMA. (c) The simulated PPFD distributions under inter-plant spacings of 10 and 20 cm, using the canopy photosynthesis model. Each section
illustrates the impact of these spacings on four different tea cultivars: 'Longjing 43', 'Tezao Naibai', 'Yuehuang 1', and 'Zijuan' (arranged from top to
bottom). Within each section, columns from left to right correspond to models generated with different PLMA configurations: PLMA-5 (five longitudinal
axes), PLMA-4 (four longitudinal axes), and PLMA-3 (three longitudinal axes). The color gradient in these sections represents the PPFD values (umol
photons m™2s7") absorbed by the canopy at 12:00 PM, demonstrating how spacing influences light absorption. (d) A typical planting configuration,
showing the distribution of PPFD for the same cultivars, from left to right. This section highlights the light distribution patterns specific to each cultivar
under standard planting arrangements, with the color gradient indicating the PPFD values absorbed by the canopy at 12:00 PM.

all configurations displayed higher peak photosynthetic rates,
attributed to the increased leaf area index (LAI) and improved
light interception efficiency in dense planting systems. Conversely,
photosynthetic rates at 20-cm spacing were significantly lower,
likely because of the reduced leaf area density per unit of ground
area, despite the increased light availability for individual plant.
Diurnal canopy photosynthetic rates of four tea plant cultivars
under the PLMA-5 meshing configuration are presented in Fig. 6e,
based on calculations derived from the AQ curve. The cultivar YH
exhibited the highest canopy photosynthetic activity, followed by
NB, with ZJ and LJ demonstrating the lowest rates. It is important
to note that these simulation results are specific to the samples
analyzed in this study. These findings highlight the critical role of
canopy structure in photosynthetic performance and emphasize the
importance of optimizing inter-plant spacing for maximizing agri-
cultural productivity.

Lu et al. Beverage Plant Research 2026, 6: e001

Comparison with traditional canopy
photosynthesis models

Gu et al. compared zero-dimensional, one-dimensional, two-
dimensional (2D), and 3D canopy photosynthesis models, revealing
that only high-resolution 3D models could realistically reflect signifi-
cant differences in light interception and photosynthetic capacity
among different crop varieties while effectively reducing overesti-
mation errorsl8l. On the basis of this foundation, we compared our
3D voxel-based model with the traditional Big-Leaf and Sunlit-
Shaded models to evaluate the modeling accuracy.

The model's performance under dense planting (10-cm
spacing)

Figure 7a-d presents the diurnal variations of the canopy's photo-
synthetic rates for four tea cultivars under dense planting conditions
(10-cm spacing) using the Big-Leaf model, Sunlit-Shaded model, and
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Fig. 6 (a)-(d) Diurnal variation of photosynthetic rate at a spacing of 10 and 20 cm using the PLMA-3 (three longitudinal axes), PLMA-4 (four longitudinal
axes), and PLMA-5 (five longitudinal axes) configurations for four cultivars, namely (a) 'Longjing 43', (b) 'Tezao Naibai', (c) 'Yuehuang 1', and (d) 'Zijuan'.
Different curves represent different PLMA configurations and different spacings. (e) The canopy's photosynthetic rate was lower with larger plant spacing
when using the standard planting method of tea plant, illustrating the population photosynthetic efficiency of different varieties. (f) Correlation between
the canopy's photosynthetic rate and total leaf area of the canopy. The Pearson correlation is 0.99, emphasizing the crucial role of leaf area in determining
photosynthetic efficiency.

our 3D model. Daily integrated photosynthetic rates showed signifi-  fine-scale spatial heterogeneity in light microenvironments and the
cant overestimation by the traditional models, with the Big-Leaf  corresponding photosynthetic acclimation patterns.

model overestimating daily canopy photosynthesis by 8.1%-11.3%

and the Sunlit-Shaded model by 1.0%-2.1% compared with the 3D  Model performance under the standard planting

model. The Big-Leaf model's uniform light assumption ignores the  configuration

exponential light attenuation and self-shading effects that are critical Figure 7e, f shows identical overestimation patterns under diffe-
in dense planting systems. The Sunlit-Shaded model, while distin-  rent planting densities (Big-Leaf, 8.1%-11.3%; Sunlit-Shaded,
guishing between sunlit and shaded fractions, still fails to capture the ~ 1.0%-2.1%), confirming that the limitations of traditional models are
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Fig. 7 Comparison of predicted canopy photosynthesis with the three modeling approaches. (a)-(d) Diurnal variations in the canopy's photosynthetic
rates for four tea cultivars ('Longjing 43', 'Tezao Naibai', 'Yuehuang 1', and 'Zijuan') under dense planting conditions (10-cm spacing) using the Big-Leaf
model (blue line), the Sunlit-Shaded model (orange line), and the 3D voxel-based model (green line). (e), (f) The canopy's photosynthetic performance
under the standard planting configuration for (e) the Big-Leaf model and (f) the Sunlit-Shaded model, corresponding to the 3D model's results shown in
Fig. 6e. All simulations were conducted using the nonrectangular hyperbola model for light response curves.

fundamental rather than density-specific. The superior performance
of the 3D model stems from its voxel-level light interception simula-
tion, explicitly accounting for within-canopy shading patterns,
edge effects, and photosynthetic acclimation gradients from top to
bottom of the canpoy.

These results validate the finding that 3D modeling is essential
for accurate predictions of canopy photosynthesis in structurally
complex systems, where traditional approaches systematically over-
estimate productivity by failing to capture critical light-photosyn-
thesis relationships.

Linear correlation between leaf area and canopy
photosynthesis for tea saplings

Additionally, the simulation results highlighted the impact of
inter-plant spacing on photosynthetic performance. At the 20-cm

Lu et al. Beverage Plant Research 2026, 6: e001

spacing, canopy photosynthetic rates were significantly lower
compared with the 10-cm spacing, despite higher light availability
per plant. This reduction is attributed to decreased leaf area density
per unit of ground area, underscoring the trade-off between indivi-
dual plants' light access and the canopy's collective light intercep-
tion. According to the canopy meshing model using PLMA-5 at a
20-cm inter-plant spacing (Fig. 6f), a significant positive correlation
was observed between the canopy's total daily photosynthetic rate
and total leaf area across the four tea plant cultivars. The regression
analysis revealed a strong linear relationship (Pearson's correlation =
0.99), indicating that increases in canopy leaf area directly enhance
the overall photosynthetic activity.

These findings emphasize the critical role of the canopy's struc-
tural parameters—specifically leaf area and planting density—in
regulating photosynthetic efficiency. The identified linear correlation
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provides a quantitative framework for optimizing planting configu-
rations in precision agriculture, balancing leaf area expansion with
light distribution to maximize crop productivity.

Discussion

Three-dimensional point cloud technolog
provides a high-throughput way for building
canopy photosynthesis models

The canopy, defined as the total aboveground portion of a plant
(including the leaves, stems, and reproductive structures), plays a
central role in photosynthetic carbon assimilation'l. Canopy
photosynthesis models are powerful tools for quantifying canopy
CO, uptake rates (Ac), dissecting the impacts of architectural and
biochemical traits on Ac and evaluating the effects of planting
strategies and environmental conditions on biomass production
and yield38l,

Traditional 3D canopy modeling approaches, which are primarily
based on 2D image processing, are constrained by low throughput
and limited capacity to resolve complex 3D structures, particularly in
dense canopies like tea plant saplings, where self-shading obscures
top-view imaging. Recent advances in plant phenomics have
addressed these challenges through 3D point cloud technologies,
including MVS, light detection and ranging (LiDAR), depth cameras,
and structured light systems[“243l, Among these technologies, Multi-
View Stereo (MVS) offers distinct advantages for reconstructing the
tea plant canopy due to its ability to capture high-resolution RGB
imagery from multiple angles, enabling complete 3D reconstruc-
tion of both the upper and lower canopy layersi*4. This is critical
because the middle and basal leaves contribute significantly to total
canopy photosynthesis, despite receiving reduced irradiancel#5-471,

In this study, the MVS-06 system was employed to generate dense
3D point clouds of tea plant saplings, ensuring comprehensive
capture of the leaf and stem geometries (Fig. 1). The reconstructed
point clouds were then processed using the ISBNet model (Fig. 2a)
for organ segmentation and the PLMA (Fig. 2b) for leaf meshing,
providing a foundation for subsequent ray tracing simulations. By
quantifying the distribution of photosynthetically active radiation
(PAR) within the canopy, this pipeline enabled an accurate estima-
tion of radiation use efficiency (RUE), a key determinant of crop
productivity. The 3D point cloud technologies, especially the MVS,
provide a high-throughput method of building canopy photosyn-
thesis models.

Advantages and challenges of using deep
learning models for plant point cloud
segmentation

After acquiring 3D point cloud data, accurate separation of
individual leaves from stems is critical for modeling canopy photo-
synthesis, as photosynthetic properties vary significantly across
canopy layers, and stems contribute negligible amounts of CO,
assimilation[“8l. Traditional methods, such as skeleton extraction and
region-growing algorithms, and parametric modeling using 3D
templatest?), are heavily parameter-dependent and lack robustness
for complex tea plant architectures.

This study employed the ISBNet model32—originally designed
for large-scale urban point cloud segmentation—to achieve precise
instance segmentation of tea plant organs. ISBNet demonstrates
several key advantages over existing approaches: It performs both
semantic and instance segmentation within a single frameworkI28],
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whereas previous methods combining multiple models for instance
segmentation involve multi-step processing, which increases the
complexityBl,

However, the dense foliage of tea plant presents unique chal-
lenges. Overlapping leaves often result in segmentation confusion,
making it difficult to accurately distinguish between different
leavesls9, Since ISBNet divides point clouds into small voxel blocks
for feature extraction, the voxel-scale parameter significantly
impacts performance. Through experimentation, we determined the
optimal voxel-scale to be 300-350, which effectively handles
complex tea plant structures and overlapping leaves while produc-
ing accurate segmentation results (Table 1). This parameter requires
a careful balance between capturing structural details and maintain-
ing computational efficiency—a trade-off that is particularly critical
across different crops and application scenarios.

Development of a new algorithm for plant leaf
meshing: the PLMA

Meshing algorithms play a critical role in processing 3D point
cloud data for plant canopy modeling. Traditional methods, such as
Delaunay triangulation and ball pivoting, generate high-quality
surface models but have prohibitive computational complexity for
large-scale agricultural datasets combined with ray tracing simula-
tions. The PLMA developed in this study aims to address these
issues. Compared with traditional algorithms, the PLMA was
designed specifically for plant leaves and can accurately capture the
leaves' details and morphology, and particularly excels in handling
complex or overlapping leaves (Figs 2b, ¢, and 5a, b). The PLMA
significantly improves reduced unnecessary triangular meshes,
showing excellent performance for canopy light simulations with
the ray tracing algorithm (Fig. 5¢, d, and Supplementary Table S1). It
provided efficient support for photosynthetic analyses and facilitat-
ing subsequent phenotypic data extraction. Additionally, the algo-
rithm offers high flexibility, allowing for adjustment of the model's
precision according to different experimental needs, while main-
taining strong robustness in cases of missing data.

Potential applications of the tea plant canopy
model

While our FastTracer-based simulations provide valuable insights
into cultivar-specific canopy light distribution patterns, direct field
validation of the calculated photosynthesis rates would strengthen
future applications. The developed tea plant canopy model can
be applied to calculate diurnal radiation use efficiency, analyze
the impacts of planting patterns on photosynthesis, and identify
trait—-performance relationships. Future work should include field
validation studies to confirm the accuracy of photosynthesis predic-
tions under different environmental conditions. This modeling
pipeline holds potential for genetic analysis of key traits in tea
breeding programs.

Conclusions

This study presents a novel framework for 3D canopy photosyn-
thesis modeling in tea plant, integrating advanced technologies
including the MVS-06 3D point cloud acquisition system, the deep
learning-based ISBNet model, the newly developed PLMA leaf
meshing algorithm, and the FastTracer ray tracing algorithm. The
proposed pipeline establishes a complete workflow from image
acquisition and 3D reconstruction to leaf segmentation, triangular
meshing, canopy architecture modeling, light distribution
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simulation, and photosynthetic rate quantification. To the best of
our knowledge, this represents the first comprehensive 3D canopy
photosynthesis model specifically tailored to tea plant, offering a
holistic approach to studying light interception and carbon assimila-
tion in this economically important crop.
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