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Abstract
The tea plant (Camellia sinensis) is economically and nutritionally important because of its bioactive compounds. Photosynthesis directly affects tea's growth

and productivity, requiring a detailed study of its relationship with cultivation outcomes. We developed a novel computational pipeline for constructing

three-dimensional (3D) canopy photosynthesis models of tea plant, leveraging multi-view stereo 3D reconstruction. The ISBNet architecture was optimized

for precise leaf–stem segmentation from point cloud data, achieving 0.897 average precision (AP) for leaves and 0.793 AP for stems. We then created a plant

leaf  morphology-adapted  meshing  algorithm  optimized  for  plant  leaf  morphology,  achieving  an  average  mesh  reduction  of  approximately  96%  while

maintaining  morphological  fidelity  compared  with  conventional  meshing  methods.  We  generated  multiple  tea  plant  canopies  representing  distinct

planting  patterns,  and  used  a  ray  tracing  algorithm  to  simulate  the  spatiotemporal  distribution  of  light  within  these  structures.  Canopy  photosynthesis

simulation  revealed  significant  cultivar-specific  differences,  with  'Yuehuang  1'  exhibiting  the  highest  photosynthetic  activity.  Dense  planting  (10  cm

spacing) significantly enhanced canopy photosynthetic rates compared with wider spacing (20 cm), and a strong linear correlation (r = 0.99) was identified

between total leaf area and daily canopy photosynthetic rate across cultivars. This work establishes a methodological foundation for precision agriculture

optimization in perennial crops, providing quantitative guidance for maximizing tea plantations' productivity through optimal cultivar selection and spatial

configuration.
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Introduction

The  tea  plant  (Camellia  sinensis),  a  highly  important  economic
crop,  is  extensively  cultivated  worldwide.  It  serves  as  the  primary
raw material  for  the  tea  industry  and occupies  a  crucial  position  in
both the international tea market and the domain of human health,
owing  to  its  notable  medicinal  attributes[1].  With  the  continuous
growth  of  consumer  demand  for  high-quality  tea  products,  the
breeding  of  tea  plant  has  become  increasingly  important[2].  In
recent  years,  remarkable  advancements  have  been  made  in  tea
breeding technology. This progress has enabled the selection of tea
varieties  with  desirable  traits  such  as  drought  resistance,  disease
resistance, high yield potential, and excellent quality[2−4].

Photosynthesis is of utmost importance for the growth and devel-
opment of tea plant[5].  Consequently, investigations of the relation-
ship  between  photosynthesis  and  tea  plant's  growth  have  long
been  a  significant  subject  in  the  field  of  tea  science.  Nevertheless,
traditional  methods  for  evaluating  photosynthesis,  hampered  by
technological  and  methodological  constraints,  typically  demand  a
substantial  amount  of  labor  and  time[6].  To  overcome  these  limita-
tions, canopy photosynthesis models have been developed to simu-
late  the  impacts  of  environmental  factors  (such  as  photosynthetic
photon  flux  density  [PPFD])  and  plant  traits  on  photosynthetic
performance, providing an effective research tool[7,8].  While canopy
models  have  been  developed  for  various  crops  like  corn,  rice,

soybeans,  and  sugarcane[9−14],  tea  plant  present  unique  challenges
because  of  their  perennial  woody  nature,  complex  branching
patterns,  and  dense,  multi-layered  canopy  structure  with  overlap-
ping  leaves  that  create  intricate  light  interception  patterns.  Unlike
annual  crops  with  relatively  simple,  regular  architectures,  tea  plant
canopies  require  specialized  modeling  approaches.  A  major  limita-
tion  in  applying  these  models  is  constructing  an  accurate  three-
dimensional  (3D)  canopy  architecture.  Traditional  methods  rely
on  manual  measurement  of  a  plant's  architectural  traits,  such  as
leaf  length,  plant  height,  and  tiller  numbers[15],  which  is  time-
consuming  and  labor-intensive.  Three-dimensional  point  cloud
technology offers a solution, enabling automated plant reconstruc-
tion  and  canopy  modeling[16].  However,  plant  organ  segmentation
remains  challenging,  as  traditional  algorithms  like  skeleton  extrac-
tion and mesh tessellation are highly  dependent on the plant  type
and  parameter  settings.  Although  end-to-end  automated  plant
point cloud segmentation and the development of efficient triangu-
lar  tessellation  algorithms  have  been  used  in  major  crops,  the
method  for  developing  a  canopy  model  of  the  tea  plant  has  not
been developed.

Deep  learning  has  revolutionized  3D  point  cloud  processing
by  overcoming  the  limitations  of  traditional  methods  such  as
clustering[17−19],  threshold  processing[20−22],  and  edge
detection[23−25],  which  struggle  with  complex  plant  structures.
PointNet[26] pioneered direct feature learning from raw point cloud
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data,  while  PointNet++[27] advanced  this  with  hierarchical  feature
extraction, enabling multi-scale learning of both fine-grained details
and global structures[28]. These developments have enabled various
applications:  Attention  and  Structure  Aware  (ASAP)-PointNet  with
Density-Based  Spatial  Clustering  of  Applications  with  Noise
(DBSCAN)  for  cabbage  phenotyping[29],  PartNet-based  methods  for
lettuce  leaf  segmentation[30],  and  PointNet++  with  Hierarchical
Aggregation for Instance Segmentation (HAIS) for corn analysis[31].

Building  upon  PointNet++'s  local  feature  extraction  framework,
ISBNet[32] introduces  instance-aware  segmentation  strategies  and
dynamic  receptive  fields  through  its  novel  network  architecture.
This  advancement  enables  direct  discrimination  of  adjacent  plant
organs with similar semantic labels—a critical capability for complex
tea  plant  structures—without  requiring post-processing.  The archi-
tecture's  enhanced  feature  learning  mechanisms  allow  for  precise
identification and segmentation of distinct botanical entities within
3D point  clouds,  especially  for  addressing the challenges  posed by
densely overlapping plant structures. This model has demonstrated
superior  performance  on  multiple  publicly  available  point  cloud
datasets,  including S3DIS,  STPLS3D,  and ScanNetV2,  thereby show-
ing its accuracy and robustness in complex scenarios. Consequently,
in  this  study,  the  ISBNet  model  is  employed  for  the  instance
segmentation of tea plant point clouds.

After  accurately segmenting the 3D point cloud of  the tea plant,
the  subsequent  crucial  step  entails  the  utilization  of  an  efficient
meshing algorithm to construct a 3D model. This model is employed
for  simulating  the  absorption  and  distribution  of  light  within  the
canopy  and  calculating  canopy  photosynthesis.  Although

traditional  meshing  methods,  such  as  Delaunay  triangulation[33],
alpha  shape[34],  and  ball  pivoting[35],  are  extensively  applied  in  3D
reconstruction  tasks,  they  frequently  encounter  issues  of  low  effi-
ciency  and  overly  complex  models  when  dealing  with  intricate
biological structures. This is primarily because these algorithms have
to process a substantial amount of redundant point cloud data and
have not been optimized for the distinctive morphological features
of  plants.  Consequently,  there  is  an  urgent  necessity  for  a  novel
meshing algorithm specifically tailored to plants.

In  this  study,  we  have  developed  a  novel  pipeline  for  construct-
ing  a  canopy  photosynthesis  model  for  tea  plant.  This  pipeline
encompasses  3D  point  cloud  segmentation  using  deep  learning,  a
new meshing algorithm (the precision leaf mesh algorithm [PLMA])
optimized  for  plant  structures,  a  ray  tracing  algorithm,  and  a  3D
canopy photosynthesis model specifically tailored for tea plant. 

Materials and methods 

Overview of the modeling pipeline
This  study  established  an  integrated  computational  framework

for constructing a 3D canopy photosynthesis model for tea plant by
synergizing multi-view stereo 3D reconstruction, deep learning, and
a  novel  meshing  algorithm  (the  PLMA)  tailored  to  plant  leaf
morphology  (Fig.  1).  Initially,  tea  saplings  were  imaged  using  a
commercially  available  multi-view  stereo  system  (A-CTP,  MilletHill
Biotech, Shanghai, China), and raw 3D point clouds were generated

 

 
Fig.  1  Schematic  overview  of  the  computational  workflow  for  canopy  photosynthesis  analysis  in  tea  plant.  The  workflow  progresses  through  the
following stages. (1) Multi-view stereo imaging generates a high-resolution 3D point cloud of tea saplings. (2) Raw point clouds undergo preprocessing
via  Excess  Green  Index  (ExG)  filtering  and  voxel-based  downsampling  to  remove  noise  and  optimize  the  data  density.  (3)  Instance-aware  semantic
segmentation using the ISBNet architecture isolates individual leaves from stems within the refined point cloud. (4) Application of the plant leaf meshing
algorithm  (PLMA)  constructs  biologically  accurate  triangular  mesh  models  for  segmented  leaves.  (5)  Canopy  architectural  models  are  generated
by  integrating  plant-specific  3D  reconstructions  with  predefined  planting  configurations.  (6)  The  FastTracer  ray  tracing  platform  simulates  the
spatiotemporal distribution of light (photosynthetic photon flux density, PPFD) within the canopy, enabling calculation of the photosynthetic rates and
establishing quantitative assessment metrics for architectural optimization of tea plant.
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through  photogrammetric  reconstruction.  The  acquired  point
clouds  were  preprocessed using Excess  Green Index (ExG)  filtering,
static noise removal,  and voxel-grid downsampling methodologies.
Subsequently,  the  ISBNet  architecture  was  applied  to  achieve
precise  organ-level  segmentation,  isolating  individual  leaves  from
stems within the point cloud data. The segmented leaf point clouds
were then transformed into high-fidelity triangular mesh models via
the PLMA,  enabling the simultaneous extraction of  key phenotypic
parameters. Finally, the FastTracer ray tracing engine was employed
to  simulate  the  spatiotemporal  distribution  of  light  within  the
reconstructed  canopies,  thereby  quantifying  canopy-level  photo-
synthetic efficiency. This framework significantly improves the preci-
sion and scalability of phenotyping and photosynthetic modeling of
tea plant, facilitating advancements in genomic selection, precision
agriculture, and functional-structural plant phenomics. 

Data collection 

Plant material and imaging
Four  tea  plant  varieties  (Camellia  sinensis cv.  'Tezao  Naibai',

'Yuehuang 1',  'Longjing 43',  and 'Zijuan'),  exhibiting distinct pheno-
typic  architectures  and  leaf  morphologies,  were  sampled  for  this
study. Multi-view stereo imaging was conducted using a multi-view
six-stereo  (MVS-06)  system  (MilletHill  Biotech,  Shanghai,  China)
equipped with six Canon EOS 1300D digital single-lens reflex (DSLR)
cameras.  During  image  acquisition,  each  camera  captured  nine
images per acquisition cycle,  followed by incremental  40° rotations
of  the  automated  turntable  to  achieve  full  360°  coverage.  This
protocol yielded 54 high-resolution images per plant. 

Three-dimensional reconstruction and preprocessing
Three-dimensional  point  clouds  were  reconstructed  from  the

acquired  images  using  Agisoft  Metashape  (v1.6.1,  Agisoft  LLC,  St.
Petersburg,  Russia).  The  reconstruction  achieved  high  fidelity  with
average  point  densities  of  20,000–300,000  points  per  plant  and
millimeter spatial resolution, effectively capturing fine-scale morpho-
logical features of the leaves and branching architecture. The recon-
structed  point  clouds  preserved  detailed  leaf  surface  textures,
including the venation patterns and serrated leaf edges characteris-
tic  of  tea  plant.  Complex  structural  elements  such  as  overlapping
leaves, intricate branch bifurcations, and emerging buds were accu-
rately  reproduced  with  millimeter-level  precision  (Supplementary
Fig.  S1).  Each point cloud dataset included XYZ spatial  coordinates,
red–green–blue  (RGB)  spectral  values,  and  surface  normal  vectors.
Raw  point  cloud  data  underwent  preprocessing  in  the  CERS  Suite
(MilletHill  Biotech),  involving  Excess  Green  Index  (ExG)  filtering  to
isolate  plant  structures  from  background  artifacts,  static  noise
removal to eliminate spurious points, and voxel-grid downsampling
(5-mm  resolution)  to  optimize  the  computational  efficiency  while
preserving  morphological  fidelity.  The  point  clouds'  accuracy  was
validated through manual inspection of the key morphological land-
marks  and  a  comparison  with  reference  measurements,  ensuring
the precision of the spatial coordinates within a tolerance of ± 2 mm. 

Dataset curation and annotation
A  manually  annotated  training  dataset  was  constructed  using

CloudCompare software (v2.13) to enable supervised deep learning.
Each  point  cloud  was  assigned  to  two  semantic  classes  (stem  and
leaf)  with  instance-level  labels  distinguishing individual  leaves.  The
final  dataset  comprised  160  tea  plant  specimens,  representing
diverse  architectural  phenotypes,  to  train  the  ISBNet  model  for
instance segmentation and validate the PLMA. 

The ISBNet model for instance segmentation of
tea plant organs

Given  the  robust  performance  and  adaptive  capabilities  of  the
ISBNet model (Fig. 2a) in processing complex 3D datasets, this study
investigated  its  applicability  to  botanical  point  cloud  analysis
through  systematic  hyperparameter  optimization  (e.g.,  voxel  size).
The  model's  architecture  comprises  four  core  components,  as
described below. 

Three-dimensional backbone network
P ∈ RN×6

F ∈ RN×D
Input  point  cloud  data  are  processed  by  the  backbone

network  to  extract  per-point  features ,  where  D  denotes
the  features'  dimensionality.  This  module  hierarchically  encodes
global  contextual  and  local  geometric  information,  ensuring  multi-
scale  spatial  feature  representation,  which  is  critical  for  intricate
plant morphologies. 

Point-wise predictor

Fbox ∈ RN×6

Fmask ∈ RN×H

Features  from  the  backbone  network  are  processed  through  a
point-wise  predictor  to  generate  semantic  predictions,  including
the  axis-aligned  bounding  boxes  and  mask  features

. These outputs feed into a box-aware dynamic convo-
lution module for instance refinement. 

Sampling-based instance-wise encoder

F ∈ RK×D

This component employs instance-aware farthest point sampling
(IA-FPS)  with  local  feature  aggregation  to  transform  point-wise
features into instance-level representations, . This strategy
enhances feature discriminability while maintaining coverage across
heterogeneous instance scales. 

Box-aware dynamic convolution
By integrating the 3D bounding box priors with dynamic convolu-

tion  operators,  this  module  modulates  prediction  discrepancies
between  candidate  points  to  produce  instance-specific  binary
masks, achieving sub-organ segmentation precision. 

Data loader development
To  accommodate  the  structural  characteristics  of  plant  point

clouds, we customized the ISBNet framework by developing a dedi-
cated data loader. This tool synchronizes RGB spectral data with XYZ
spatial  coordinates,  ensuring  dimensional  consistency  and  the
integrity of the input for tea plant datasets. 

Parameter optimization
We conducted systematic hyperparameter optimization, focusing

on the voxel scale (voxel_size = 1/voxel_scale). Empirical trials across
scaling factors (150–400, in increments of 50) revealed a precision–
efficiency trade-off: Finer voxel scales (150–250) preserved morpho-
logical details at higher computational costs, whereas coarser scales
(300–400) improved throughput but reduced edge fidelity. We iden-
tified  an  optimal  parameter  setting  that  performs  best  in  terms  of
balancing segmentation accuracy and computational efficiency. 

Architectural enhancements
Beyond  hyperparameter  tuning,  we  modified  the  data  ingestion

pipeline and architectural  framework to better  align with the plant
point cloud's properties. Specifically, we adjusted the spatial config-
uration  parameters  (e.g.,  spatial_shape)  and  optimized  the  spatial
cropping  strategy  by  reducing  cropping  ranges  to  plant-appropri-
ate dimensions, addressing the smaller volumes that are characteris-
tic  of  individual  plant  specimens.  Point  density  thresholding  was
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implemented to handle uneven density distributions, ensuring that
cropped  regions  maintained  sufficient  point  density  for  effective
training.  These  preprocessing  modifications  improved  the  model's
ability to capture complex plant structural patterns while maintain-
ing computational  efficiency.  Batch size  was  calibrated to  optimize
GPU memory allocation without compromising training stability. 

Model training
A  curated  dataset  of  160  tea  plant  saplings  was  partitioned  into

120 training and 30 validation samples.  To mitigate overfitting and
enhance generalizability,  the training samples were augmented via
three  biologically  constrained  strategies:  (1)  Leaf  rotations  with
stem-anchored  transformations  centered  at  leaf–stem  junction
points,  applying  lateral  rotations  within  a  ±  30°  range  and  vertical
rotations  within  a  ±  10°  range;  (2)  global  spatial  random  transla-
tion  applied  to  the  entire  plant  point  cloud;  and  (3)  point  cloud
density  normalization  by  standardizing  samples  to  a  range  of
20,000–100,000  points  through  adaptive  sampling.  These  biologi-
cally constrained augmentation parameters ensured morphological
realism while providing sufficient training variation, generating four
transformations per sample.

Training was executed on a cloud-based computational platform
featuring  an  AMD  EPYC  7551P  CPU  (8  cores),  24  GB  RAM,  and  an

NVIDIA  RTX  3090  GPU  (24  GB  VRAM),  hosted  on  a  Linux  Ubuntu
20.04  environment.  The  model  underwent  300  training  epochs
with  an  initial  learning  rate  of  0.001.  A  cosine  annealing  scheduler
dynamically  adjusted  the  learning  rate,  facilitating  accelerated
convergence while minimizing loss oscillations. 

Triangular meshing of leaves
To  construct  canopy  photosynthesis  models,  point  cloud  data

must  be  converted  into  triangular  mesh  representations  capable
of  simulating  light  absorption  dynamics  and  calculating  the  leaf
surface  area.  Although  conventional  algorithms  (e.g.,  alpha  shape,
Delaunay  triangulation,  and  ball  pivoting)  have  been  widely
adopted for 3D reconstruction, they exhibit pronounced limitations
when  processing  botanical  point  clouds.  First,  they  are  subject  to
noise  artifacts  and  nonuniform  distributions.  Noise  and  irregular
point spacing generate extraneous triangular facets, uneven edges,
and  topological  discontinuities  in  leaf  meshes.  Though  parameter
tuning  (e.g.,  the  alpha  radius)  can  mitigate  these  issues,  optimal
configurations  are  species-dependent.  Second,  they  are  prone  to
geometric  distortions.  Sparse  or  unevenly  sampled  point  clouds
often produce nonplanar geometric approximations (e.g., cubic arti-
facts),  introducing  significant  errors  in  leaf  area  estimation  and
subsequent  ray  tracing  simulations.  Lastly,  they  (3)  Computational

 

a

b

c

 
Fig. 2  Workflow of high-precision 3D instance segmentation and phenotypic trait extraction for tea plant. (a) Architectural workflow of the ISBNet model
for  high-precision 3D instance segmentation of  tea plant point  clouds.  (b)  Workflow of  the PLMA for  constructing 3D leaf  models  from tea plant point
clouds. (c) Illustration of phenotypic parameter extraction from plant leaf models processed by the PLMA.
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Overhead.  Excessive  triangle  counts  from  traditional  meshing
impose prohibitive computational costs for large-scale canopy light
simulations.

To address these limitations, we introduce the precision leaf mesh
algorithm (PLMA), a novel triangular meshing framework tailored to
plant leaf point cloud morphologies. The PLMA is designed to elimi-
nate redundant vertices while preserving maximal geometric fidelity
through three sequential stages (Fig. 2b) as follows. 

Geometric alignment
Leaf  point  clouds  undergo  rotational  transformations  using

Rodrigues rotation to align the principal leaf vein (constructed from
the  basal  point Pbase closest  to  the  stem  and  the  farthest  tip  point
Ptip) with the z-axis. The leaf vector is first normalized as:

−−−→vlea f =
ptip− pbase∣∣∣∣∣∣ptip− pbase

∣∣∣∣∣∣ , −→Z = [0,0,1] (1)

The rotation axis and angle are calculated through cross-product
and dot-product operations:

−→u = −−−→vlea f ×
−→
Z , θ = arccos

(
−−−→vlea f ·

−→
Z
)

(2)

The  Rodrigues  rotation  matrix  R  is  then  constructed  to  align  the
leaf vector with the z-axis direction:

R = I+ sinθ
[−→u ]

×
+ (1− cosθ)

[−→u ]2

×
(3)

where, [·]x denotes the skew-symmetric matrix operator, standardizing
the  spatial  orientation  and  eliminating  any  modeling  deviations
caused by natural leaf curvature. 

Edge and vein detection
The  aligned  leaf  is  uniformly  divided  into N segments  (N =  10)

along the z-axis.  For  each segment k,  local  point  sets  are  extracted
within tolerance zones defined as:

Qk = {p ∈ P|Zk −ε ⩽ p.z ⩽ Zk +ε}, ε = 0.1×Lsegment (4)

Within  each Qk, k keypoints  are  systematically  identified  corre-
sponding to k longitudinal axes (columns) across the leaf width. The
selection of  the longitudinal  axis  number  (three to  five  columns)  is
based  on  three  criteria.  (1)  Leaf  morphological  complexity:  Simple
elongated  leaves  (aspect  ratio:  >  3:1)  utilize  three  columns  for
computational efficiency, while complex broad leaves (aspect ratio:
<  2:1)  require  five  columns  for  adequate  surface  representation.
(2)  Point  cloud  density:  Sparse  datasets  (<  1,000  points/cm2)  are
processed  with  three  columns  to  prevent  overparameterization,
while  dense  datasets  (>  5,000  points/cm2)  use  five  columns  for
enhanced  geometric  fidelity.  (3)  Computational  efficiency,  which
balancing  triangle  generation  rates  with  processing  constraints  for
large-scale canopy simulations. 

Topologically structured meshing
Triangle construction follows a systematic connectivity algorithm

ensuring  anatomical  fidelity.  The  connectivity  pattern  generates
triangular facets between adjacent segments as follows:

Ttotal = 8+8× (N −2) = 8N −8 (5)
where,  the  basal  and  tip  segments  each  contribute  four  triangular
facets, and each intermediate segment pair generates eight facets. All
triangular orientations follow the right-hand rule to ensure consistent
normal vectors for accurate ray tracing computations. 

Acquisition of phenotypic leaf traits
Leveraging  the  PLMA  framework  developed  in  this  study,  we

quantitatively  extract  critical  morphometric  traits  from  leaf  point

clouds.  The algorithm performs segment-wise analysis of leaf point
clouds,  precisely  identifying  the  base,  tip,  and  vein  node  coordi-
nates  required  to  derive  leaf  length,  width,  and  projected  surface
area. 

Leaf length
Leaf  length  is  computed  as  the  cumulative  Euclidean  distance

between sequential vein nodes along the principal axis (Fig. 2c). The
calculation is formalized as:

L =
∑n−1

i=1

√
(xi+1− xi)2+ (yi+1− yi)2+ (zi+1− zi)2 (6)

where, (xi, yi, zi) denotes the 3D coordinates of the i-th vein node, and
n represents the total number of nodes. 

Leaf width
The leaf width is defined as the maximum lateral distance within

each  segment  corresponding  to  a  specific Z-value  of  the  leaf.  As
illustrated by the red lines in Fig. 2c, the width W of the leaf at each
segment associated with a particular Z-value is calculated using the
following  formula.  This  formula  incorporates  width  measurements
from  all  segments  corresponding  to  the  different Z-values  of  the
leaf.

W = maxz

(
maxpi,p j∈S z

√
(x j− xi)2+ (y j− yi)2

)
(7)

 

Leaf area
The  estimation  of  leaf  area  is  performed  using  the  triangular

meshing  model  of  the  leaf.  As  illustrated  in Fig.  2c,  the  model
comprises  triangles  generated  by  connecting  key  points  across
segments.  The  area  of  each  triangle  is  computed  using  the  cross-
product method, which accurately quantifies the total area enclosed
by the leaf.

ak =
1
2

∥∥∥∥∥∥(
−→
p1

k −
−→
p0

k)×
(−→
p2

k −
−→
p0

k

)∥∥∥∥∥∥ (8)

A =
∑m

k=1
ak (9)

This  algorithm  is  of  significant  importance  for  plant  phenotypic
analysis and presents a novel, nondestructive, and precise approach
to  measuring  leaf  morphology.  By  directly  extracting  key  points
from the point cloud data, this method mitigates potential damage
to  plant  specimens  and  provides  accurate  data  support  for  subse-
quent genetic and environmental adaptability studies. 

Construction of the canopy photosynthesis
model

In  this  study,  canopy  models  were  developed  for  four  tea  plant
sapling  varieties:  'Yuehuang  1',  'Longjing  43',  'Tezao  Naibai',  and
'Zijuan' (Supplementary Fig. S2). Three planting configurations were
simulated:  (1)  A  compact  layout  with  20-cm plant  spacing within  a
60  cm  ×  80  cm  plot  configuration  (arranged  in  four  rows  with  five
saplings per row) (Fig.  3a);  (2)  a  denser compact layout with 10-cm
plant spacing within a 30 cm × 40 cm plot configuration (four rows
with five saplings per row) (Fig. 3a); and (3) a typical planting pattern
characterized by 150-cm row spacing across four rows, with a spacing of
30 cm between individual saplings in each paired row (Fig. 3b).

FastTracer  software[36] was  utilized  to  conduct  ray  tracing  on
these 3D canopy models,  simulating light distribution under differ-
ent  configurations.  Canopy  modeling  facilitates  the  understanding
of  how  planting  density  and  arrangement  influence  light  intercep-
tion  within  the  canopy,  thereby  impacting  photosynthetic
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efficiency.  This  analysis  is  critical  for  optimizing planting configura-
tions to maximize photosynthetic efficiency and plant growth. 

Canopy photosynthesis
Based  on  the  photosynthetic  photon  flux  density  (PPFD)

values derived from the canopy model, the classical nonrectangular
hyperbola leaf photosynthesis model[37] was utilized to compute the
photosynthetic  rate for  each leaf  mesh.  The mathematical  formula-
tion of the model is as follows:

A =
Φ∗ I+Pmax−

√
(Φ∗ I+Pmax)2−4∗ θ ∗Φ∗ I ∗Pmax

2∗ θ −Rd (10)

In  the  model, A denotes  the  leaf  photosynthetic  rate  (μmol
CO2 m−2·s−1); I is  the  incident  PPFD  (μmol  CO2 m−2·s−1); Pmax is  the
maximum  leaf  photosynthetic  assimilation  rate  under  light  satura-
tion  (μmol  CO2 m−2·s−1); Φ is  the  quantum  yield  of  assimilation
(μmol  CO2 μmol  photons−1);  and θ is  the  convexity  of  the  light
response  curve  (dimensionless),  describing  the  steepness  of  the
transition in the curve; and Rd represents the rate of dark respiration
(μmol CO2 m−2·s−1).

All parameters were determined from mature leaves during repre-
sentative growing season conditions (clear sky, 33–35 °C; May 2016)
using  an  LI-6400XT  system  (LI-COR  Biosciences,  USA).  The  fitted
curve  (Supplementary  Fig.  S3)  illustrates  the  transition  from  light-
limited to light-saturated photosynthesis.

Fitting  the  model  yielded  the  following  parameters:  The  quan-
tum  yield  of  assimilation  (Φ)  was  determined  to  be  0.08696  mol
CO2 mol photons–1),  the maximum leaf photosynthetic assimilation

rate  under  light  saturation  (Pmax)  was  11.12 μmol  CO2 m−2·s−1,  the
convexity of the light-response curve (θ)  was 0.03926, and the dark
respiration rate (Rd) was 3.06544 μmol CO2 m−2·s−1. The coefficient of
determination  (R2)  for  the  regression  was  0.9991,  and  it  had  a  root
mean  square  error  (RMSE)  of  0.1323.  These  metrics  demonstrate
excellent  agreement  between  the  model's  predictions  and  the
experimental  data,  validating the model's  reliability  for  subsequent
analysis and applications.
 

Statistical analysis
In  this  study,  statistical  analysis  was  conducted  using  Python

scripts,  with  data  processing  performed  using  commonly  used
libraries such as NumPy, Pandas, and Scikit-learn. The performance of
the  ISBNet  model  was  evaluated  using  multiple  metrics,  including
average precision (AP), AP@0.25, and AP@0.50, to assess the segmen-
tation effectiveness of the model on the point cloud data of tea plant.
Additionally,  precision  (AR)  and  recall  (RC-25,  RC-50)  metrics  were
used to comprehensively evaluate the model's performance.

After  performing  light  ray  tracing  on  the  canopy  photosynthesis
model,  we conducted linear regression analysis to explore the rela-
tionship between total canopy leaf area and PPFD. Pearson's correla-
tion  coefficient  was  used  to  evaluate  the  correlation  between  leaf
area and light intensity. All statistical analyses were carried out using
Python,  with  the  results  of  the  regression  and  correlation  analysis
providing  a  clear  quantitative  relationship  between  total  canopy
leaf area and PPFD.
 

 

a

b

 
Fig. 3  Multi-scale modeling of the canopy photosynthesis characteristics of tea plant. (a) Schematic representations of canopy photosynthesis models for
four tea plant cultivars ('Yuehuang 1', 'Longjing 43', 'Tezao Naibai', and 'Zijuan') are presented for two planting configurations: 10-cm inter-plant spacing
(first row, left to right) and 20-cm inter-plant spacing (second row). Each row displays the 3D models in sequential columns corresponding to the listed
cultivars.  (b)  Canopy  photosynthesis  models  for  the  four  tea  plant  cultivars  under  a  typical  planting  configuration,  depicting  the  spatial  arrangement.
Each paired row configuration features a wide inter-row spacing of 150 cm, with an inter-plant spacing of 30 cm between adjacent saplings within the
paired rows.
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Results 

Performance of the ISBNet model for organ
segmentation in tea plant

To  evaluate  the  predictive  capabilities  of  the  ISBNet  model,  a
training  dataset  including  3D  point  clouds  from  120  tea  plant
saplings and a  validation dataset  of  point  clouds from 30 indepen-
dent  saplings  were  utilized.  Following  training,  the  model  was
applied to unlabeled plant point cloud data for instance segmenta-
tion, enabling the identification of distinct plant organs (stems and
leaves).  Quantitative  analysis  revealed  that  the  ISBNet  model
achieved  accurate  leaf  segmentation  when  compared  with  manu-
ally  annotated  ground-truth  point  clouds  (Fig.  4a).  The  voxel  size
was  configured  to  150  in  the  ISBNet  model.  Leaf-specific  precision
and  recall  metrics  were  calculated  for  individual  plant,  with  both
metrics  exceeding  0.7  for  all  specimens  and  reaching  maxima  of
0.99. Small  leaves and branches were identified as potential  factors
influencing  segmentation  performance.  These  results  validate  the
effectiveness  of  the  ISBNet  model  in  plant  point  cloud  segmenta-
tion  tasks,  providing  a  robust  foundation  for  subsequent  pheno-
typic feature extraction and plant physiological research.

The  valuation  metrics  used  in  this  study  to  quantify  the  model's
segmentation  performance  included  the  AP  at  various  intersection
over  union  (IoU)  thresholds.  Specifically,  AP_50%  and  AP_25%
denote  the  average  precision  calculated  at  IoU  thresholds  of  50%
and  25%,  respectively.  Additionally,  AP  represents  the  mean  preci-
sion  computed  across  IoU  thresholds  ranging  from  50%  to  95%  in
5% increments (Table 1).  These metrics assess the model's  capacity
to detect instances with high spatial  overlap. Furthermore, average
recall (AR) and the area under the recall curve (RCA) were calculated
at different IoU thresholds. AR_50% and AR_25% specifically refer to
the  area  under  the  recall  curve  at  IoU  thresholds  of  50%  and  25%,
respectively (Table 1).  These metrics  evaluate the model's  ability  to
accurately  detect  instances  and  its  robustness  to  instances  with
varying degrees of overlap.

This  study  investigated  the  influence  of  voxel-scale  parameter
adjustments on the performance of the ISBNet model in point cloud
instance segmentation in tea plant. Precision and recall metrics were
computed across voxel scales ranging from 150 to 400, with an opti-
mal  voxel  scale  of  350 identified (Table  1 and Fig.  4b, c).  Given the
inverse  relationship  between  voxel  scale  and  voxel  size  (i.e.,  voxel
size = 1/voxel scale), larger voxel-scale values correspond to smaller
voxel sizes, which are critical for capturing fine structural details. The

 

a

b c

 
Fig.  4  Instance segmentation and performance evaluation of  tea  plant  point  clouds  using ISBNet.  (a)  Schematic  representation of  the  3D point  cloud
segmentation  workflow  for  tea  plant  saplings.  Raw  3D  point  cloud  data  were  acquired  via  multi-view  stereo  imaging  (XYZ  +  RGB  data).  Ground-truth
annotation:  Expert-annotated  labels  were  generated  using  CloudCompare  v2.13,  distinguishing  stems  (blue)  and  individual  leaves  (distinct  colors)  for
supervised  training.  ISBNet  Segmentation  Output:  Instance-aware  semantic  segmentation  results,  demonstrating  precise  organ-level  separation  with
minimal boundary artifacts. This comparative visualization validates the model's capability to replicate the accuracy of manual annotation while enabling
automated  high-throughput  phenotyping.  Accuracy  of  (b)  leaf  segmentation  across  different  voxel  scale  settings  and  (c)  stem  segmentation  under
varying voxel scales.
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modeling results show that increasing the voxel scale (and concomi-
tantly  decreasing  the  voxel  size)  enhances  precision  and  recall  in
leaf  instance  segmentation.  This  improvement  is  attributed  to  the
ability  of  smaller  voxels  to  accurately  resolve  leaf  edges  and
morphological  details,  particularly  in  cases  involving  complex  leaf
shapes  or  dense  leaf  arrangements.  For  stem  segmentation  tasks,
higher  voxel  scales  also  yield  superior  results,  indicating  that
reduced  voxel  sizes  are  equally  important  for  preserving  stems'
geometric  continuity  and  structural  integrity.  Regarding  training
stability,  when  voxel  scales  of  350  and  400  were  employed,  the
model  achieved  peak  accuracy  within  50–150  training  epochs  but
experienced  abrupt  performance  degradation  thereafter,  with  all
metrics dropping to zero. This phenomenon is hypothesized to arise
from overfitting to noise and fine-grained details in the training data
at  high  voxel  resolutions,  resulting  in  compromised  generalization
capability.  Additionally,  smaller  voxel  sizes  may  exacerbate  issues
related  to  gradient  instability  (e.g.,  vanishing  or  exploding  gradi-
ents)  during  training,  which  could  be  mitigated  through  optimizer
parameter tuning or the implementation of gradient clipping tech-
niques. 

Performance of the PLMA
The  meshing  algorithm  (PLMA)  significantly  enhances  the  effi-

ciency  of  extracting  plants'  phenotypic  information  by  simplifying
complex  3D  point  clouds  while  preserving  the  critical  morphologi-
cal features. This capability is vital for downstream applications such
as ray tracing, photosynthesis efficiency evaluation, and other plant
phenomics studies.

A  visual  comparison  of  the  leaf  meshing  process  is  presented  in
Fig.  5a,  demonstrating  the  transformation  from  the  original  point
cloud  to  the  meshed  model  using  the  PLMA.  The  "Real-leaf"  panel
displays  the  raw  3D  point  cloud  data,  while  "Alpha-shape",  "Delau-
nay-2.5D",  and  "Ball-pivoting"  illustrate  the  results  from  traditional
meshing  methods.  In  contrast,  "PLMA-3",  "PLMA-4",  and  "PLMA-5"
represent the meshing outcomes generated by the PLMA with vary-
ing numbers of longitudinal axes (three, four, and five, respectively).
As the number of longitudinal axes increases, the mesh model main-
tains  the  overall  leaf  morphology  while  improving  the  precision  of
geometric detail, offering flexibility for refined leaf shape modeling.
To  quantitatively  evaluate  computational  efficiency,  we  compared
processing times between the PLMA and traditional meshing meth-
ods using identical leaf point cloud data (See the detailed results in
Supplementary  Table  S1).  The  PLMA  achieved  substantial  reduc-

tions  in  mesh  complexity  with  only  84–112  triangular  facets  com-
pared with 1,337–19,495 facets for traditional methods, while main-
taining reasonable processing times and morphological  fidelity.  An
example of complete tea plant meshing is shown in Fig. 5b. 

Plant architectural traits extracted by the model
This  section  highlights  the  results  of  the  quantitative  analysis  of

the  phenotypic  features  of  tea  plant  sapling  leaves  obtained
through the application of  meshed models.  Detailed measurement
data  are  summarized  in Supplementary  Table  S2,  including  key
metrics  such  as  leaf  area,  leaf  length,  and  leaf  width.  These  results
are derived from precise calculations of the corresponding geomet-
ric  parameters within the meshed models.  The data in Supplemen-
tary Table S2 show that the model  can extract  features from multi-
ple  leaves  within  a  plant.  The quantified phenotypic  features  serve
as  crucial  indicators  for  assessing  plant  growth  conditions  and
biological  functions.  These  precise  phenotypic  data  enable
researchers  to  gain  a  deeper  understanding  of  the  canopy  photo-
synthetic  efficiency  of  tea  plant  saplings  at  specific  growth  stages
and  their  responses  to  environmental  changes.  Additionally,  these
quantified  results  provide  solid  data  support  for  the  application  of
computer  vision  technology  in  the  field  of  precision  agriculture,
enhancing  the  potential  for  targeted  interventions  and  manage-
ment strategies. 

Canopy photosynthesis simulation for various
planting patterns

In  this  study,  we  utilized  the  PLMA  triangulation  algorithm  to
construct a plant canopy model, performed canopy light simulation
using the FastTracer ray tracing program, and calculated the canopy
photosynthetic  rate.  FastTracer  has  been  validated  for  accuracy  in
canopy  light  simulation  studies,  showing  a  strong  correlation  with
field  measurements  in  various  crop  systems[14,38−40].  This  process
allowed  us  to  accurately  capture  phenotypic  information  closely
related  to  photosynthesis.  By  employing  this  method,  we  success-
fully  quantified  the  PPFD  received  by  the  plant  canopy,  which  is  a
key  indicator  for  assessing  plants'  photosynthetic  capabilities  and
growth  conditions.  PPFD  is  a  measure  of  the  amount  of  light,  in
terms of photons, that falls on a given surface area per unit of time,
which  directly  impacts  the  plant  canopy's  photosynthesis  and
growth.  We  specifically  analyzed  the  canopy's  PPFD  values,  includ-
ing  direct,  diffuse,  and  scattered  light,  on  Day  249  of  2015  in
Songjiang District, Shanghai.

The canopy model  of  the  four  tea  cultivars  ('Longjing 43',  'Tezao
Naibai',  'Yuehuang  1',  and  'Zijuan')  were  constructed  with  plant
spacings of 10 and 20 cm (Fig. 5c), and a typical planting configura-
tion  (Fig.  5d).  The  color  in  the  model  shows  the  simulated  PPFD
absorbed by  the  canopy at  12:00  PM.  From the  model,  we can see
clearly the impact of cultivar and plant spacing on the canopy light
distribution. The effect of the meshing model's setting (e.g., PLMA-3,
-4,  and -5)  on  the  light  distribution  was  simulated  with  the  model,
and  the  results  show  that  the  canopy's  light  distribution  was  not
significantly influenced by the meshing settings. 

The effects of leaf meshing parameters on the
calculation of canopy photosynthesis

Figure 6a–d presents the diurnal photosynthetic rate variations of
four  tea  plant  cultivars,  namely  'Longjing  43'  (LJ, Fig.  6a),  'Tezao
Naibai'  (NB, Fig.  6b),  'Yuehuang 1'  (YH, Fig.  6c),  and 'Zijuan'  (ZJ, Fig.
6d),  under  two  inter-plant  spacing  conditions  (10  vs.  20  cm)  using
the PLMA-3, PLMA-4, and PLMA-5 configurations. At 10-cm spacing,

 

Table  1.  Segmentation  performance  of  the  ISBNet  model  trained  under
different voxel size configurations for plant organ detection.

Voxel
scale

Plant
organ AP AP_50% AP_25% AR RC_50% RC_25%

150 Leaf 0.815 0.918 0.942 0.862 0.930 0.954
Stem 0.618 0.968 0.968 0.713 1.000 1.000

200 Leaf 0.854 0.944 0.967 0.897 0.955 0.975
Stem 0.657 0.903 0.903 0.805 1.000 1.000

250 Leaf 0.884 0.964 0.975 0.924 0.973 0.983
Stem 0.732 0.903 0.903 0.862 1.000 1.000

300 Leaf 0.889 0.969 0.983 0.932 0.977 0.992
Stem 0.793 0.953 0.953 0.855 1.000 1.000

350 Leaf 0.897 0.970 0.983 0.944 0.978 0.990
Stem 0.789 0.926 0.926 0.893 1.000 1.000

400 Leaf 0.755 0.898 0.935 0.866 0.941 0.976
Stem 0.711 0.953 0.953 0.789 1.000 1.000

Evaluation  metrics  include  average  precision  (AP)  across  all  intersection  over
union  (IoU)  thresholds,  AP  at  50%  and  25%  IoU  thresholds  (AP_50%,  AP_25%),
average  recall  (AR),  and  recall  curve  area  (RCA)  at  50%  and  25%  IoU  thresholds
(RC_50%, RC_25%).
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all  configurations  displayed  higher  peak  photosynthetic  rates,
attributed  to  the  increased  leaf  area  index  (LAI)  and  improved
light  interception  efficiency  in  dense  planting  systems.  Conversely,
photosynthetic  rates  at  20-cm  spacing  were  significantly  lower,
likely  because  of  the  reduced  leaf  area  density  per  unit  of  ground
area,  despite  the  increased  light  availability  for  individual  plant.
Diurnal  canopy  photosynthetic  rates  of  four  tea  plant  cultivars
under  the  PLMA-5  meshing  configuration  are  presented  in Fig.  6e,
based  on  calculations  derived  from  the  AQ  curve.  The  cultivar  YH
exhibited  the  highest  canopy  photosynthetic  activity,  followed  by
NB,  with  ZJ  and  LJ  demonstrating  the  lowest  rates.  It  is  important
to  note  that  these  simulation  results  are  specific  to  the  samples
analyzed  in  this  study.  These  findings  highlight  the  critical  role  of
canopy structure in photosynthetic performance and emphasize the
importance  of  optimizing  inter-plant  spacing  for  maximizing  agri-
cultural productivity. 

Comparison with traditional canopy
photosynthesis models

Gu  et  al.  compared  zero-dimensional,  one-dimensional,  two-
dimensional (2D), and 3D canopy photosynthesis models, revealing
that only high-resolution 3D models could realistically reflect signifi-
cant  differences  in  light  interception  and  photosynthetic  capacity
among  different  crop  varieties  while  effectively  reducing  overesti-
mation  errors[8].  On  the  basis  of  this  foundation,  we  compared  our
3D  voxel-based  model  with  the  traditional  Big-Leaf  and  Sunlit-
Shaded models to evaluate the modeling accuracy. 

The model's performance under dense planting (10-cm
spacing)

Figure 7a–d presents the diurnal variations of the canopy's photo-
synthetic rates for four tea cultivars under dense planting conditions
(10-cm spacing) using the Big-Leaf model,  Sunlit-Shaded model,  and
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Fig.  5  (a)  Comparison  of  meshing  performance  across  conventional  algorithms  and  the  PLMA  for  tea  plant  leaves.  Traditional  methods:  Alpha  shape,
Delaunay triangulation, and ball pivoting, which exhibit excessive triangulation and geometric distortions (e.g., cubic artifacts, edge discontinuities). The
PLMA with 3, 4,  and 5 keypoint columns. This comparative framework validates the PLMA's adaptability in optimizing the trade-off between geometric
accuracy and computational  efficiency for  canopy photosynthesis  modeling.  (b)  Visualization of  the whole plant's  point cloud and the meshing effects
using the PLMA. (c) The simulated PPFD distributions under inter-plant spacings of 10 and 20 cm, using the canopy photosynthesis model. Each section
illustrates  the  impact  of  these  spacings  on  four  different  tea  cultivars:  'Longjing  43',  'Tezao  Naibai',  'Yuehuang  1',  and  'Zijuan'  (arranged  from  top  to
bottom). Within each section, columns from left to right correspond to models generated with different PLMA configurations: PLMA-5 (five longitudinal
axes),  PLMA-4  (four  longitudinal  axes),  and  PLMA-3  (three  longitudinal  axes).  The  color  gradient  in  these  sections  represents  the  PPFD  values  (μmol
photons  m−2·s−1)  absorbed  by  the  canopy  at  12:00  PM,  demonstrating  how  spacing  influences  light  absorption.  (d)  A  typical  planting  configuration,
showing the distribution of PPFD for the same cultivars, from left to right. This section highlights the light distribution patterns specific to each cultivar
under standard planting arrangements, with the color gradient indicating the PPFD values absorbed by the canopy at 12:00 PM.
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our  3D  model.  Daily  integrated  photosynthetic  rates  showed  signifi-
cant  overestimation  by  the  traditional  models,  with  the  Big-Leaf
model  overestimating  daily  canopy  photosynthesis  by  8.1%–11.3%
and  the  Sunlit-Shaded  model  by  1.0%–2.1%  compared  with  the  3D
model.  The  Big-Leaf  model's  uniform  light  assumption  ignores  the
exponential light attenuation and self-shading effects that are critical
in  dense  planting  systems.  The  Sunlit-Shaded  model,  while  distin-
guishing between sunlit and shaded fractions, still fails to capture the

fine-scale  spatial  heterogeneity  in  light  microenvironments  and  the
corresponding photosynthetic acclimation patterns. 

Model performance under the standard planting
configuration

Figure  7e, f shows  identical  overestimation  patterns  under  diffe-
rent  planting  densities  (Big-Leaf,  8.1%–11.3%;  Sunlit-Shaded,
1.0%–2.1%), confirming that the limitations of traditional models are
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Fig. 6  (a)–(d) Diurnal variation of photosynthetic rate at a spacing of 10 and 20 cm using the PLMA-3 (three longitudinal axes), PLMA-4 (four longitudinal
axes),  and PLMA-5 (five longitudinal axes) configurations for four cultivars,  namely (a) 'Longjing 43',  (b) 'Tezao Naibai',  (c)  'Yuehuang 1',  and (d) 'Zijuan'.
Different curves represent different PLMA configurations and different spacings. (e) The canopy's photosynthetic rate was lower with larger plant spacing
when using the standard planting method of tea plant, illustrating the population photosynthetic efficiency of different varieties. (f) Correlation between
the canopy's photosynthetic rate and total leaf area of the canopy. The Pearson correlation is 0.99, emphasizing the crucial role of leaf area in determining
photosynthetic efficiency.

  A 3D canopy photosynthesis model for tea plant

Page 10 of 14   Lu et al. Beverage Plant Research 2026, 6: e001



fundamental rather than density-specific. The superior performance
of the 3D model stems from its voxel-level light interception simula-
tion,  explicitly  accounting  for  within-canopy  shading  patterns,
edge effects, and photosynthetic acclimation gradients from top to
bottom of the canpoy.

These  results  validate  the  finding  that  3D  modeling  is  essential
for  accurate  predictions  of  canopy  photosynthesis  in  structurally
complex systems, where traditional approaches systematically over-
estimate  productivity  by  failing  to  capture  critical  light–photosyn-
thesis relationships. 

Linear correlation between leaf area and canopy
photosynthesis for tea saplings

Additionally,  the  simulation  results  highlighted  the  impact  of
inter-plant  spacing  on  photosynthetic  performance.  At  the  20-cm

spacing,  canopy  photosynthetic  rates  were  significantly  lower
compared  with  the  10-cm  spacing,  despite  higher  light  availability
per plant. This reduction is attributed to decreased leaf area density
per unit of ground area, underscoring the trade-off between indivi-
dual  plants'  light  access  and  the  canopy's  collective  light  intercep-
tion.  According  to  the  canopy  meshing  model  using  PLMA-5  at  a
20-cm inter-plant  spacing (Fig.  6f),  a  significant  positive correlation
was observed between the canopy's total daily photosynthetic rate
and total leaf area across the four tea plant cultivars. The regression
analysis revealed a strong linear relationship (Pearson's correlation =
0.99),  indicating that increases in canopy leaf area directly enhance
the overall photosynthetic activity.

These  findings  emphasize  the  critical  role  of  the  canopy's  struc-
tural  parameters—specifically  leaf  area  and  planting  density—in
regulating photosynthetic efficiency. The identified linear correlation
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Fig.  7  Comparison of  predicted canopy photosynthesis  with the three modeling approaches.  (a)–(d)  Diurnal  variations in the canopy's  photosynthetic
rates for four tea cultivars ('Longjing 43',  'Tezao Naibai',  'Yuehuang 1',  and 'Zijuan')  under dense planting conditions (10-cm spacing) using the Big-Leaf
model  (blue line),  the Sunlit-Shaded model  (orange line),  and the 3D voxel-based model  (green line).  (e),  (f)  The canopy's  photosynthetic  performance
under the standard planting configuration for (e) the Big-Leaf model and (f) the Sunlit-Shaded model, corresponding to the 3D model's results shown in
Fig. 6e. All simulations were conducted using the nonrectangular hyperbola model for light response curves.
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provides a quantitative framework for optimizing planting configu-
rations  in  precision  agriculture,  balancing  leaf  area  expansion  with
light distribution to maximize crop productivity. 

Discussion 

Three-dimensional point cloud technology
provides a high-throughput way for building
canopy photosynthesis models

The canopy, defined as the total aboveground portion of a plant
(including  the  leaves,  stems,  and  reproductive  structures),  plays  a
central  role  in  photosynthetic  carbon  assimilation[41].  Canopy
photosynthesis  models  are  powerful  tools  for  quantifying  canopy
CO2 uptake  rates  (Ac),  dissecting  the  impacts  of  architectural  and
biochemical  traits  on  Ac  and  evaluating  the  effects  of  planting
strategies  and  environmental  conditions  on  biomass  production
and yield[38].

Traditional 3D canopy modeling approaches,  which are primarily
based on 2D image processing, are constrained by low throughput
and limited capacity to resolve complex 3D structures, particularly in
dense canopies like tea plant saplings, where self-shading obscures
top-view  imaging.  Recent  advances  in  plant  phenomics  have
addressed  these  challenges  through  3D  point  cloud  technologies,
including MVS, light detection and ranging (LiDAR), depth cameras,
and structured light systems[42,43]. Among these technologies, Multi-
View Stereo (MVS) offers distinct advantages for reconstructing the
tea  plant  canopy  due  to  its  ability  to  capture  high-resolution  RGB
imagery  from  multiple  angles,  enabling  complete  3D  reconstruc-
tion  of  both  the  upper  and  lower  canopy  layers[44].  This  is  critical
because the middle and basal leaves contribute significantly to total
canopy photosynthesis, despite receiving reduced irradiance[45−47].

In this study, the MVS-06 system was employed to generate dense
3D  point  clouds  of  tea  plant  saplings,  ensuring  comprehensive
capture of the leaf and stem geometries (Fig.  1).  The reconstructed
point  clouds were then processed using the ISBNet model  (Fig.  2a)
for  organ  segmentation  and  the  PLMA  (Fig.  2b)  for  leaf  meshing,
providing  a  foundation  for  subsequent  ray  tracing  simulations.  By
quantifying  the  distribution  of  photosynthetically  active  radiation
(PAR)  within  the  canopy,  this  pipeline  enabled  an  accurate  estima-
tion  of  radiation  use  efficiency  (RUE),  a  key  determinant  of  crop
productivity.  The  3D  point  cloud  technologies,  especially  the  MVS,
provide  a  high-throughput  method  of  building  canopy  photosyn-
thesis models. 

Advantages and challenges of using deep
learning models for plant point cloud
segmentation

After  acquiring  3D  point  cloud  data,  accurate  separation  of
individual  leaves from stems is  critical  for  modeling canopy photo-
synthesis,  as  photosynthetic  properties  vary  significantly  across
canopy  layers,  and  stems  contribute  negligible  amounts  of  CO2

assimilation[48]. Traditional methods, such as skeleton extraction and
region-growing  algorithms,  and  parametric  modeling  using  3D
templates[49], are heavily parameter-dependent and lack robustness
for complex tea plant architectures.

This  study  employed  the  ISBNet  model[32]—originally  designed
for large-scale urban point cloud segmentation—to achieve precise
instance  segmentation  of  tea  plant  organs.  ISBNet  demonstrates
several  key  advantages  over  existing  approaches:  It  performs  both
semantic  and  instance  segmentation  within  a  single  framework[28],

whereas previous methods combining multiple models for instance
segmentation  involve  multi-step  processing,  which  increases  the
complexity[31].

However,  the  dense  foliage  of  tea  plant  presents  unique  chal-
lenges.  Overlapping leaves  often result  in  segmentation confusion,
making  it  difficult  to  accurately  distinguish  between  different
leaves[50].  Since  ISBNet  divides  point  clouds  into  small  voxel  blocks
for  feature  extraction,  the  voxel-scale  parameter  significantly
impacts performance. Through experimentation, we determined the
optimal  voxel-scale  to  be  300–350,  which  effectively  handles
complex tea plant structures and overlapping leaves while produc-
ing accurate segmentation results (Table 1). This parameter requires
a careful balance between capturing structural details and maintain-
ing computational  efficiency—a trade-off  that is  particularly critical
across different crops and application scenarios. 

Development of a new algorithm for plant leaf
meshing: the PLMA

Meshing  algorithms  play  a  critical  role  in  processing  3D  point
cloud data for plant canopy modeling. Traditional methods, such as
Delaunay  triangulation  and  ball  pivoting,  generate  high-quality
surface  models  but  have  prohibitive  computational  complexity  for
large-scale  agricultural  datasets  combined  with  ray  tracing  simula-
tions.  The  PLMA  developed  in  this  study  aims  to  address  these
issues.  Compared  with  traditional  algorithms,  the  PLMA  was
designed specifically for plant leaves and can accurately capture the
leaves'  details  and  morphology,  and  particularly  excels  in  handling
complex  or  overlapping  leaves  (Figs  2b, c,  and 5a, b).  The  PLMA
significantly  improves  reduced  unnecessary  triangular  meshes,
showing  excellent  performance  for  canopy  light  simulations  with
the ray tracing algorithm (Fig. 5c, d, and Supplementary Table S1). It
provided efficient support for photosynthetic analyses and facilitat-
ing  subsequent  phenotypic  data  extraction.  Additionally,  the  algo-
rithm  offers  high  flexibility,  allowing  for  adjustment  of  the  model's
precision  according  to  different  experimental  needs,  while  main-
taining strong robustness in cases of missing data. 

Potential applications of the tea plant canopy
model

While our FastTracer-based simulations provide valuable insights
into  cultivar-specific  canopy  light  distribution  patterns,  direct  field
validation of  the calculated photosynthesis  rates  would strengthen
future  applications.  The  developed  tea  plant  canopy  model  can
be  applied  to  calculate  diurnal  radiation  use  efficiency,  analyze
the  impacts  of  planting  patterns  on  photosynthesis,  and  identify
trait–performance  relationships.  Future  work  should  include  field
validation studies to confirm the accuracy of photosynthesis predic-
tions  under  different  environmental  conditions.  This  modeling
pipeline  holds  potential  for  genetic  analysis  of  key  traits  in  tea
breeding programs. 

Conclusions
This  study  presents  a  novel  framework  for  3D  canopy  photosyn-

thesis  modeling  in  tea  plant,  integrating  advanced  technologies
including  the  MVS-06  3D  point  cloud  acquisition  system,  the  deep
learning-based  ISBNet  model,  the  newly  developed  PLMA  leaf
meshing  algorithm,  and  the  FastTracer  ray  tracing  algorithm.  The
proposed  pipeline  establishes  a  complete  workflow  from  image
acquisition  and  3D  reconstruction  to  leaf  segmentation,  triangular
meshing,  canopy  architecture  modeling,  light  distribution
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simulation,  and  photosynthetic  rate  quantification.  To  the  best  of
our  knowledge,  this  represents  the  first  comprehensive  3D  canopy
photosynthesis  model  specifically  tailored  to  tea  plant,  offering  a
holistic approach to studying light interception and carbon assimila-
tion in this economically important crop. 
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