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Abstract

In the present study, stir bar sorptive extraction (SBSE) coupled with gas chromatography-mass spectrometry (GC-MS) alongside odour activity value (OAV)
calculation were employed to investigate the effects of different fixation temperatures (190, 220, 250, 280, 310, 340 °C) on the composition and content of
volatile compounds in green tea samples made from fresh tea leaves of Longjing 43 (Camellia sinensis var. sinensis). A total of 102 volatile components were
identified. The total content of these volatiles generally decreased significantly by about 80%-89% after fixation, compared to that in fresh tea leaves, and
exhibited a more stable decline with increasing fixation temperature. Among them, 12 key differential aroma compounds were identified, including (E)-$-
ionone, hexanal, 5-decalactone, linalool, (2)-linalool oxide (furanoid), (2)-3-hexen-1-ol, based on VIP > 1, p < 0.05, and OAV 2 1, which may greatly influence

the formation of green tea aroma quality.
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Introduction

Green tea, known for its pleasant flavour, has been a popular
beverage for many centuries, particularly in China and some other
Asian countries. Tea aroma is one of the critical evaluation factors for
determining green tea quality, which essentially comprises various
volatile components at different concentrations and ratios!’2. Tea
processing technology has a significant impact on the formation of
aroma quality®-5], during which volatile components undergo signi-
ficant changes. For example, aroma precursors and some non-
volatile metabolites in the fresh tea leaves are converted into aroma
components via enzymatic reactions and thermochemical reac-
tions, which constitutes the main mechanism of green tea aroma
formation(®l,

Green tea processing is generally divided into four major steps,
including spreading, fixation, rolling, and drying. Among them, fixa-
tion has been proven to be the essential stage in the transformation
of aroma compounds and therefore shapes the initial aroma profile
of green teal”:8l, In particular, fixation temperature is an important
parameter to regulate the fixation process of green tea and has a
significant impact on the development of its flavour quality®. In this
case, the high temperature during the fixation process enables the
release of volatile components such as linalool, which has a floral
scent, and the volatilization of small molecules, including some
aldehydes with a lower boiling point and pungent odor. Therefore,
it is essential to comprehend how fixation temperature controls the
volatile components of green tea and affects its aroma quality. By
regulating different fixation temperatures, the composition and
content of volatile components in green tea can be changed greatly,
thus achieving the requirements of different aroma types in tea
production. A recent study has demonstrated the impact of fixation
temperature on the non-volatile metabolites that influence the taste
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quality of Longjing teal'?l. However, the investigation of the impact
of fixation temperature on volatile components in green tea is very
scarce, and the explicit effect of fixation temperature on green tea
aroma components has yet to be elucidated. Therefore, it is consi-
dered that the different fixation temperatures might significantly
impact the composition and content of volatile compounds of
green tea, thus further affecting its aroma quality.

In this study, various green tea samples with different fixation
temperatures were produced (190, 220, 250, 280, 310, 340 °C), using
the same batch of fresh tea leaves from Longjing 43 (Camellia sinen-
sis var. sinensis) as raw materials, and the fixed tea leaves during tea
processing were also collected to investigate the effect of fixation
temperature on the characteristics of volatile metabolites in green
tea. The volatile components of these green tea samples were
analyzed using stir bar sorptive extraction combined with gas chro-
matography-mass spectrometry (SBSE-GC-MS). Furthermore, partial
least squares discriminant analysis (PLS-DA), and the odour activity
value (OAV) method were employed to screen for the differential
volatile compounds in green tea with different fixation tempera-
tures. These results may enhance our understanding of how fixation
temperature affects green tea aroma quality, and offer valuable
insights for the targeted regulation of aroma profiles during tea
processing.

Materials and methods

Chemicals

NaCl was supplied by Merck (Darmstadt, Germany). The n-alkane
mixtures of C8—C40 were purchased from J&K Scientific Co., Ltd
(Beijing, China). The detailed information on aroma standards is
provided in Supplementary Table S1.
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Sample preparation

Fresh tea leaves (FL) of the Longjing 43 cultivar with one bud and
two leaves were picked in Shengzhou City, Zhejiang Province, China
(Longitude 120°82', Latitude 29°74"). Part of FL (moisture content
76.85%) was exposed to liquid nitrogen and freeze-dried using
a vacuum freeze-dryer (GOLD-SIM) (SIM International Group,
California, USA). The remaining fresh tea leaves were spread for 6 h
(moisture content 67.75%) and then processed into green tea
samples with traditional manufacturing processes as follows.

After spreading, the fresh tea leaves were divided into six por-
tions. Each portion was fixed using a 6CST-50 rolling stir-frying
machine (20 rpm; Zhejinag Zhufeng Machinery Co., Ltd, China). Six
different fixation temperatures were applied, ranging from 190
to 340 °C, with a gradient of 30 °C (AF: AF190, AF220, AF250, AF280,
AF310, AF340). The moisture contents of these fixed leaves were
59.55%, 56.20%, 56.50%, 51.25%, 50.30%, and 44.40%, respectively.
The fixation time was kept consistent at 3 min across different
fixation temperatures. The fixed leaves were instantly rolled for 1 h
(Model 0725, small tea rolling machine, the average moisture
content of the rolled leaves after different fixation temperatures is
50.30%). The rolling process comprised 20 min under light pressure,
followed by 20 min under heavy pressure, then 10 min under light
pressure, and concluding with 10 min without pressure. The
samples were then first dried at 110 °C for about 1 h using a 6CHM-
901 electric heating dryer (Zhejinag Chunjiang Tea Machinery Co.,
Ltd, China), and finally second dried at 90 °C for 30 min before being
made into green tea samples (TS: TS190, TS220, TS250, TS280,
TS310, TS340, with moisture contents of 7.21%, 7.23%, 6.85%, 6.20%,
6.34%, and 6.44%, respectively). In this study, fresh tea leaves (FL),
after fixed tea leaves (AFs), and tea samples (TSs) were collected,
respectively, with the FL and AF samples directly freeze-dried for
preservation. All tea samples were ground into powder for testing.

Sensory evaluation

The sensory evaluation of green tea samples was conducted. All
sensory experiments were performed by five well-trained experts
from the professional sensory institute 'Tea Quality Supervision and
Inspection Center of the Ministry of Agriculture', according to the
national standards of tea (GB/T 23776-2018 named 'Tea Sensory
Evaluation Method', GB/T 14487-2017 named 'Tea Sensory Evalua-
tion Terminology'). The specific steps are as follows:

First, 100 g of tea samples were placed on a designated white tea
evaluation tray. The tea's shape was evaluated by visual inspection
and tactile methods. The tea leaves were flipped and repositioned
to compare their appearance, and scores and comments were given
for each attribute (each attribute had a maximum score of 100
points). Then, 3.0 g of the tea sample was placed in a tea evaluation
cup. Boiling water was added at a 1:50 tea-to-water ratio (by mass/
volume), the cup was covered, and the tea was steeped for 4 min.
Afterward, the tea infusion was filtered at a consistent speed, and
the infused leaves were placed into the cup.

The evaluation was performed in the following order: liquor
color, aroma, taste, and infused leaves. Corresponding scores and
evaluations were provided for each attribute. The five tea experts
conducted their assessments independently during the entire eva-
luation process. The total score was calculated as follows:

Total Score = Score (shape) x 25% + Score (liquor color) x 10% +
Score (aroma) X 25% + Score (taste) x 30% + Score (infused leaves) x
10%. The evaluation results are listed in Supplementary Table S2.

GC-MS analysis

Extraction of volatiles
The volatile compounds were extracted using the SBSE method,
referring to our previous researchl''l. In brief, tea powder (0.6 g) and

Page2of11

Green tea fixation and aroma control

NacCl (0.5 g) were placed in a 20 mL headspace bottle, and 10 mL of
boiling water was added for brewing. The headspace bottle was
then put on a multi-position magnetic stirrer (SP200-2T; Miu Instru-
ments Co. Ltd, Hangzhou, China) equipped with a polydimethyl-
siloxane twister (10 mm X 0.5 mm, 24 plL; Gerstel, Germany) for
volatile enrichment. The volatile compounds were extracted for
30 min under the conditions of 80 °C and 1,200 rpm. Subsequently,
the twister was removed, and any residual tea powder on the
surface was washed off with pure water. The twister was then dried
and placed in an injection bottle for analysis.

GC-MS analysis

The sample was injected in the form of gas at an initial tempera-
ture of 30 °C and held for 1 min, then increased to 240 °C at a rate of
100 °C/min, and held for desorption for 5 min. Subsequently, the
sample was cooled to —100 °C with liquid nitrogen (99.99%) and
held for 1 min, then heated up to 280 °C, and held for 3 min at a rate
of 12 °C/s.

The volatile compounds in green tea samples were analyzed with
an Agilent 7980B GC system coupled with a 5977B MSD mass
system (Agilent, Santa Clara, CA, USA), separated using a DB-5 MS
capillary column (30 m x 0.25 mm X 0.25 um; Agilent, Santa Clara,
CA, USA). The GC oven temperature program was set as follows:
the initial temperature was 50 °C for 2 min, increased to 170 °C by
4 °C/min (holding for 5 min), and finally increased to 265 °C at a
rate of 10 °C/min and held for 5 min. The injector temperature
was 280 °C. Helium (> 99.99%) was used as the carrier gas at a
1.6 mL/min flow rate. The mass spectrometer was recorded in elec-
tric impact (El) mode, with a mass scan range from 50 to 550 Amu at
70 eV. The temperature of the ion source was 220 °C. Each sample
was analyzed in triplicate.

Qualitative and quantitative analysis

The volatile compounds were identified by comparing with the
NIST 2014 standard spectral library, requiring that the difference
between the retention indices (RI) of the compounds measured on
the basis of n-alkanes and the theoretical retention indices from the
spectral library be within 30 RI units. The quantitative method of the
compounds was based on their abundance in GC-MS analysis, and
the relative contents of the volatile compounds were presented by
fold changes of peak area between each tea sample and fresh tea
leaves (FL). In addition, the significantly different aroma compounds
screened were quantified by establishing standard curves from the
corresponding aroma compound standards using the previously
established standard addition approachl'2 under consistent condi-
tions, as those in tea samples. For compounds where specific stan-
dards were lacking, appropriate surrogates with similar chemical
structures and properties were used. Mixed standard solutions of
different concentrations were prepared, and 10 uL of each solution
was added to the blank matrix. The samples were then analyzed
under the same extraction and GC-MS conditions as the tea
samples. A standard curve was constructed based on the peak areas
of the standards, and the concentrations of volatile compounds in
the samples were calculated accordingly!'2.,

The preparation of the blank tea matrix was based on the method
previously developed by our group, with slight modifications: 50 g
of green tea was brewed in 5,000 mL of boiling water for at least
three rounds of infusion. After cooling, the tea liquor was discarded
once the tea leaves no longer exhibited any noticeable aroma. The
tea leaves were then subjected to rotary evaporation at 60 °C to
remove residual moisture, followed by drying in an oven at 60 °Cl'31,

Odour activity value analysis
The odour thresholds of each volatile compound were referenced
from previous literature reports. The odour activity value (OAV) of
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each compound was calculated according to the equation: OAV, =
G/OT,, where C; represents the concentration of the single
compound in the tea sample (ng/mL), and OT; denotes the odour
threshold of the corresponding compound. A compound is gene-
rally considered to play a vital role in contributing to tea aroma
quality when its OAV is = 1.

Statistical analysis

PLS-DA and permutation tests were performed using SIMCA soft-
ware version 14.1. Statistical significance was determined using one-
way ANOVA with LSD post hoc test in SPSS software version 27.0.
Hierarchical clustering analysis (HCA) was performed using TBtools
software.

Results and discussion

Analysis of volatile compounds in green tea samples
by GC-MS
Overall profiles of volatile compounds in FL, AFs, and TSs

In this study, a total of 102 volatile compounds were identified
from FL, AFs, and TSs using SBSE-GC-MS. These compounds were
classified into nine different chemical classes according to their
chemical structures, including 30 alcohols, 19 esters, 12 aldehydes,
12 alkenes, nine ketones, seven aromatics, five oxygen heterocyclics,
three lactones, and five other volatile compounds, and alcohols,
esters, and aldehydes were the major group in these samples
(Supplementary Tables S3 & S4). The total ion chromatogram of the
samples is shown in Supplementary Fig. S1. As shown in Fig. 1a, FL
had the highest total content of volatile components, which was
much higher than AFs and TSs. Meanwhile, their total content
decreased sharply during the fixation process, and this is primarily
due to the high-temperature treatment causing low-boiling-point
volatile compounds (e.g., alcohols and aldehydes) to evaporate,
which leads to a significant reduction in their levels and, conse-
quently, the observed decrease in volatile compounds. Additionally,
some volatile compounds undergo decomposition or polymeri-
zation reactions under high temperatures, generating new com-
pounds and further reducing their overall content. For instance, it
has been demonstrated that terpenoids can be converted into their
glycosidically bound forms at elevated temperatures due to the
activity of glycosyltransferases that have not yet been completely
inactivated('413l, The total content of volatile components decrea-
sed by 80.9%, 85.0%, 87.3%, 87.1%, 89.3%, and 89.5% in tea leaves
fixed at 190, 220, 250, 280, 310, 340 °C, respectively, as compared to
FL. This was in contrast to a prior study that recognized high-
temperature fixation as outperforming low-temperature fixation
in terms of aroma component accumulation, which might be
caused by the use of different fixation temperature ranges and
methods®'¢l, In addition, the total content of volatile components
continued to decrease in TSs after the drying process. Comparing
different fixation temperatures, the total content of volatile compo-
nents demonstrated a steady downward trend as the fixation tem-
peratures increased. Tea samples fixed at 190 °C had the highest
content, while 340 °C was the lowest.

As demonstrated in Fig. 1b, a hierarchical cluster analysis heat-
map was used to visualize the variation in the distribution diffe-
rences of volatile components in samples subjected to varying
fixation temperatures. It was observed that FL, AFs, and TSs could
be successfully clustered into distinct groups based on the peak
areas of volatile components, indicating that significant changes
had occurred in volatile components among these groups. Among
these, the levels of most volatile components were highest in fresh
tea leaves and decreased notably after fixation, which was
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consistent with the results of a previous study!. In addition, the
contents of some alkenes, including neophytadiene, f-cymene, y-
terpinene, limonene, isophorone, as well as 3-undecanone, estra-
gole, methyl jasmonate, and 2-ethylhexyl salicylate, were generally
higher in the TSs than in the FL and AFs; while 2,3-octanedione,
2,2,6-trimethylcyclohexanone, (E)-f-ionone, S-cyclocitral, as well as
two lactones (including J-decalactone and dihydroactinidiolide),
generally exhibited higher levels in the AFs. Changes in the contents
of all volatile compounds between fresh tea leaves and other
samples were expressed as fold changes, as shown in Supplemen-
tary Table S4.

After fixation, the contents of almost all alcohols decreased, with
benzyl alcohol (FC = 0.06 in AF190), 1-nonanol (FC = 0.09 in AF190),
nerol (FC = 0.07 in AF190), and geraniol (FC = 0.05 in AF190) show-
ing a much greater reduction. Among the aldehydes, a-citral (FC =
0.14 in AF190), (2)-3-nonen-2-one (FC = 0.10 in AF190), 7-methyl-3-
methylene-6-octen-1-ol (FC = 0.11 in AF190), and S-cyclocitral (FC =
0.11 in AF190) showed more variablility. Esters, including hexanoic
acid, ethenyl ester (FC = 3.96 in AF190), (2)-3-hexen-1-yl-3-
methylbutanoate (FC = 3.46 in AF190), and methyl salicylate (FC =
0.09 in AF190), also showed significant differences during green
tea fixation. Additionally, the contents of some volatile compounds,
such as indole (FC = 0.05 in AF190), (2)-linalool oxide (furanoid) (FC
=0.18 in AF190), eugenol (FC = 0.20 in AF190), and (E)-linalool oxide
(furanoid) (FC = 0.25 in AF190), also varied significantly during fixa-
tion.

Notably, heptanol and (E)-2-decen-1-ol were only detected in
fresh tea leaves in this study; these are common volatile compo-
nents responsible for green and grassy odours in tea. The disappea-
rance of these two aromas could be attributed to the instability of
their chemical properties, which causes them to volatilize or trans-
form their chemical structure during prolonged heat treatment at
the fixation stagel'’]. Besides, isobutyl benzoate was not detected in
the TS group of samples. Furthermore, previous studies have shown
that pyrazines and pyrroles, responsible for caramel and baking
odors, were easily generated during drying!", due to the proneness
of the Maillard reaction between free amino acids and reducing
sugarsl'@l. In this study, only 3-ethyl-2,5-dimethylpyrazine was iden-
tified as a pyrazine compound. This finding may be attributed to our
rigorous criteria employed for the identification of each volatile
compound, as well as suboptimal conditions for the Maillard reac-
tion, which resulted from the brief fixing time and relatively low
drying temperatures. It has been noted that the Maillard reaction
typically occurs under conditions of elevated temperature and
extended time, especially during processes like drying and
roasting!'92%, During the fixing process in this study, although the
temperature is relatively high (190-340 °C), the fixing time is short
(approximately 3 min), which leads to an incomplete Maillard reac-
tion. Notably, the temperature mentioned here is the set tempera-
ture, not the actual temperature of the tea leaves. Moreover, studies
have reported that no pyrazine compounds were detected after the
fixing process in green tea or oolong teal?'.22, In addition, green tea
is rich in antioxidant compounds such as epigallocatechin gallate
(EGCG), which may inhibit the Maillard reaction to some extent,
resulting in lower levels of pyrazine and pyridine compounds!23.,

Currently, several studies have investigated the differences in
aroma composition of green tea processed using various fixation
methods. For example, it was found that there were significant
differences in the main aroma components and key aroma-active
components between the green tea fixed by steaming and green
tea fixed by pan-frying, and steamed green tea had a higher concen-
tration of alkenes and esters than pan-fried green teal''l. The roller-
hot air fixation method favours the formation of the chestnut scent
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in green teal?*. In comparison, the influence of fixation tempera-
tures on green tea aroma compounds has yet to be thoroughly
studied. Most previous research has focused on comparing aroma
composition variations in processed green tea samples under diffe-
rent temperature conditions, often overlooking the essential effects
of rolling and drying tea leaves for green tea production. Thus, to
ascertain the impact of the fixation temperature on the formation of
aroma quality of green tea, the following analyses in this study
concentrated on comparing the differences in aroma composition
between FL and AF samples that were immediately freeze-dried
after fixation, aiming to keep variables to a minimum.

Changes in volatile compounds in tea samples with different
fixation temperatures

As shown in Fig. 2a, the total content of alcohols and aldehydes
showed a continuous decreasing trend with the increase in fixation
temperatures. The alcohol content decreased significantly at lower
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fixation temperatures (190, 220 °C), but their content changes were
not significant when the fixation temperature exceeded 250 °C (p <
0.05) (Fig. 2a). Fresh tea leaves fixed at 190 °C showed the highest
content of aldehydes (Fig. 2b), while at fixation temperatures of 220,
310, and 340 °C, the content of aldehydes significantly decreased
(p < 0.05). Esters were more abundant at low-temperature fixation
and decreased at high-temperature fixation (Fig. 2c). The total
content of esters reached the highest at the fixation temperature of
280 °C, while it significantly decreased when the fixation tempera-
ture reached 310 °C (p < 0.05).

Alkenes and aromatic compounds, in general, changed in res-
ponse to rising fixation temperatures, namely initially increasing and
then decreasing. Low-temperature fixation resulted in higher con-
tent levels of alkenes (Fig. 2d), and aromatic compounds (Fig. 2e),
reaching their peak at 280 °C, before decreasing with further
temperature increases. Furthermore, the fixation temperature

You et al. Beverage Plant Research 2025, 5: €041
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significantly impacted fluctuations in the content of oxygen hetero-
cyclic compounds (p < 0.05); when the fresh tea leaves were fixed at
220 °C, their content dropped sharply, and was reduced by 43% as
compared to fixation at 190 °C. In contrast, the fixation temperature
did not significantly affect the total content level of ketones (Fig. 2f).
Notably, the lactones showed higher content levels only at 280 °C
(Fig. 2b), while at other fixation temperatures, their levels were
significantly lower and more similar to each other (p < 0.05).

Screening for differential volatile compounds in
green teas with different fixation temperatures

To further elucidate the effect of fixation temperatures on the
changes in volatile components during green tea processing, a PLS-
DA analysis of the samples was conducted based on the relative
contents of 102 volatile components using SIMCA 14.1 software.
Supplementary Fig. S2a displays the PLS-DA score scatter plot,
which showed satisfactory variance explanation ability and high
predictive power (R2Y = 0.994 and Q2 = 0.990). The reliability of this
model was assessed through 200 permutation tests, yielding fitting

You et al. Beverage Plant Research 2025, 5: e041

parameters of RZY = 0.048 and Q= —0.034, with no overfitting
(Supplementary Fig. S2b). FL was successfully discriminated from
AFs in the PLS-DA plot, with a distribution in different quadrants.
Additionally, as shown in Supplementary Fig. S2¢c, samples in the
AF group could still be clearly discriminated (fitting parameters of
R2Y = 0.982 and Q2 = 0.944) when analyzed separately.

In terms of spatial distribution, the flavour compositions of AF220
and AF190 exhibited proximity, while those of AF250 and AF280
showed similar patterns. Conversely, the aroma profile of AF310 was
significantly different from the other treated samples. As seen in the
PLS-DA validation model in Supplementary Fig. S2d, the y-axis inter-
cept of the Q2 regression straight line was less than 0. The analysis
concluded that the PLS-DA model did not exhibit overfitting,
confirming its increased reliability (fitting parameters with R2Y =
0.417 and Q% =-0.767).

The VIP value of PLS-DA modeling combined with one-way
ANOVA further screened 21 volatile compounds that were dramati-
cally affected by fixation temperatures (VIP > 1, p < 0.05), including
seven esters, five alcohols, two oxygen heterocyclics, two lactones,
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and one aldehyde, as shown in Table 1. The more diverse aroma
compounds included 2-butoxy-1-ethanol, linalool, (2)-3-hexenyl
acetate, geraniol, (2)-3-hexenyl isovalerate, (2)-3-hexenyl hexanoate,
vinyl hexanoate, phenylethyl alcohol, 2,3-octanedione, (2)-linalool
oxide (furanoid), and methyl salicylate. Subsequently, the 21 signifi-
cantly distinct aroma compounds were quantified by using the
improved standard addition method to establish standard curves, in
which aroma standards corresponding to these components were
employed (Table 1 & Supplementary Table S5). The quantitative
approach adopted in this study is in accordance with the methodo-
logy previously established by the present research group. The
methodology validation conducted in our previous study revealed
that the limits of detection (LOD) and limits of quantitation (LOQ) for
most volatile compounds were below nanogram levels['323], Fur-
thermore, the low relative standard deviation (RSD) values observed
for most volatiles (< 10%) and the satisfactory recovery rates rang-
ing from 80% to 120% indicate excellent reproducibility and
accuracy!'el, In this study, the RSD values for each target volatile
compound were also found to be below 10%, indicating the high
reliability of the established quantification method.

Among them, 2-butoxy-1-ethanol was only detected in green tea
samples fixed at high temperatures (310 and 340 °C). (2)-3-Hexenyl
acetate and geraniol had the highest content at 280 °C (192.79 and
834.80 ng/mlL, respectively), followed by the second highest content
at 190 °C (169.63 and 777.55 ng/mlL, respectively). In contrast, (2)-3-
hexenyl isovalerate (71.27 ng/mL) was at a much higher content at
250 °C than that at other temperature treatments. The content of
(2)-3-hexenyl hexanoate was only 3.54 ng/mL at 340 °C, and its
content varied up to 32-fold at different fixation temperatures.
Moreover, the content of vinyl hexanoate decreased sharply at
340 °C, dwindling from 150 ng/mL (AF310) to 49.92 ng/mL (AF340).
Besides that, the content of phenyl ethanol was more dramatically
affected by low and high-temperature fixation. For example, when
220 °C was used, its content decreased by 59.6% compared to
190 °C fixation; and when 340 °C was used, its content decreased by
96.1% compared to 310 °C fixation, indicating that the temperature
conditions have a significant influence on the content of phenyl
ethanol (p < 0.05).

Among these significantly different metabolites, a few com-
pounds have lower boiling points, ranging from 110 to 250 °C. These
compounds include (2)-3-hexenyl acetate (75.0-76.0 °C), (2)-3-
hexenyl isovalerate (98.0 °C), and (2)-3-hexen-1-yl-3-methylbu-
tanoate (60.0 °C). The low retention of these low boiling point esters
in the fixed tea leaves may be due to their high volatilization follow-
ing the high-temperature treatment. Furthermore, aroma com-
pounds with boiling points frequently around 200 °C, such as (2)-
linalool oxide (furanoid) (188.0-192.0 °C), linalool (198.0 °C), nonanal
(195.0 °C), and phenylethyl alcohol (218.2 °C), may have content
variations that are closely related to boiling point. We found that
the content of these compounds radically decreased at 220 °C, as
opposed to 190 °C, by 51.4%, 34.0%, 23.8%, and 59.6%, respectively,
which may be related to the strong release of the compounds upon
reaching their boiling point!29., It still needs to be clarified how the
physical characteristics of other differential metabolites change
regarding their content changes. During the fixation process of
green tea, the formation of aroma mainly stems from thermal reac-
tions, lipid degradation, and glycoside hydrolysis, among other
pathways?’). In addition, most volatile components are trans-
formed through a series of chemical reactions involving aroma
precursors (nonvolatile components) during tea processing, and a
single volatile compound may originate from multiple precursorst'l,
It was found that roasting at different temperatures has a significant
influence on the aroma of oolong tea, with higher temperatures
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resulting in increased levels of pyrazine compounds??, Further-
more, comprehensive studies on the transformations of carotenoid
and glycoside precursors during tea processing have indicated that
varying degrees of transformation, as well as distinct products, may
be generated under different temperature conditions!>'>, Based on
the aforesaid literature and the findings of this study, it was conjec-
tured that their biological reactions and the variations in their
metabolic pathways under various fixation temperatures might
offer a more explicit explanation for this phenomenon.

Analysis of key differential aroma compounds
impacted by fixation temperatures

To evaluate the characteristic aroma components of tea, OAV
analysis is commonly utilized, wherein compounds with OAV 21 are
typically identified as key aroma compounds!?8l. Based on the abso-
lute contents of the 21 significantly distinct aroma compounds, their
respective OAVs were calculated, as outlined in Table 1. Among
them, the OAVs of 12 volatile components in all the samples pro-
cessed at different fixation temperatures were greater than 1. In
descending order of their OAVs, these included (E)-f-ionone
(6,169.83—7,889.93), hexanal (1,480.33-5,178.17), J-decalactone
(2,257.06-4,074.61), linalool (312.67-3,623.96), (2)-3-hexen-1-ol
(92.41-328.41), and geraniol (6.71-111.31). Moreover, 2-butoxy-1-
ethanol exhibited higher OAV values during high-temperature fixa-
tion, with OAV = 24.52 and OAV = 31.66 in AF310 and AF340, respec-
tively. Notably, linalool and phenylethyl alcohol were identified as
key aroma compounds only at medium and low fixation tempe-
ratures. However, they ceased to be considered key aroma com-
pounds when the fixation temperature reached 310 °C. Linalool and
phenylethyl alcohol represent floral aroma and may contribute to
the floral attribute of green tea aroma.

Each of these compounds has a unique odour profile, and the
pattern of changes in their contents differs greatly, as shown in
Fig. 3. The fixation temperature had a consistent effect on (2)-3-
hexenol, (E)-linalool oxide (furanoid), (2)-linalool oxide (furanoid),
methyl salicylate, and linalool, with the highest content at 190 °C,
and decreasing with increasing temperature. There was a signifi-
cant intergroup difference among almost all tea samples with vari-
ous fixation temperatures (p < 0.05). Linalool can be formed from
geranyl pyrophosphate precursors (Fig. 4a) under the action of
linalool synthasel?), while linalool oxides (furanoid) can be gene-
rated either by the oxidation of linalool itself or by hydrolysis of the
corresponding glycosidic precursors2439, These aroma compounds
all present floral and fruity odour characteristics, have relatively high
contents in green tea, and are essential aroma contributors in many
teas, such as Keemun black tea®"! and white teal32. The exogenous
addition of p-glucosidase improved the aroma quality of instant
white tea, presumably by increasing the concentration of furan
linalool oxides!331. Therefore, regulating the changes in their content
by controlling the fixation temperature may contribute to the
improvement of the aroma quality of green tea.

Hexanal and geraniol were detected in higher concentrations
in AF280 and AF190. Hexanal tended to be formed during low-
temperature fixation and decreased significantly with rising tempe-
ratures. It increased greatly at 280 °C and continued to decline with
subsequent temperature increases (p < 0.05). The oxidative degra-
dation of linoleic acid releases hexanal (Fig. 4b), which can be
converted into the corresponding alcohols through isomerization
and reduction during the heating process!'l. Hexanal has a low boil-
ing point, and its volatilization due to heat and the isomerization
reaction occurring during the fixation process may influence
changes in content with variations in greening temperature34. The
fixation temperature significantly impacted the geraniol content.
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Fig.3 Changes in the content of key aroma components with various fixation temperatures. AF190: tea leaves fixed at 190 °C; AF220: tea leaves fixed at
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Compared with AF280, the geraniol content in AF310 decreased
significantly (50.34 ng/mL), representing a reduction of approxi-
mately 94%. It is noteworthy that linalool and geraniol share the
same aroma precursor substances; both are floral compounds with
similar chemical structures and properties. However, their content
change patterns differ significantly. Previous studies have shown
that linalool can undergo thermal cleavage to form geraniol35.
Therefore, it is hypothesized that the varying trends in the content
of these two compounds, influenced by temperature, are associa-
ted with alterations in the principal non-enzymatic transformation
pathways under corresponding manufacturing conditions (Fig. 4b).
As the fixation temperature reached 340 °C (AF340), the content
of (2)-3-hexenyl acetate and (2)-3-hexenyl hexanoate increased
dramatically, distinct from most key aroma compounds. It is pre-
sumed that thermal oxidation and esterification processes of fatty
acids occur during the fixation process!3¢l, and changes in these
heat-driven processes may influence the accumulation of (2)-3-
hexenyl acetate and (2)-3-hexenyl hexanoate. Notably, (E)-f-ionone
is a vital active component in tea. Although its quantity in AF tea
samples is low (43.19-55.23 ng/mL), it considerably impacts the
aroma quality of green tea due to its shallow odour threshold (OT =
0.007 ng/mL). (E)-f-ionone presents the aroma characteristics with
floral and rosy notes, mainly originating from the oxidative degrada-
tion of carotenoids during processing (Fig. 4c)®®l. Overall, the con-
tent level of (E)-f-ionone increased with high-temperature fixation
and decreased with low-temperature fixation. In addition, §-decalac-
tone is a major aroma-active component in peach fruitsi’], adding
to the odour profile of peach-like and fruity notes. However, the

Page8of 11

method of synthesis of lactone components in tea remains unclear.
Methyl salicylate is generally formed via the shikimic acid pathway.
Its concentration varies with the fixation temperature, which may be
influenced by salicylic acid carboxymethyltransferases®% and heat-
induced esterification reactions (Fig. 4d).

Analysis of fixation temperatures impacting aroma
types of green tea

The primary objectives of fixation are to effectively eliminate
enzyme activity in fresh leaves and to halt the enzymatic oxidation
of polyphenolic compounds, thereby achieving the characteristic
color, aroma, and flavor associated with green tea. This process
predominantly relies on elevated temperatures, during which it is
essential for the leaf temperature to rapidly exceed 80 °C in order to
effectively inhibit enzyme activity. Achieving this requires a specific
level of moisture content in the fresh leaves. Long-term practice and
research have demonstrated that optimal quality is attained when
the leaf moisture content ranges between 68% and 70%. Following
fixation, there is a significant reduction in the moisture content of
tea leaves (below 60%), accompanied by varying degrees of initial
biochemical (enzymatic) and subsequent thermochemical (non-
enzymatic) transformations of volatiles and their precursors, contin-
gent upon the applied temperature. Consequently, the fixation
temperature has a profound impact on the overall aroma quality of
green teal33l, However, it is important to note that the findings of
this study reveal no significant difference in leaf moisture content
when measured at fixation temperatures of 220 °C (56.20%) and
250 °C (56.50%), which appears to be inconsistent with theoretical
expectations. This phenomenon can be attributed to the relatively

You et al. Beverage Plant Research 2025, 5: €041
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mild conditions present during the fixation process under two
specific scenarios, in which the temperature of the tea leaves typi-
cally reaches just the critical threshold of 80 °C. Furthermore, the
temperature differential within the fixation machine is only 30°C;
consequently, there is no significant variation in the actual tempera-
tures experienced by the tea leaves. Additionally, the fixation dura-
tion was just 3 min, during which uneven mixing could result in
localized areas of higher moisture content within the leaves. Con-
versely, when the temperature exceeds 250 °C, the leaf temperature
reaches approximately 90 °C. At this juncture, the leaves become
sufficiently desiccated, leading to a reduced moisture content in
comparison to temperatures below this threshold. Moreover, the
moisture analyzer requires 20 min to complete a measurement, and
if the moisture content of the leaves is relatively high post-fixation,
there could be moisture reabsorption during this period.

As shown in Supplementary Table S2, tea samples prepared from
tea leaves of one bud and two leaves of Longjing 43 at different fixa-
tion temperatures show good aroma quality. The sensory aroma
wheel of these green tea samples were also plotted (Fig. 5). Accord-
ing to the sensory evaluation results shown in Supplementary Table
S2, the overall sensory quality was better when the fixation was
carried out at 190, 250, and 280 °C, with the characteristics of 'tight,
slightly curly, deep green' in appearance, 'bright and clear, green'
in tea infusion, 'clean and high' in aroma, as well as 'mellow, umami'

Fig. 5
fixation temperatures.
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Aroma characteristics of green tea samples with different
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in taste, which is a typical characteristic of good green tea flavor
quality.

It can be found that the rest of the green tea samples (AFs)
subjected to fixation temperatures ranging from 190 to 310 °C,
except for AF340, presented a 'clean and high' aroma upon sensory
evaluation, which could be abbreviated as 'fresh' aroma. Addition-
ally, some samples also displayed unique aroma characteristics, such
as the green tea sample fixed at 190 °C with a bean aroma, the
green tea fixed at 250 °C with a tender aroma, and the green tea
fixed at 310 °C with a pekoe aroma. These results indicate that tea
aroma quality is not a single type but rather a combination of diffe-
rent aromatic profiles.

Meanwhile, 190 °C was a relatively low temperature and is rarely
used in actual tea production. At this temperature, due to the
limited time for rapid leaf heating, it is possible that not all relevant
enzymes (e.g., polyphenol oxidase, peroxidase) in fresh leaves are
completely inactivated throughout the entire fixation process.
Particularly in the initial stages of fixation or when the internal leaf
temperature has not yet fully risen, these enzymatic activities may
persist and influence the formation and transformation of certain
aroma compounds. Therefore, the aroma and overall sensory qua-
lity of the samples were enhanced when fixation temperatures of
250 and 280 °C were employed. It was observed that controlling the
fixation temperature within an acceptable range allowed for the
development of the fresh aroma in green tea. However, an exces-
sive fixation temperature may lead to the production of a smoky
aroma, which adversely affects the tea aroma quality.

Conclusions

Fixation is a vital stage that influences the development of the
quality of the green tea aroma, and fixation temperature is the criti-
cal process parameter that has considerable effects on the composi-
tion and content of green tea volatiles and therefore determines its
aroma quality. In this study, it was found that the total content of
volatile components showed a more stable decreasing trend with
increasing fixation temperature, and also identified 12 key differen-
tial aroma components that were significantly affected by the fixa-
tion temperature. By adjusting the quantity of these aroma compo-
nents, the aroma quality of green tea might be improved. Moreover,
the fixation temperature of 280 °C might be a suitable reference for
parameter setting that can contribute to the formation of better
aroma quality in green tea. In particular, it was found that fixation at
this temperature was favourable to the 'fresh’ aroma quality forma-
tion in green tea. The results obtained from this study have enriched
our understanding of the effects of various fixation temperatures on
the volatiles of green teas and the formation mechanism of their key
flavour components. Further studies are needed to explore the
modern processing technologies for targeted regulation of green
tea aroma types.
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