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Abstract
Although research on microplastics (MPs) interactions with other soil pollutants is increasingly becoming available, most studies do not consider
risks to soil fertility or plant growth. This review aims: 1) to summarize the results of current studies on interactions between MPs, heavy metals,
and organic pollutants; and 2) subsequently evaluate risks to the soil-plant nexus. Available-literature shows that polypropylene, polyethylene
and polylactic acid increase cadmium (Cd) bioavailability and subsequently reduce root growth. Such effects are not evident in sandy or clay soils
due to the formation of CdCO3 and iron-oxide by altered bacterial communities that stabilize Cd contamination. Chronic instead of short-term
exposure to polystyrene in copper (Cu) - polluted soils decreases crop yield. With coexistence of MPs and lead (Pb) in soil, the uptake of Pb in
crops increases, causing altered malondialdehyde content and superoxide dismutase and guaiacol peroxidase activities. Moreover, co-toxicity of
polystyrene or polytetrafluoroethylene with arsenic (As) decreases root biomass, photosynthesis rate and the chlorophyll-a content. In alkaline
soil, polyvinyl-chloride could decrease the bioavailability of MeHg due to changes in the abundance of Proteobacteria,  and Firmicutes.  We also
found strong interactions between MPs and organic pollutants. Polystyrene decreases negative impacts of sulfamethazine on bacterial diversity,
and structure in soil. Polyethylene, polyvinyl-chloride and polystyrene have a strong adsorption capacity for 17β-estradiol. This implies that 17β-
estradiol  toxicity  can  be  reduced  by  these  MPs.  At  low  concentrations,  polyethylene,  polypropylene,  and  polystyrene  have  low  affinity  to
diazepam. In conclusion, serious ecological risks are associated with MPs and other pollutants' interactions to soil-plant system.
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 Introduction

Microplastics (MPs; < 5 mm) are ubiquitous in different envi-
ronmental  compartments,  including  soil,  water,  air,  mountain
catchments  and  sediments[1−4].  Among  different  environmen-
tal  compartments,  soils  are  one  of  the  largest  sinks  of  these
high molecular polymer particles[5].  The concentrations of MPs
in  agricultural  soils  and  natural  soils  have  reached  50–18,760
particles  kg−1 and  50–130  particles  kg−1,  respectively[6,7].
Because  of  the  underdevelopment  of  accurate  quantification
methods, these figures for MPs concentration in soils might be
underestimated. In agricultural soils, MPs enter directly through
soil additives (such as sewage sludge and organic fertilizers) or
fragmentation of  large plastic  materials  such as  films,  creating
MPs  indirectly  in  soils[8].  After  entering  into  soils,  MPs  change
soil  physicochemical  properties  (such  as  aggregates,  organic
matter,  pH  and  nutrient  content),  alter  microbial  abundance
(such as Ruminiclostridium, Mobilitalea and Xylanophilum), and
impact  plant  growth[9−13].  These  changes  ultimately  lead  to
adverse  effects  on  crop  yield  and  quality[14,15].  More  impor-
tantly,  MPs traverse  the food web by entering into many crop

plants  (e.g.  wheat,  carrot  and  beans),  threatening  human  and
animal  health[14,16−19].  Consequently,  MPs  pollution  in  soil  has
received increased research attention[20].  Given that this mate-
rial  is  found in different parts of plants,  research on microplas-
tic  uptake  by  crops  is  now  well  underway.  The  initial  results
show that MPs infiltrate into casparian strips during root forma-
tion  and  subsequently  translocate  into  aerial  parts via the
apoplast  pathway[14].  An  initial  focus  on  crop  productivity/
toxicity  and  soil  properties  under  MPs  pollution  is  a  very
reasonable  starting  point  but  the  effects  of  MPs  interaction
with other pollutants are unclear.

With  the  increase  in  soil  MP pollution and their  interactions
with  other  pollutants,  a  new  set  of  issues  that  are  particularly
relevant to soil and plant toxicity may emerge. MPs have a large
surface  area;  thus,  they  can  adsorb  other  pollutant  materials
(e.g. heavy metals and pharmaceuticals; Fig. 1) on their surface
and serve as vectors[21−23].  The mechanisms of MPs adsorption
include strong electrostatic and hydrophobic interactions[24,25].
These interactions are mainly linked to functional groups (such
as  hydroxyl  and  carboxyl  groups  and  benzene  rings)  on  the
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surface of microplastics as well as the soil solution pH and ionic
strength[26−28]. Some studies claim that the adsorption capacity
of  MPs  is  much  lower  than  soil[29,30].  This  is  because  soil
contains  a  large  number  of  reactive  minerals  such  as  iron
oxides, clays and carbonates[31]. Other studies show that due to
hydrophobicity, MPs exhibit stronger adsorption over soil[32,33].
In addition to acting as vectors, MPs influence the bioavailabil-
ity  of  pollutants  (such  as  heavy  metals)  by  altering  the  soil
properties  such  as  aggregates  and  dissolved  organic  carbon
(DOC)[34,35].  In  conclusion,  MPs with other  pollutants  can bring
more diverse  risks  compared to  MPs  alone that  are  associated
with increasing the bioaccumulation and ecotoxicities of coex-
isting pollutants by serving as vectors and governing the speci-
ation  of  pollutants[15,23,24,36−38].  Thus,  studies  on  interactions
between MPs and other pollutant materials are important.

The  combined  effects  of  MPs  and  other  soil  pollutants  (e.g.
heavy  metals)  on  the  crop-soil-microbe  system  are  of  diverse
nature  (Fig.  1).  In  particular,  interactions  between  MPs  and
other  contaminants  may alter  their  environmental  behaviours,
bioavailability and toxicity, leading to varied risks to soil ecosys-
tems[15]. Such effects are directly inferred from the depletion of
organic  matter,  organo-mineral  complexes,  or  aggregation  in
soil  by  MPs[39,40].  Nevertheless,  MPs  type  has  varied  effects  on
soil  properties  (including  aggregate  stability  and  organic
matter  composition)  and microbes  (e.g. Firmicutes and Proteo-
bacteria),  and thus on the bioavailability of the pollutants[39,41].
The  altered  bioavailability  may  lead  to  increased  uptake  of
heavy metals by plants or root toxicity causing stunted growth,
and yield reduction. Any change to the bioavailability of heavy
metals by MPs is also likely to affect the symbiotic relationship
between  plants  and  microbes  (e.g.  Arbuscular  mycorrhizal
fungi  (AMF))  by  negatively  affecting  their  abundance  and
diversity[15].  Thus,  it  is  highly  likely  that  the  co-occurrence  of
pollutants  may  produce  combined  toxic  effects  on  crops[20].
Higher  plants  are  the  primary  basis  of  many  food  chains,  and
the adverse impacts of the bioaccumulation of MPs and associ-
ated  contaminants  on  higher  plants  have  been  primarily

reported separately.  However,  it  is  unknown if  MPs with other
pollutants  can  coexist  in  the  plant  body,  and  what  will  be  its
consequences? Given that MPs adsorb many pollutants on their
surface,  it  is  highly  likely  that  the  impacts  of  such  coexistence
on  crop  growth,  yield,  and  food  safety  will  be  catastrophic.  In
addition,  MPs  presence  with  other  pollutants  in  the  soil  can
facilitate its uptake by plant, which ultimately negatively affect
crop productivity[14].

Notably,  soil  has  a  mixed  cocktail  of  pollutants  (Fig.  1),  and
there is  a  paucity  of  knowledge on how MPs coexistence with
different  soil  pollutants  affects  the  soil-plant-microbe
system[15,20].  Although such interactive studies are limited,  it  is
pertinent to discuss possible risks to soil-plant-microbe system.
Indeed, reviews based on the available literature provide sound
bases for  further investigating the impacts of  MPs interactions
with  other  soil  pollutants,  and  highlighting  the  knowledge
gaps. With this review, we intend to evaluate the interaction of
MPs  with  heavy  metals  and  organic  pollutants  commonly
found  in  agricultural  soils  and  investigate  the  effects  on  soil
quality characteristics, microbial life, and plant growth.

 Coexistence of microplastics and heavy
metals

Since both MPs and heavy metals are persistent in soils,  the
interactions  among  these  pollutants  are  receiving  increased
attention[20,40].  However,  there  are  an  insufficient  numbers  of
studies  as  research  has  just  started  to  embrace  such  interac-
tions,  having  initially  focused  on  MP  toxicity  alone  (Fig.  2).
There  are  mixed  effects  of  MPs  on  the  bioavailability  of  heavy
metals (such as Cd), soil microbes, and yield (Table 1); however,
the mechanistic understanding of such effects is lacking.

 Microplastics × cadmium (Cd)
Cd  is  a  highly  toxic  heavy  metal  introduced  in  soil  through

anthropogenic  activities[42].  After  entering  soils,  Cd  is  distri-
buted  within  different  compartments  through  adsorption,
complexation, and precipitation[43,44]. Although MPs may inter-
act with Cd and affect its  bioavailability,  the resultant environ-
mental risks are unclear[40]. The presence of polypropylene MPs
in  soil  has  been  shown  to  increase  Cd  bioavailability  by  the
decomposition  of  organic  matter  and  organo-mineral  com-
plexes.  This  also  results  in  an  increase  in  soil  DOC  content[40].
Similarly,  both  polyethylene  and  polylactic  acid  MPs  increase
the bioavailability of Cd with a greater extent by polylactic acid.
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Fig. 1    Effects of microplastics (MPs) and other pollutants on soil-
plant systems.
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Fig. 2    Cumulative papers on interactions between microplastics
(MPs) and heavy metals or organic pollutants.
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Thus,  MPs can increase or  decrease Cd bioavailability  depend-
ing on their  type (Table  1).  The interaction between polyethy-
lene and Cd reduces root biomass in maize.  Both MPs with Cd
reduced AMF symbiosis by affecting the abundance of AMF[15].
In  wheat  crops,  the  combination  of  MPs  polyethylene  and  Cd
appeared to decrease phenological indices,  leaf gas exchange,
and  belowground  root  traits[45].  Such  bioavailable  and  subse-
quent toxic effects may depend on soil types. In sandy and clay
soils,  polypropylene and polyurethane MPs decrease the avail-
ability  of  Cd.  The  strong  reduction  of  Cd  bioavailability  occurs
in  clay  soil.  This  could  be  due  to  the  influence  on  adsorption
and precipitation of Cd resulting from the formation of CdCO3,
mineral  adsorption,  and  iron  oxide  formation  by  affecting
bacterial  communities  related  to  carbon  and  iron  cycles[46].
Moreover,  aged  MPs  (such  as  polyethylene  and  butyleneadi-
pate-co-terephthalate biodegradable) have more reactive func-
tional groups on the surface that strongly interact with Cd and
reduce bioavailability[28]. Thus, it is implied that aged MPs could
reduce the toxicity of Cd for crops and soil microorganisms.

Despite MPs affect Cd bioavailability, the information on the
uptake of Cd by crops and subsequently effects on yield are not
available (Table 1). The initial focus has been on polypropylene,
polyethylene,  and  polylactic  acid.  Other  types  of  MPs  are  not
yet  explored,  for  example,  polyester,  polyurethane,  and
polystyrene. In addition, different shapes of these MPs will also
have  very  different  effects  on  Cd  availability,  and  might  also
present  different  challenges  for  crop  production  and  food
safety.  All  these  research  aspects  are  quite  relevant,  and  we
currently  do  not  know  if  such  interactions  can  affect  our  agri-
cultural systems.

 Microplastics × copper (Cu)
Cu is one of the essential micronutrients for plant growth as

it is required for balancing nutrition during protein synthesis. In
soils,  excessive  amounts  of  Cu  cause  phytotoxicity  such  as
stunted  growth  and  decreased  metabolite  activity  and  photo-
synthesis[47−49].  Few  studies  have  investigated  the  combined
effects  of  MPs  and  Cu  on  plant  performance.  Therefore,  the
information on soil and plant variables are limited (Table 1). The
chronic  exposure  to  polystyrene  MPs  and  Cu  has  shown  to
decrease  the  yield  of  pea  (Pisum  sativum)  crops.  Surprisingly,
nutrient content increased in beans (proteins and amino acids),
but  Cu  accumulation  in  plants  did  not  change.  Polystyrene
particles are able to penetrate into incomplete Casparian strips
during  root  formation  and  translocate  into  aerial  parts via the
apoplast pathway[14].  Thus, the coexistence of polystyrene and

Cu  could  be  a  new  threat  to  other  crops;  however,  further
investigations are required to confirm it.

Nonetheless, short-term exposure to polystyrene MPs in Cu-
contaminated  soils  could  reduce  the  accumulation  of  Cu  in
wheat  seedlings,  thus  increasing  chlorophyll  content  and
photosynthesis  while  reducing  the  accumulation  of  reactive
oxygen  species[50].  These  results  imply  the  role  of  chronic  and
short-term exposure of MPs in mediating the interaction effects
with Cu on crop growth and yield.  In  rapes (Brassica  napus L.),
MPs facilitate Cu uptake. Subsequently, this alters malondialde-
hyde  content,  and  activities  of  superoxide  dismutase  and
guaiacol  peroxidase  in  rape  plants,  suggesting  server  damage
to  the  quality  of  the  crop[51].  Although  an  initial  focus  on  Cu
uptake,  crop  growth,  and  yield  is  a  very  reasonable  starting
point,  we lack information on soil  quality characteristics (Table
1).  Such  information  is  important  to  mechanistically  under-
stand the interactions between different MPs and Cu.

 Microplastics × lead (Pb)
Pb  is  the  second  most  toxic  heavy  metal  after  As  that

decreases  seed  germination  and  plant  growth  and  yield[52].
Since  MPs  have  a  strong  sorption  capacity  of  Pb  (Fig.  1),  this
could  lead  to  serious  ecological  concerns  and  environmental
risks[35,39].  However,  sorption  of  Pb  depends  upon  the  type  of
MP  as  they  cause  varied  physical  changes  in  soil  e.g.  aggre-
gates[39]. The coexistence of MPs with Pb appeared to facilitate
Pb uptake in rapes (Brassica  napus L.).  Subsequently,  oxidative
stress  occurs  in  plants.  In  particular,  Pb uptake alters  malondi-
aldehyde  content  and  superoxide  dismutase  and  guaiacol
peroxidase activities in rapes plants[51]. These facts suggest that
the  co-toxicity  of  MPs  and  Pb  could  seriously  reduce  crop
growth and yield.

Many  fundamental  questions  related  to  the  effects  of  MPs
and  Pb  are  not  yet  investigated.  For  example,  microfibers,
micofilms,  and  microbeads  have  varied  effects  on  soil
structure[53], and it is unknown how they will affect Pb bioavail-
ability,  soil  microbial  life,  and  crop  performance.  It  is  also
reasonable  to  assume  that  MPs  size  has  substantial  effects  on
these  soil  and  plant  variables  as  different  sizes  of  MPs  cause
significant changes in soil aggregates and organic matter[54].

 Microplastics × arsenic (As)
In  agricultural  soils,  As  pollution  is  widespread  and  increas-

ingly  severe.  The  knowledge  on  co-toxicity  of  MPs  and  As  for
soil and plant toxicity is in its infancy (Table 1). Due to the sorp-
tion of As on MPs[28],  the contaminated effects on gut bacteria
in earthworms could be reduced[55]. This implies that MP pollu-
tion  saves  earthworms  from  As  toxicity,  so  they  can  perform
important  soil  ecological  processes.  However,  we  lack  empiri-
cal evidence of such benefits in soil-plant system. On the other
hand, the presence of polystyrene and polytetrafluoroethylene
with  As  decreased  root  biomass,  photosynthesis  rate,  chloro-
phyll fluorescence, and the Chl content in rice. Moreover, oxida-
tive stress is induced in roots and leaves with the destruction of
antioxidant  enzymes,  induction  of  lipid  peroxidation  and
destruction  of  cell  membranes[56].  Thus,  it  can  be  concluded
that the co-toxicity of MPs and As represents a serious concern
for plant growth and yield.

Currently, there is considerable uncertainty about the effects
of cotoxicity of MPs and As on the soil-plant system (Table 1). It
is  unknown,  whether  the toxicity  is  related to chemical,  physi-
cal,  or  both.  Thus,  research  exploring  the  possible  effects  of
MPs and As interactions are crucial.

Table 1.    Effects of microplastics (MPs) and heavy metal interactions on
the soil and plant properties.

Variables MPs × Cd MPs × Cu MPs × Pb MPs × As MPs × Hg

Heavy metal
solubility

↑↓ − − − ↓

Organic matter ↓ − − − −
Microbes/animals ↓ − ↓ ↑↓
Heavy metal
uptake

− ↑ ↑ − −

Root biomass ↓ − − ↓ −
Shoot biomass ↓ ↓ − − −
Yield − ↓ − − −

Cd: Cadmium; Cu: Copper; Pb: Lead; As: Arsenic; Hg: Mercury; ↑: Increase; ↓:
Decrease; ↑↓: Increase or Decrease; −: not known.
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 Microplastics × mercury (Hg)
The contamination of  Hg in  our  food is  a  global  concern[57].

Dietary consumption of contaminated crops such as rice repre-
sents  an  important  route  of  human  exposure  to  Hg[58].  Still,
there  is  not  enough  research  available  to  explain  the  interac-
tions between MPs and Hg (Table 1).  An initial  study in paddy
soil  showed  that  exposure  to  PVC  MPs  could  decrease  the
bioavailability of MeHg concentrations both in red and alkaline
soil.  These  effects  are  related  to  differences  in  DOM  composi-
tion,  sulfate  and  dissolved  Fe  concentrations,  and  the  abun-
dance  of Proteobacteria, Firmicutes,  and  the  hgcA  gene[41].
However,  we  suggest  that  these  bioavailable  effects  may  be
different  in  the  case  of  other  crops,  MPs  type  and  soil  type.
Therefore, future studies should consider more crops and MPs.
In  addition,  measuring  diverse  soil  characteristics  and  plant
growth  parameters  will  be  important  to  understand  the  joint
pollution effects.

 Coexistence of microplastics and organic
pollutants

Soils are also sinks of organic pollutants. These pollutants are
potentially toxic,  persistent and interact with MPs which could
negatively  impact  soil  ecosystem  functioning.  So  far,  studies
that  consider  the  interactive  effects  of  MPs  and organic  pollu-
tants are limited (Fig. 2).

Sulfonamides  (e.g.  sulfamethazine  and  sulfadiazine)  are  the
antimicrobial  chemicals  used  for  livestock.  Approximately  30-
90% of applied dose discharge into the soil environment causes
severe risks to the food chain[59,60]. Polystyrene MPs have strong
affinities  to  sulfonamides  because  of  polar  and π–π
interactions[61,62].  Research  that  discloses  the  effects  of  these
interactions on soil  microbial  life  and plant growth is  however
scarce. An early study shows that polystyrene MPs decrease the
negative  impacts  of  sulfamethazine  on  bacterial  diversity,
composition  and  structure  in  the  soil[63].  Similarly,  another
study  found  that  co-contamination  of  polystyrene  MPs  and
sulfadiazine  or  norfloxacin  decreased  the  nutrient  contents  in
plants and impacted leaf metabolites[64].  These results suggest
potential ecological risks to the soil-plant nexus from contami-
nation of MPs and antibiotics.  Therefore,  future studies should
intensively  check the interactions  of  different  MPs with antibi-
otics.

High levels of steroids are also detected in soil environments
due  to  extensive  application  in  livestock[65,66].  In  particular,
estrogens  17β-estradiol  contamination  has  received  growing
attention[67].  The  environmental  behaviour  of  both  MPs  and
17β-estradiol  in  combination  should  be  clear  in  the  Anthro-
pocene. Among MPs, polyethylene, polyvinyl chloride and poly-
styrene  have  strong  adsorption  capacity  for  17β-estradiol[66].
This might result in the control of 17β-estradiol pollution in soil;
nonetheless, it needs to be studied carefully.

Diazepam and phenanthrene contamination in  the environ-
ment  represent  another  growing  concern[68,69].  Due  to  the
potential  role  of  MPs  in  the  distribution  of  such  organic
contaminants[70],  it is important to understand the interactions
of MPs with diazepam and phenanthrene from the perspective
of soil and plant health. So far, studies on such interactions are
scarce.  It  is  noted  in  a  study  that  at  different  concentrations
(0.1%,  1%,  and  10%)  of  polyethylene,  polypropylene,  and
polystyrene, the sorption of diazepam decreases only with the

highest  dose  of  MPs.  This  shows  that  diazepam  has  a  low
affinity  with  MPs.  The  sorption  of  phenanthrene  to  polyethy-
lene  is  the  highest  as  compared  to  polypropylene,  and
polystyrene[71].  Such  varied  behaviours  of  diazepam  and
phenanthrene with MPs suggest that soil and plant may experi-
ence different levels of toxicity.

 Conclusions and future direction

Overall,  the  interactive  effects  of  MPs  and  heavy  metals  on
soil and plant are toxic. These toxic effects are linked to certain
factors:  MP  type,  MP  exposure  time  and  soil  type.  The  main
pathway through which MPs alter  the toxicity of  heavy metals
is  an  increase  or  decrease  in  bioaccumulation.  Co-existance of
MPs  polypropylene,  polyethylene  and  polylactic  acid  with  Cd,
and  MPs  polystyrene  with  Cu  and  As,  are  able  to  negatively
affect  plant  growth  and  soil  properties.  However,  positive
effects of MPs and heavy metals are also possible. MPs PVC can
decrease Hg bioavailability and alter soil bacterial abundances.
A  strong  affinity  of  MPs  with  organic  pollutants  such  as
sulfamethazine,  17β-estradiol  and  diazepam  can  reduce  their
toxicity  for  bacteria  and  subsequently  on  plants.  Future
research should consider the following: 1) effects of more prop-
erties of MPs, including size and shape, on the interactions with
other  pollutants;  2)  long-term  studies  are  needed  to  check
these effects with the prospectives of plant and soil health; and
3) the impacts of aged and fresh MPs in determining the inter-
actions with pollutants are important.
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