
 

Open Access https://doi.org/10.48130/DTS-2023-0001

Digital Transportation and Safety 2023, 2(1):1−11

Connecting tradition with modernity: Safety literature review
Daiquan Xiao1, Bo Zhang1, Zexi Chen1, Xuecai Xu1* and Bo Du2*

1 School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan 430074, China
2 SMART Infrastructure Facility University of Wollongong, Wollongong, NSW 2522, Australia
* Corresponding authors, E-mail: xuecai_xu@hust.edu.cn; bdu@uow.edu.au

Abstract
Road safety has long been considered as one of the most important issues. Numerous studies have been conducted to investigate crashes with

significant  progress,  whereas  most  of  the  work  concentrates  on  the  lifespan  period  of  roadways  and  safety  influencing  factors.  This  paper

undertakes a systematic literature review from the crash procedure to identify the state-of-the-art knowledge, advantages and disadvantages of

crash  risk,  crash  prediction,  crash  prevention  and  safety  of  connected  and  autonomous  vehicles  (CAVs).  As  a  result  of  this  literature  review,

substantive issues in general, data source and modeling selection are discussed, and the outcome of this study aims to provide the summary of

crash knowledge with potential insight into both traditional and emerging aspects, and guide the future research direction in safety.
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 Introduction

Since  its  first  emergence,  transportation  had  experienced
tremendous  changes  from  tradition  to  modernity,  meanwhile
from  traditional  human-driven  vehicles  to  modern  connected
and  autonomous  vehicles  (CAVs).  Due  to  the  extreme  signifi-
cance,  road  safety  has  always  been  considered  as  one  of  the
most  important  and  significant  topics  in  transportation
engineering through the centuries, with the ultimate objective
of reducing injuries and fatalities[1].

During  recent  decades,  road  safety  evaluation  has  been
explored  from  various  perspectives[2−5] ,  and  crash  has  been
widely employed to represent safety level. Currently, two main
directions  of  safety  research  are  the  main  focus:  the  lifespan
period  of  roadways,  i.e.  planning  (proactive  safety),  construc-
tion (work zone safety), operation (reactive safety), and manage-
ment  (behavioral  and  improvement  safety);  and  the  safety
influencing  factors,  such  as  human  (pedestrian,  bicyclist,
motorcyclist and driver), vehicle (motorcycle, car, bus/truck and
heavy  trucks),  roadway  (geometric  design,  classification,  inter-
section  type,  etc.),  environment  (weather  conditions,  lighting,
etc.).  However,  either  direction  may  not  concentrate  on  the
true  attribute  of  crash  itself,  thus  the  crash  procedure  still
requires investigation, and the corresponding safety evaluation
from crash procedure, i.e. crash risk, crash prediction, and crash
prevention,  which is  worth acknowledging the challenges and
opportunities in this study.

Crash  risk,  qualitatively,  represents  the  state  of  unknown  or
potential crash within a traffic system, which may be developed
into  accidents  under  certain  conditions,  while  quantitatively  it
denotes  the  probability  of  the  danger  converting  into  an
accident,  which  is  commonly  employed  to  describe  the  safety
situation  before  accident.  Current  studies  mainly  concentrate
on  crash  risk  analysis/evaluation  and  crash  risk  prediction,
which can identify the potential influencing factors, analyze the

possible  consequences  or  results  derived  from,  and  evaluate
the  risk  degree  and  impact  range  under  traditional  and  CAVs
conditions.

Crash prediction, in accordance with historic data of crashes,
follows  certain  prediction  theories  and  models,  which  may
investigate  the  crash  variation  regulation,  infer  and  estimate
the  developing  trend  and  possible  results.  Currently,  crash
prediction  studies  include  frequency,  injury  severity  or  crash
rate  from  traditional  statistical  methods  and  econometric
models  to  machine  learning  and  deep  learning  approaches,
which  may  improve  the  accuracy  of  online  real-time  crash
prediction, and benefit the CAVs significantly.

Crash prevention refers to different measures pre-employed
to  avoid  or  reduce  all  types  of  fatalities  or  injury  crashes.
Nowadays,  with  the  application  of  advanced  and  emerging
technologies,  especially  the  rapid  progress  of  artificial  intelli-
gence (AI) and big data, intelligent transportation systems (ITS)
have  been  widely  applied  to  prevent  crashes,  real  time  with  a
variety of modeling and techniques.

With  the  rapid  progress  of  the  Internet  of  Things  (IoTs)  and
the  Internet  of  Vehicles  (IoVs),  safety  modeling  in  the  current
literature  is  mainly  concentrated  on  real-time  crash  prediction
with artificial  neural  networks,  deep learning or  reinforcement
learning  models  to  manage  the  safety  proactively.  However,
many studies related to CAVs are mainly concerned with hard-
ware  performance,  such  as  sensor  reflection  speed  or  braking
speed  when  crash  occurs,  which  may  not  help  increase  the
predictive  performance.  Therefore,  in  order  to  shed  lights  on
the  crash  itself  under  traditional  and  modern  situations,  it  is
necessary to review previous studies systematically, summarize
the  current  findings  comprehensively,  find  out  the  gaps  and
connections, and decide where future direction is oriented.

Figure  1 gives  the  structure  of  the  paper.  The  remainder  of
this paper is organized as follows. Section 2 provides details of
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the crash-related literature review, and Section 3 discusses the
issues  generated  from  traditional  to  modern  safety  modeling
and  gives  future  direction.  Section  4  reaches  conclusions  by
summarizing the main contributions and findings.

 Literature review

In  this  section,  a  review  of  related  papers  is  provided  to
categorize  crashes  into  crash  risk,  crash  prediction  and  crash
prevention. The literature search employs the core database of
Web  of  Science,  and  the  keywords  cover  crash  risk  analysis/
evaluation,  crash  risk  prediction,  crash  frequency,  crash  injury
severity, real-time crash prediction, crash prevention modeling,
and crash prevention measures. In order to find out the existing
issues and future gaps, the literature are explained in detail and
the  strengths  and  weaknesses  of  different  methods  are
summarized in Table 1.

 Crash risk
After  reviewing  the  literature,  we  find  that  there  are  two

main types of crash risk research, crash risk analysis/evaluation,
and crash risk prediction. The former concentrates on the past

influencing factors of crash risk while the latter focuses on the
future possible factors of crash risk.

 Crash risk analysis/evaluation
Some  studies  were  conducted  from  the  discrete  models  for

crash  risk  analysis.  Chen  et  al.[6] analyzed  the  risk  factors  that
significantly  influenced  the  severity  of  intersection  crashes.
Logistic regression was applied and seven risk factors obtained
were  found  to  be  significantly  associated  with  the  severity  of
intersection  crashes,  including  driver  age  and  gender,  speed
zone, traffic control type, time of day, crash type, and seat belt
usage.  Lao  et  al.[7] established  a  highway  rear-end  crash  risk
estimation model  using a generalized nonlinear model  (GNM).
The analysis concluded that the effect of truck percentage and
slope on accident risk was parabolic: they increased crash risks
initially,  but  decreased  after  the  certain  thresholds.  Yu  et  al.[8]

established  disaggregate  crash  risk  analysis  models  based  on
loop  detector  data  and  historical  crash  data  for  urban
expressways.  Bayesian  semi-parametric  inference  technique
was  introduced  to  crash  risk  analysis  to  capture  unobserved
heterogeneity. However, due to the small sample size, weekend
rush  hour  crashes  were  not  considered.  Cunto  &  Ferreira[9]

 
Fig. 1    Flowchart of this review.
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Table 1.    Summary of safety literature.

Crash procedure Representative studies Methods Strengths and weaknesses

Crash Risk Crash risk
analysis/evaluation

Chen et al. (2012)[6],
Lao et al. (2014)[7],
Yu et al. (2016)[8],
Cunto & Ferreira (2017)[9],
Wu et al. (2018)[10],
Gu et al. (2019)[11]

Discrete models (logistic
regression, generalized nonlinear
model, mixed ordered response,
random parameter logistic
regression)

Significant influencing factors can
be clearly revealed while the cause-
and-effect relations need to be
explained by operators.

Theofilatos & Yannis (2014)[12],
Weng et al. (2014)[13],
Weng et al. (2015)[14],
Dingus et al. (2016)[15],
Papadimitriou et al. (2019)[16],
Wang et al. (2021)[17],
Adeyemi et al. (2021)[18],
Mahajan et al. (2022)[19]

Empirical perspectives (e.g. rear-
end collision, drivers merging
behavior, naturalistic driving data)

Results can be obtained from
empirical testing or experiment,
whereas the transferability needs
to be confirmed.

Roshandel et al. (2015)[1],
Papadimitriou & Theofilatos
(2017)[20]

Meta analysis (e.g. random-effects
meta-analysis)

Comprehensive but complicated

Crash risk prediction Yu & Abdel-Aty (2013)[23],
Yuan & Abdel-Aty (2018)[24],
Yasmin et al. (2018)[25],
Wang et al. (2019)[26],
Guo et al. (2021)[27]

Real-time crash risk prediction
(SVM, Bayesian approach, random
forest)

Good results can be obtained by
combing the machine learning or
data mining with traditional
methods, but the prediction
accuracy needs to be improved.

Bao et al. (2019)[28],
Li et al. (2020)[29],
Wang et al. (2021)[30]

Deep neural network (STCL-Net,
LSTM-CNN)

The prediction accuracy is better
whereas the large data and
complicated modeling procedure
are required.

Crash
prediction

Crash frequency
prediction

Qin et al. (2004)[31],
Caliendo et al. (2007)[32],
Ma et al. (2008)[33],
Hou et al. (2022)[34]

Discrete models (ZIP model,
negative binomial, multivariate
Poisson-lognormal, random
parameter logit model)

Significant influencing factors can
be clearly revealed while the cause-
and-effect relations need to be
explained by operators.

Hossain & Muromachi (2012)[35],
Sun & Sun (2015)[36],
Dong et al. (2015)[37],
Huang et al (2016)[38],
Tang et al. (2021)[39]

Bayesian approach (random
multinomial logit, spatial model,
hierarchical random parameter
Tobit model)

The prediction accuracy is
improved while the modeling is
becoming complicated.

Dong et al. (2015)[37],
Huang et al. (2016)[38],
Ambros et al. (2018)[40],
Wu & Tsu (2021)[41]

Regional level (SVM with spatial
weight, Bayesian spatial model,
CNN-GRU)

The prediction accuracy is better
while the modeling procedure is
complicated.

Crash injury severity
prediction

Delen et al. (2017)[42],
Iranitalab & Khattak (2017)[43],
Huang et al. (2018)[44],
Santos et al. (2022)[45]

Machine learning methods (SVM,
NNC, CART, random forest)

The prediction is accuracy is
increased whereas the data
requirement is large.

Li et al. (2019)[46],
Hou et al. (2022)[34]

Unobserved heterogeneity (mixed
logit model, random parameters
logit model)

Heterogeneity issue can be
addressed while temporal
instability is still neglected.

Real-time crash
prediction

Basso et al. (2021)[47],
Thapa et al. (2022)[48],
Man et al. (2022)[49],
Ma et al. (2022)[50],
Li & Abdel-Aty (2022)[51],
Hu et al. (2022)[52]

Deep neural network (generative
adversarial network, TA-LSTM, FC-
LSTM, ConvLSTM)

The prediction accuracy is better
but the data requirement is
improved.

Ahmed & Abdel-Aty (2011)[53],
Basso et al. (2021)[47],
Li & Abdel-Aty (2022)[51]

Real-time data (speed data,
trajectory fusion data)

Multisource data increase the
prediction accuracy but data
processing is complicated.

Crash
prevention

Modeling
perspective

Lee et al. (2003)[54],
Mirzaei et al. (2014)[55]

Probabilistic model and logistic
regression model

Traditional methods can identify
the impact factors clearly but the
accuracy needs to be improved.

Empirical perspective Ker et al. (2005)[56],
El Khoury & Hobeika (2006)[57],
Chen & Qin (2019)[58],
Yue et al. (2020)[59],
Hinnant & Stavrinos (2020)[60],
Gidion et al. (2021)[61],
Peng & Xu (2021)[62]

Test or simulation Real scenarios benefit the
realization of crash prevention,
while the generality needs to be
demonstrated.

Safety of
CAVs

Crash risk Jang et al. (2020)[63] Data from CVs The results were effective in
reducing crash potential, but the
transferability needs to be
examined.

Crash prediction Xu et al. (2019)[64],
Sinha et al. (2020)[65]

Road testing or simulation The prediction accuracy is better,
but the result didn’t achieve the
expected safety benefits.

Crash prevention Wang et al. (2020)[66],
Wang et al. (2021)[30]

Meta-analysis or surrogate safety
measures

The number of crashes could be
reduced whereas the transferability
still needs to be demonstrated.
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investigated  factors  that  influence  the  severity  of  motorcycle
accidents in the urban streets of  Fortaleza.  The mixed ordered
response  models  were  employed  and  the  results  suggested
that  motorcyclists  using helmets reduced their  chances by 9%
of  suffering  severe  and  fatal  injuries  after  the  crash.  Accidents
during  the  daylight,  as  well  as  on  weekdays,  presented  lower
risk of resulting in fatal injuries. Wu et al.[10] proposed the crash
risk increase indicator to investigate the differences of crash risk
between  foggy  and  clear  conditions.  The  binary  logistic
regression model was employed and the results found that the
crash  risk  was  about  the  increase  at  ramp  vicinities  in  fog
conditions.  In  the  study  by  Gu  et  al.[11],  a  multilevel  random
parameters  logistic  regression  model  was  presented  to
investigate  driver’s  merging  behavior  in  the  acceleration  lane
with unmaned aerial  vehicle  (UAV) videos.  The results  showed
that  the  merging  speed,  driving  ability  and  the  merging
location affected the crash risk at interchange merging areas.

Some work was performed from the empirical perspective of
crash  risk.  Theofilatos  &  Yannis[12] summarized  the  effect  of
traffic  and weather characteristics on road safety.  It  was found
that  traffic  flow  had  a  non-linear  relationship  with  crash  rates,
while  speed  limits  had  a  positive  relation  with  crash
occurrence.  On  the  other  hand,  the  effect  of  precipitation
increased  crash  frequency  but  didn’t  have  a  consistent  effect
on  injury  severity,  and  other  weather  parameters  on  safety
were  not  significant.  Weng et  al.[13] used the  deceleration rate
to avoid the crash in the vehicle trajectory data to measure the
rear-end  collision  risk  under  four  different  vehicle  following
modes:  car-car,  car-truck,  truck-car  and  truck-truck  in  the
construction area. The results showed that the car-truck follow
mode had the highest risk of rear-end crash, followed by truck-
truck,  truck-car  and  car-car.  Weng  et  al.[14] investigated  the
correlation  between  the  drivers’  merging  behavior  and  the
rear-end  crash  risk  in  work  zone  merging  areas.  The  time  to
collision and the deceleration rate were employed to avoid the
crash to calculate the rear-end crash risk between the merging
vehicle and its adjacent vehicles. It was found that the rear-end
crash risk increased when the merging vehicle or the adjacent
vehicle  was  a  heavy  vehicle.  Dingus  et  al.[15] evaluated  risk
factors  with  naturalistic  driving  data  collected  from  multiple
onboard  video  cameras  and  sensors.  The  results  revealed  that
crash  causation  has  shifted  significantly  in  recent  years,  and
distraction is detrimental to driver safety. Papadimitriou et al.[16]

summarized  the  review  of  crash  risk  factors  related  to  road
infrastructure.  Ten  areas  (alignment  features,  cross-section
characteristics,  road  surface  deficiencies,  work  zones,  junction
deficiencies, etc.) were structured and synthesis of results were
made on individual risk factors. In view of the shortcomings of
the single-dimensional risk source analysis method of crash risk
in  the  past,  Wang  et  al.[17] proposed  a  multi-dimensional  risk
source  method,  which  assigned  the  weight  of  crash  respon-
sibility  to  risk  factors,  so  as  to  incorporate  crash  responsibility
into  crash  risk  estimation,  and  under  the  combination  of
multiple risk factors quantify crash risk. The analysis concluded
that  the  superposition  effect  of  risk  factors  on  crash  was  non-
linear, and multi-dimensional risk factors had amplifying effect
on the accumulation of crash risks. Adeyemi et al.[18] evaluated
the  association  between  the  rush  hour  period  and  fatal  and
non-fatal  crash  injuries.  Results  of  the  meta-analysis  revealed
that the rush-hour period was associated with a 41% increased
risk of fatal crash injury in the United States while the morning

rush  hour  period  was  related  with  increased  crash  injury  risk
compared to the afternoon rush hour period. Mahajan et al.[19]

proposed a method for estimation of rear-end crash risk with a
large naturalistic traffic dataset. The results showed that speed-
drop  was  connected  with  increased  crash  risk  as  well  as  lane
changing.

Meta analysis has been popular in recent years. Roshandel et
al.[1] undertook  a  systematic  literature  review  on  the  relation-
ships  between  traffic  characteristics  and  crash  occurrence.
Meta-analysis was conducted and the results showed that three
summary  estimates  (speed  variation,  speed  difference  and
average  volume)  had  statistically  significant  negative  impacts
on crash occurrence. It then outlined the shortcomings and the
common  issues  shared  among  the  selected  studies  from  five
aspects,  and  described  where  future  research  should  be
directed.  Papadimitriou  &  Theofilatos[20] meta-analyzed  the
crash-risk factors in freeway entrance and exit areas. A random-
effects  meta-analysis  was  conducted  on  the  effect  of  ramp
length on crash severity, and a nonsignificant overall effect was
observed.  And  random-effects  meta-analyses  regarding
deceleration  lane  length  suggested  a  nonsignificant  effect  on
road safety  (both on frequency and severity)  at  a  95% level  of
confidence.  It  was  found  there  was  no  indication  of  strong
publication bias in any of the meta-analyses performed.

From the perspective of drivers, as for older drivers, Asbridge
et al.[21] focused on the impact of restricted driver’s licenses on
crash risk. The results found that restricted driver licensing may
be  effective  in  reducing  crash  risk  and  decreasing  traffic
violations  for  older  drivers.  As  for  young  drivers,  Banz  et  al.[22]

performed  a  systematic  review  of  databases  on  crash-risk
behaviors.  Driving  impairment  mainly  focused  on  drowsy/
fatigued  driving  or  alcohol-impaired  driving  while  distraction
driving primarily concentrated on cognitive load, auditory and
visual  distractors.  The  findings  showed  that  coupling
neuroscience with driving simulation was feasible in examining
driving behavior of contributing factors for fatal  motor vehicle
crashes.

 Crash risk prediction
Some methods or approaches have been applied in real-time

crash  risk  prediction  under  traditional  conditions.  Yu  &  Abdel-
Aty[23] employed  supported  vector  machine  (SVM)  to  evaluate
real-time  crash  risk.  Model  comparisons’  results  showed  that
the SVM model with RBF kernel provided the best goodness-of-
fit.  While the SVM models with linear kernel had similar results
as  the  logistic  regression  models.  Based  on  23  signalized
intersections  in  central  Florida  (USA),  Yuan  &  Abdel-Aty[24]

divided  crashes  into  intersection  crashes  and  intersection
entrance  crashes,  and  developed  Bayesian  conditional  logistic
models for the two types of crashes, respectively.  It  was found
that the significant influencing factors differed in the real-time
crash  prediction  of  intersection  crashes  and  intersection
entrance  crashes.  Yasmin  et  al.[25] developed  a  joint  reactive
and  proactive  crash  modeling  framework  by  coupling  the
monthly  crash  risk  and  real-time  crash  risk  in  a  unified
econometric framework for a microscopic analysis unit. Among
them, the monthly crash risk was evaluated by using static road
attributes  to  establish  a  binary  logit  model,  and  the  real-time
crash  risk  is  evaluated  by  using  different  real-time  traffic
attributes  to  establish  multiple  logit  models.  However,  the
traffic  characteristics  of  the  nearest  downstream  or  upstream
road  segment  were  not  considered  in  the  real-time  crash  risk
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prediction  model.  Wang  et  al.[26] established  Bayesian  logistic
regression  model  and  SVM  model  respectively  by  considering
the geometric, socio-demographic, and trip generation predic-
tion data to reflect  drivers'  characteristics  and behaviors  when
analyzing  the  real-time  crash  risk  of  expressway  ramps.  The
results showed that models taking into sociodemographic and
trip  generation  prediction  data  outperformed  models  without
considering  these  factors.  Guo  et  al.[27] developed  a  crash  risk
model based on risky driving behavior and traffic flow. Random
forest  was  considered  to  select  variables  with  strong  impacts
on  crashes  and  synthetic  minority  oversampling  technique
(SMOTE)  was  used  to  adjust  the  imbalanced  dataset  so  that  a
logistic  regression  model  was  developed  for  predicting  crash
risk.  The  results  indicated  that  the  crash  risk  prediction  model
had high accuracy of 84.48% of the crashes.

With  the  introduction  of  deep  neural  network,  crash  risk
prediction has been transmitted from tradition to CAVs era. Bao
et  al.[28] proposed  a  spatiotemporal  convolutional  long  short-
term memory network (STCL-Net) for predicting citywide short-
term  crash  risk  with  multi-source  data.  It  was  found  that  the
prediction  performance  decreased  as  the  spatiotemporal
resolution  of  prediction  task  increased.  Li  et  al.[29] proposed  a
real-time  crash  risk  prediction  model  with  a  long  short-term
memory  convolutional  neural  network  (LSTM-CNN),  in  which
LSTM captured the long-term dependency while CNN extracted
the time-in-variant features. Wang et al.[30] provided a compre-
hensive  and  systematic  review  of  surrogate  safety  measures
(SSM)  under  CAV  environment.  Simulation  was  considered  as
the  most  viable  solution  to  evaluate  CAV  risk  modeling,  but
road test was still the main approach.

 Crash prediction

 Crash frequency prediction
Discrete  models  have  been  widely  applied  in  frequency

prediction.  Qin  et  al.[31] presented  zero-inflated-Poisson  (ZIP)
model to predict crash counts for different types of crashes by
considering  the  influencing  factors,  e.g.  annual  average  daily
traffic (AADT), segment length, speed limit and roadway width.
It  was  found  that  the  relationship  between  crashes  and  AADT
was  non-linear  and  varied  by  crash  types.  Caliendo  et  al.[32]

predicted the crash frequency with Poisson, Negative Binomial
and  Negative  Multinomial  regression  models  for  multi-lane
roads  in  Italy.  The  results  showed  that  for  curves,  length,
curvature and AADT were significant while for tangents length,
AADT  and  junctions  were  significant.  Ma  et  al.[33] proposed  a
multivariate  Poisson-lognormal  (MVPLN)  model  to  simulta-
neously  model  crash  count  predictions  for  different  injury
severity.  This  overcame  the  drawbacks  of  using  univariate
prediction  models  that  ignored  the  effects  of  unobserved
factors  between  crash  rate  of  different  injury  severities  on  a
particular  road  segment.  Hou  et  al.[34] simulated  four  random
parameter  models  and  random  parameter  logit  model  with
heterogeneity  in  the  means  and  variances  was  found  to
provide  the  best  accuracy.  The  temporal  instability  was
evaluated and pairwise comparison provided potential insights
into temporal variability.

Bayesian  approach  has  been  employed  in  crash  prediction.
Hossain  &  Muromachi[35] employed  random  multinomial  logit
model  to  identify  the  predictors  and  then  Bayesian  belief  net
was  applied  to  establish  the  real-time  crash  prediction  model.
The  results  reflected  that  at  an  average  threshold  value  the

accuracy  reached  66%  of  the  future  crashes.  Sun  &  Sun[36]

proposed a dynamic Bayesian network model of time sequence
traffic  data  to  find  out  the  relationship  between  crash
occurrence  and  dynamic  speed  data.  It  was  found  that  the
proposed  model  with  speed  condition  data  and  nine  traffic
state  combinations  can  achieve  76.5%  crash  prediction
accuracy.  Dong  et  al.[37] proposed  support  vector  machine
(SVM)  to  assess  multi-dimensional  spatial  data  in  crash
prediction at the level of traffic analysis zones. Bayesian spatial
model with conditional autoregressive prior was compared and
the  results  revealed  that  SVM  models  outperformed  the  non-
spatial  model  and  addressed  complex  spatial  data  in  regional
crash prediction modeling. Huang et al.[38] developed a macro-
level  Bayesian  spatial  model  with  conditional  autoregressive
prior  and  a  micro-level  Bayesian  spatial  joint  model  to  predict
zonal crashes. It was found that the micro-level Bayesian spatial
model  revealed  better  performance,  while  the  macro-level
crash  analysis  required  less  detailed  data.  Tang  et  al.[39]

proposed  a  conditional  quantile-based  Bayesian  hierarchical
random  parameter  Tobit  model  investigate  the  regional
varying effects of road-related factors on crash rate at different
quantiles of the crash rate distribution. This was used to explore
crash rate in areas with extremely high crash rate.

Some scholars  have established crash prediction models  for
regional crash rate. Dong et al.[37] considered the spatial corre-
lation  between  adjacent  regions  when  establishing  a  regional
crash  prediction  model,  and  established  a  SVM  model  with
spatial  weight  characteristics.  Through  comparison,  it  was
found that the model was better than the non-spatial model in
terms  of  model  fitting  and  prediction  performance.  Huang  et
al.[38] compared the predictive performance of a macro method
and  micro  method  for  regional  crash  prediction  models.  The
macro  method  employed  a  macro-Bayesian  space  model  and
the  micro-method  employed  the  summation  of  expected
crashes across all road entities within a sub-area to estimate the
frequency of sub-area crashes,  where each subregion adopted
a  micro-Bayesian  spatial  model.  The  results  showed  that  the
micro-level  model  has  better  overall  fitting  and  prediction
performance,  and  can  better  understand  the  micro-factors
closely  related  to  the  crash,  which  was  easy  to  obtain  more
direct countermeasures. The advantage of crash analysis at the
macro  level  is  that  it  requires  less  detailed  data  and  is  an
essential  means  of  incorporating  traffic  safety  considerations
into  long-term  transportation  planning.  Ambros  et  al.[40]

summarized the crash prediction models (CPMs) from state-of-
the-art  and  state-of-the-practice,  specifically  including  data
collection,  road  network  segmentation,  variable  selection,
functional  form,  validation  models  and  how  to  use  them  in
practice for current applications to help practitioners rationally
use crash prediction models in the context of lag theory. Wu &
Tsu[41] developed a fusion deep learning approach combining a
convolution  neural  network  (CNN)  and  gated  recurrent  units
(GRU)  to  predict  at-fault  crash  driver  frequency  with  city-level
traffic  enforcement  predictors.  The  CNN-GRU  prediction
accuracy  outperformed  other  methods  and  the  findings  can
facilitate the development of traffic safety measures.

 Crash injury severity prediction
Machine learning and related methods have been applied in

injury  severity  prediction.  Delen  et  al.[42] identified  significant
influencing  factors  affecting  injury  severity  through  SVM  and
applied  sensitivity  analysis  to  the  predictive  model,  determi-
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ning  the  relative  importance  of  these  factors.  The  results
showed that the use of seat belts and manner of collision were
the  primary  factors  affecting  the  severity  of  the  crash,  but  the
study only made a dichotomous classification of injury severity.
Iranitalab  &  Khattak[43] compared  multinomial  logit  (MNL),
nearest neighbor classification (NNC), SVM and random forests
(RF) in predicting crash severity, and investigated the effects of
data  clustering  methods  on  the  performance  of  crash  severity
prediction  models.  The  results  showed  that  NNC  had  the  best
performance  in  overall  and  more  severe  crashes,  and  data
clustering didn’t affect the prediction results of SVM. Huang et
al.[44] used a classification and regression tree (CART) model to
examine the interactive effects of various influencing factors on
injury severity in mountain highway crashes. It was found that a
combination  of  the  following  factors  had  a  significant  impact
on the occurrence of serious crashes: coach drivers involved in
improper  lane  changing  and  other  improper  actions,  drivers
involved  in  speeding  during  afternoon  or  evening,  drivers
involved in speeding along large curves and straight segments
during  morning,  noon  or  night,  and  drivers  experiencing
fatigue  while  passing  along  the  downgrade.  However,  in  this
literature,  injury  severity  measures  were  only  divided into  two
categories due to data limitations. Santos et al.[45] summarized
the  crash  injury  severity  modeling  methods  with  20  different
statistical  or  machine  learning  techniques.  Random  forest
showed  the  best  performance,  followed  by  support  vector
machine  and  decision  tree.  Casualty  issues,  unobserved
heterogeneity and temporal instability need to be considered.

In  order  to  capture  the  unobserved  heterogeneity  in  the
influencing  factors  of  single-vehicle  injury  severity,  Li  et  al.[46]

divided  the  entire  dataset  into  seven  sub-data  sets  by  latent
class analysis, and then built a mixed logit model on each sub-
data  set.  This  study  only  assumed  the  widely  used  normal
distribution  as  the  assumption  of  randomly  distributed
variables in the mixed logit  model,  which may not be realistic.
Hou  et  al.[34] compared  the  performance  of  different  random
parameters  logit  models  for  injury  severity  prediction.  The
comparison  found  that  the  random  parameters  logit  model
with  heterogeneity  in  the  means  and  variances  outperformed
other models in terms of predictive performance.

 Real-time crash prediction
Deep neural  network has provided alternatives for  real-time

crash  prediction.  Based  on  convolutional  neural  networks,
Basso et al.[47] built an accident prediction model. It was found
that  deep  convolutional  generative  adversarial  networks
technique  with  random  undersampling  performed  better  for
real-time crash prediction using vehicle-by-vehicle data. Thapa
et al.[48] developed a duration-based, real-time crash prediction
model  by  considering  time-varying  covariates,  and  equal  time
intervals  of  crashes  were  modeled  as  alternative  with
multinomial  logit  models  with  large  data.  Different  datasets
were compared and resulted in reasonable accuracy. In order to
improve  the  spatiotemporal  transferability  of  real-time  crash
prediction  model,  Man  et  al.[49] developed  Deep  Neural
Network  (DNN)  as  a  baseline  model  with  imbalanced  dataset
and  incorporated  Generative  Adversarial  Network  (GAN)  to
generate  synthetic  crash  data.  The  results  revealed  that  the
predictability  of  the  transferred  models  outperformed  the
existing  ones  with  95%  accuracy.  Ma  et  al.[50] presented  am
improved  genetic  programming  (GP)  for  real-time  crash
prediction.  Logistic  regression  and  backward-propagation

neural  network  were  considered  as  baseline  methods  to
examine the interpretability and accuracy of GP, and the results
displayed  that  GP  prediction  model  can  solve  the  trade-off
between  interpretability  and  accuracy.  Li  &  Abdel-Aty[51]

developed  a  deep  learning  model  to  predict  real-time  crash
likelihood  with  trajectory  data.  A  temporal  attention-based
long short-term memory (TA-LSTM) was cooperated to capture
temporal  correlation  between  time-series  data  and  a
convolutional neural network (CNN) were combined to predict
the  crash  likelihood.  The  findings  showed  that  the  proposed
model  performed  well  and  trajectory  fusion  improved  the
prediction  accuracy.  Hu  et  al.[52] proposed  to  improve  the
defect  of  fully  connected  long  short-term  memory  (FC-LSTM)
network  model  of  ignoring  the  spatial  features  of  crash  by
adopting Convolutional Long Short-Term Memory (ConvLSTM)
network,  which  can  effectively  capture  the  spatiotemporal
characteristics  of  crashes  within  the  road  network.  By
comparison,  it  was  found  that  ConvLSTM  has  better  accuracy,
lower loss value and higher computational efficiency.

The data used by real-time crash prediction models was also
changing.  Ahmed  &  Abdel-Aty[53] used  real-time  speed  data
collected  by  a  tag  reader  on  a  toll  road  called  an  automatic
vehicle identification (AVI) system to build a RF model for real-
time crash prediction, which showed a 70% prediction accuracy
rate.  Basso  et  al.[47] proposed  a  new  image-inspired  data
architecture  for  most  past  crash  real-time  prediction  models
using  data  aggregated  every  five  or  ten  minutes,  which  used
random  undersampling  algorithm  to  rebalance  the  data  and
established  the  Deep  Convolutional  Generative  Adversarial
Networks  model.  It  was  found  that  the  model  outperformed
other  traditional  forecasting  methods  in  terms  of  AUC  and
sensitivity values to a range of false positives. Li & Abdel-Aty[51]

applied trajectory fusion data to real-time crash prediction. The
features extracted from the data were used to predict the real-
time crash probability,  and the temporal attention mechanism
was  adopted  to  improve  the  prediction  accuracy  of  the  deep
learning crash probability prediction model.

 Crash prevention
Some  works  were  performed  from  modeling  perspective  to

prevent  the  crashes.  Lee  et  al.[54] predicted  the  likelihood  of
crashes on freeways on the basis of traffic flow conditions, and
suggested  the  risk-based  evaluation  framework  for  real-time
traffic control. A probabilistic model was adopted, and the test
showed  that  this  model  overcame  the  limitations  of  many
existing  static  crash  prediction  models.  Crash  potential
estimated by this model was sensitive to short-term variation of
traffic  flow.  Mirzaei  et  al.[55] evaluated  the  relation  between
drivers’  knowledge,  attitude,  and  practice  (KAP)  regarding
traffic regulations, and their deterministic effect on road traffic
crashes (RTCs). After a sampling survey, logistic regression was
used  to  analyze  the  questionnaire  results  and  evaluated  the
relationship  between  RTCs  and  KAP  variables.  The  results
showed  that  safer  attitude,  and  safer  practice  were  associated
with  a  decreased  number  of  RTC,  but  only  attitude  was
significantly concerned with a decrease of RTC.

A  large  amount  of  prevention  measures  have  been  con-
ducted  empirically.  Ker  et  al.[56] investigated  the  effectiveness
of  post-license  driver  education  for  preventing  road  traffic
crashes.  Through  a  systematic  review  and  meta-analyses  of
random controlled trials, the results provided no evidence that
post-license  driver  education  was  effective  in  preventing  road
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injuries  or  crashes.  El  Khoury  &  Hobeika[57] developed  a  new
simulation  in  vertical  curve  on  a  two-lane  two-way  highway.
This  system  detected  and  warned  the  violating  vehicle  in  real
time, and also warned the opposite vehicles in the same lane as
the  violating  vehicles  were  being  warned.  The  results  showed
that  the  system  would  reduce  the  possible  crashes  from  the
base  case  by  a  mean  of  26.3%  in  the  eastbound  and  33.3%  in
the westbound. Chen & Qin[58] proposed a crash prediction and
prevention  method  based  on  simulated  traffic  data  to  detect
imminent  crash  risk  and  help  recommend  traffic  control
strategies (TCS) to prevent crashes. The proposed method was
tested in a case study with variable speed limit (VSL) strategies
for  demonstration,  and results  showed that  the method could
effectively  detect  crash-prone  conditions  and  evaluate  the
safety  and  mobility  impacts  of  various  TCS  alternatives  before
their  deployment.  Yue et  al.[59] conducted an in-depth investi-
gation  of  pedestrian  crashes  and  identified  crash  causation
patterns  and  its  implications  for  pedestrian  crash  prevention.
The results showed that the pattern concerned with distracted
driving  and  unexpected  change  of  pedestrian  trajectory
accounted for  a  large number of  the crashes.  and the findings
presented the implications for roadway facility design as well as
roadway  safety  education  and  pedestrian  prevention  system
development.  Hinnant  &  Stavrinos[60] evaluated  how  rewards
favoring  safe  choices  affected  decision  making  while  teens
played a driving game with and without peer observation and
whether rewards were more effective for  adolescents with the
riskiest driving styles. It was found that rewards for safe driving
can  be  an  effective  mechanism  for  reducing  motor  vehicle
crashes,  especially  for  the  most  at-risk  drivers,  if  they  can  be
made  appetizing  to  adolescents.  Gidion  et  al.[61] analyzed  a
sample of injured motorcycle riders from the German In-depth
Accident  Study  (GIDAS)  to  identify  priorities  for  injury
assessment  and  prevention.  The  results  indicated  that  the
priorities  for  rider  safety interventions were:  fracture of  the rib
cage,  femur  fracture,  tibia  fracture,  etc.,  which  needed  to  be
considered  before  using  and  developing  procedures  and  test
tools.  Peng  &  Xu[62] developed  a  combined  VSL  and  lane
change guidance (LCG) controller to prevent secondary crashes
(SCs).  The combined controller  was based on distributed deep
reinforcement  learning  (RL).  Simulation  experiments  indicated
that  the  developed  combined  controller  achieved  higher
performance in general than any single sub-controller, and was
able  to  accurately  capture  the  spatial  and  temporal  impact
areas  caused  by  prior  crashes  and  generate  proper  interven-
tions of traffic flow proactively.

 Safety of CAVs
As  for  the  crash  risk,  Jang  et  al.[63] analyzed  crash  risks

according to  the data  obtained from coonected vehicles  (CVs)
equipped  with  in-vehicle  forward  collision  warning  systems,
and  estimated  the  safety  benefits  of  the  forward  hazardous
situation warning (FHSW) information presented by a C-ITS pre-
deployment project for Korean freeways. The results suggested
that  providing  FHSW  based  on  V2X  in  a  CV  environment  was
effective in reducing the crash potential.

As  for  crash  prediction,  Xu  et  al.[64] investigated  the
characteristics  and  patterns  of  CAVs  involved  crashes.  The
descriptive  statistics  analysis  was  employed  to  investigate  the
characteristics of CAVs involved crashes and a bootstrap based
binary logistic  regressions were then developed to investigate
the factors  contributing to  the  collision type and severity.  The

results suggested that the CAV driving mode, collision location,
etc.,  were the main factors contributing to the severity level of
CAV involved crashes.  The CAV driving mode,  CAV stopped or
not,  CAV  turning  or  not,  etc,  were  the  factors  affecting  the
collision  type  of  CAV  involved  crashes.  Sinha  et  al.[65] inves-
tigated  the  effect  of  the  introduction  of  CAVs  on  both  injury
severity  and  frequency  through  a  microsimulation  modelling
exercise. The results indicated that the introduction of CAVs did
not  achieve  the  expected  decrease  in  crash  severity  and  rates
involving  manual  vehicles,  despite  the  network  performance
has  been  improved.  And  the  safety  benefits  of  CAVs  were  not
proportional to CAV penetration, full-scale benefits of CAVs can
only be achieved at 100% CAV penetration.

From  the  prevention  perspective,  Wang  et  al.[66] evaluated
the  safety  effectiveness  of  nine  common  and  important  CV  or
AV  technologies,  and  tested  the  safety  effectiveness  of  these
technologies  for  six  countries.  Meta-analysis  was  conducted
and  the  results  displayed  that  if  all  of  technologies  were
implemented  in  the  six  countries,  the  average  number  of
crashes could be reduced by 3.40 million. Wang et al.[17] made a
comprehensive  and  critical  review  of  SSM  (Surrogate  Safety
Measures)  and  discussed  their  various  applications,  especially
in CAV related safety studies. It was found that when modeling
safety  in  mixed  autonomy  traffic  or  fully  automated  traffic,
whether  the  SSM  validated  in  traditional  traffic  environments
can still be applicable was a critical issue, and the transferability
of  SSM,  using  real-world  automated  driving  data  for  deriving
SSM, would be interesting areas for future research.

 Discussion

During recent decades,  a  number of  researchers have made
considerable  progress  in  investigating  roadway  safety,  espe-
cially  the  relationship  between  crashes  and  the  influencing
factors.  Due  to  the  big  data  and  emerging  AI  technologies,
data-driven  crash  related  studies  have  been  the  common
understanding  nowadays.  Although  much  progress  has  been
made  in  this  area,  challenging  issues  are  still  available  from
traditional  to  modernity.  Consequently,  the  current  state  of
crash  related  studies  is  valuable  so  as  to  identify  the  future
orientation.

 General discussion
As  is  known,  the  causation  of  crashes  is  a  complicated  and

instant  procedure,  which  may  involve  the  interactions  of
human beings (drivers, motorcyclists, cyclists and pedestrians),
vehicles  (motorized  and  non-motorized),  roadways  (classifica-
tion,  geometric  design  and  roadside  facilities),  and  environ-
mental  factors  (lighting  or  weather,  or  facilities).  Generally
speaking, during model processes, the more influencing factors
included, the more accurate the crash estimation/prediction is.
However, there are some issues when selecting the variables to
include.  First,  the  co-linearity  between  influencing  variables
should  be  examined  before  the  final  model  is  determined.
When  the  co-linearity  is  involved,  the  model  may  incorrectly
reflect  the  actual  relation,  which  may  lead  to  modelling
mistakes.  There  are  some  alternatives  to  be  considered  to
remove the co-linearity.  For example, the more significant one
is  selected  while  the  other  is  eliminated  between  two
influencing  variables,  or  some  interaction  form,  plus/subtrac-
tion, multiplying/dividing, even Log, can be chosen to address
the  co-linearity,  which  generates  the  second  point,  the
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interactions  between  variables.  Crashes  may  happen  due  to
more than one influencing factor,  and the interactions among
human  beings,  vehicles,  roadways  and  environment  accounts
for over 30% of crashes[1] ， thus the crash prediction with only
one  type  of  factor  may  omit  some  important  information  and
may cause error rates or false positives.

More  importantly,  two  model  specification  issues  are  often
discussed  during  modeling.  On  one  hand,  when  data  are
collected,  some  important  factors  may  be  unobserved  or
omitted,  thus  the  heterogeneity  issue  occurs,  so  the  specifi-
cation  results  of  crashes  are  probably  biased  or  the  model
assessment  may  be  incorrectly  estimated.  On  the  other  hand,
there may exist intrinsic relations between crashes and impact
factors (e.g. crash rate vs travel speed)[67], and vice versa, which
may generate endogeneity issue. Similarly, without taking into
account  of  the  endogenous  variables,  the  model  specification
may be biased or the resulting impact may be postulated.

Therefore, because of these reasons above, the performance
of the current crash analysis/evaluation and prediction models
are less accurate,  which may need comprehensive and diverse
datasets to increase the preciseness and consistency.

 Data source
Traditionally,  the  crash  data  were  collected  by  official

transportation departments,  specifically  from police  reports  to
reflect  the  time,  location  and  related  characteristics  of  the
crash.  However,  due  to  different  reasons,  not  all  the  crashes
were  documented  in  the  police  reports  since  some  of  them
were not reported to the police,  so the data may not cover all
the  cases,  thus  the  modeling  accuracy  may  be  biased.  Conse-
quently, the cause-and-effect relationship may not be precisely
derived  from  the  partial  datasets,  hence  more  advanced  data
collection technologies have been applied to improve the data
quality.

Currently,  video  surveillance  has  been  considered  as  the
most  direct  and  precise  method,  which  can  not  only  'see'  the
crash occurrence through the video footage, but render image
processing  techniques  to  extract,  identify  and  track  the
trajectories  of  vehicles  so  that  the  crash  can be  predicted and
detected.  For  instance,  YOLO (You Only  Look Once)  series  can
be  used  to  detect  the  vehicles  from  the  videos  while  SORT
(Simple  Online  and  Real-time  Tracking)  algorithms  can  be
employed to track the vehicle trajectories so that the crash can
be  forecasted  in  advance,  which  may  help  improve  the  data
accuracy.  Another  merit  of  video  cameras  is  to  validate  the
information from the police report through crosschecking, and
more  neglected  or  unreported  crashes  can  be  captured  or
retrieved[1].

One  of  the  widely  used  devices  of  data  collection  is
unmanned aerial vehicle or drones, which has been paid more
attention  by  researchers  due  to  direct,  cheap  and  convenient
advantages.  Similar  to  video  surveillance,  drones  can  be
adopted to sense the traffic scenarios, detect the vehicles with
advanced techniques and pre-estimate the moving conditions
so that crashes can be predicted and managed in advance. On
the other hand, the drones can be manipulated for certain area
with aerial photographs, and the statistics of traffic flow can be
obtained  so  that  the  traffic  conditions  can  be  analyzed  and
congestion  reasons  can  be  deduced  from  continuous  moni-
toring within certain periods,  which may provide a foundation
for real-time dispersion of traffic flow.

The  emerging  technique  around  traffic  parameters  is  real-
time online web crawler based on Python, which is one type of
automatic  data  collection  methods.  Through  this  crawler
technique, the traffic variables (e.g. volume, speed and density)
can  be  collected  directly  every  5  or  10  min,  which  is  an
empirically superior option, compared to the conventional loop
detectors  for  traffic  variables.  Furthermore,  for  some  specific
segments  within  certain  periods  the  spatial  and  temporal
features  can  be  obtained  from  such  data,  which  may  benefit
the vehicle trajectories tracking, crash detection and prediction.
This  method  belongs  to  smart  transportation,  which  is  con-
venient  and  efficient,  satisfying  the  accurate  requirements  of
real-time traffic conditions, and worthy of promotion.

As  for  CAVs,  a  variety  of  sensors  embedded  in  the  vehicles
can  detect  all  the  vehicles  and  objects  around,  and  make  the
decisions as soon as possible if something abnormal is about to
happen.  Identical  to  the  video  or  image  processing  approach,
the sensors can detect, identify and track the moving objects or
images,  and  then  artificial  intelligence  algorithms  (e.g.  deep
learning,  reinforcement  learning)  are  employed  to  process
them immediately. Meanwhile, the CAVs need to communicate
with  other  vehicles  (V2V),  infrastructures  (V2I),  and  roadside
facilities  and  devices  (V2X)  so  that  the  vehicles-roadway
synchronization and real-time traffic conditions can be realized
within seconds through the cloud and big data, in this way the
crash prediction tends  to  be  more  accurate  so  as  to  avoid  the
conflict  in  advance.  Although  a  large  number  of  high-tech
corporations  and  motor  companies  are  investing  in  huge
finances  to  develop  the  CAVs,  the  testing  mileage  has  been
increasing  day  by  day,  so  far  no  company  can  guarantee  that
their  CAVs  are  100%  safe  since  crashes  continue  to  occur.
Meanwhile,  as  stated  by  Li  et  al.[68],  accompanied  with  CAVs,
there  are  many  issues  (e.g.  ethics,  reliability,  law  and  enfor-
cement)  to  be  dealt  with,  but  CAVs  are  the  future  transport
modes,  and  will  be  realized  with  the  progress  of  science  and
technologies.

 Modeling selection
After  reviewing  the  literature  as  mentioned  above,  we

generally categorize the models into three types: statistical and
econometric models,  machine learning and AI  algorithms,  and
empirical experiments.

Conventionally,  statistical  and  econometric  models  are
widely  employed  by  most  studies  of  crashes,  and  the  main
reason  lies  in  that  these  models  can  reflect  certain  principles
about  the  crash  analysis  or  estimation  with  some  reasonable
assumptions,  and  some  results  may  reveal  certain  generality
and  transferability.  However,  with  the  increasing  requirement
of  massive  data,  the  conventional  methods  can’t  meet  the
demand of  big  data,  thus  machine  learning and AI  algorithms
reveal strong potentiality for nonlinear, dynamic, real time and
complex  situations.  Among  them,  deep  neural  networks  has
been  widely  applied  in  crash  analysis,  estimation  and  predic-
tion,  and  convolutional  neural  network,  LSTM,  and  hybrid
models have been demonstrated by various studies[49,69−70].

Another  critical  approach  of  modeling  is  empirical  experi-
ments, i.e. through actual testing or real experiments, the safety
level  can  be  evaluated  or  predicted,  especially  for  the  CAVs.
Currently,  most  of  the  CAVs  are  still  testing  the  software  and
hardware,  and  with  mileages  of  roadway  testing  increasing,
different  types  of  scenarios  have been provided,  and a  variety
of the risk evaluation schemes have been training and learning.
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Finally, how to select the modeling depends on the problem
description,  dataset  and  objectives  about  crashes:  if  the  pro-
blem  belongs  to  the  traditional  statistical  issue,  econometric
modeling may be a better option, while the massive data may
turn to machine learning or AI algorithms, and if the modeling
needs  to  be  established  through  actual  testing,  empirical
experiment and simulation may be the alternative.

 Conclusions

This  paper  presents  a  literature  review  of  safety  from
traditional  to  the  CAVs  era,  focusing  on  the  crash  procedure
with crash risk, crash prediction, crash prevention and safety of
CAVs.  Then  substantive  issues  in  general  discussion,  data
source,  and  modeling  selection  are  discussed,  and  the  out-
comes  of  this  work  tend  to  provide  the  summary  of  crash
knowledge in the traditional aspect and emerging aspect,  and
guide the future direction in safety.

Although  safety  evaluation  has  been  acknowledged  from
various  perspectives,  there  is  still  interest  in  exploring  crash
procedures. It can be found from the literature review that:

1)  Crash  risk  analysis/evaluation  is  mainly  conducted  with
discrete  models,  empirical  and  meta  analysis,  while  crash  risk
prediction relies on machine learning and AI algorithms.

2)  As  for  crash  frequency  prediction,  discrete  models,
Bayesian  approach  and  machine  learning  methods  have  been
employed  whereas  machine  learning  methods  in  crash  injury
severity  prediction  play  an  important  role  and  real-time
prediction relies on the deep neural network and datasets.

3)  Crash  prevention  emphasizes  modeling  and
countermeasures.

4)  Safety  of  CAVs  is  mainly  counting  on  the  testing  and
simulation right now.

Furthermore,  the  discussion  section  reaches  the  following
points:

1)  Co-linearity  and  interactions  between  influencing  factors
may  lead  to  errors  during  modeling,  and  two  model  specifi-
cation issues heterogeneity and endogeneity may cause biased
results,  so these problems should be emphasized during crash
modeling;

2) Video surveillance is a significant data source, not only for
traditional  data  collection,  but  for  advanced  drones,  web
crawlers, and even CAVs.

3)  Modeling  selection  depends  on  the  problem  description,
but  machine  learning  and  AI  algorithms  may  be  the  better
option for crashes currently and in the future, while testing and
simulation are suitable for CAVs in the current state.

By summarizing the status of current studies of safety, some
guidance  and  recommendations  are  proposed  for  future
direction:

1)  For  traditional  crash-related  studies,  the  estimation  or
prediction  accuracy  can’t  meet  the  requirement  of  complex
modeling,  so  more advanced machine learning methods or  AI
algorithms (e.g. edge computing, deep neural network) can be
integrated into the econometric  models  in order  to satisfy  the
big data requirements and estimation or prediction accuracy;

2)  As  for  CAVs,  road  testing  or  simulation  is  the  main
approach  currently  to  demonstrate  the  safety  of  CAVs,  while
autonomous  driving  (AD)  and  vehicle-infrastructure  coope-
rated  autonomous  driving  (VICAD)  may  provide  alternatives.
AD  safety  is  the  critical  reason  of  influencing  the
commercialization,  and  cooperation  sensing,  decision-making

and  control  of  VICAD  can  improve  the  AD  safety  significantly,
which may boost the rapid development of CAVs.

3)  As  for  researchers  who  are  interested  in  safety,  the  first
thing to do is  to find out whether the safety problem belongs
to  traditional  or  emerging  issue,  and  then  determine  which
methods to conduct the research as listed above.

Due  to  the  limitation  of  articles  reviewed,  some  issues  of
crashes  may  be  neglected,  which  doesn’t  mean  that  they  are
not important, but for the aspects of crashes mentioned in this
study  they  are  not  highly  related.  If  possible,  crash  procedure
may be extended to a broader area in the future to reflect the
safety comprehensively and systematically.
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