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Abstract
The advent of autonomous vehicles (AVs) is expected to transform the current transportation system into a safe and reliable one. The existing

infrastructures, operational criteria, and design method were developed to meet the requirements of human drivers. However, previous studies

have shown that in the traditional horizontal and vertical combined design methods, where the two-dimensional alignment elements change,

there are varying changes in curvature and torsion, which cause the continuous degradation of the spatial curve and torsion. This continuous

degradation will inevitably cause changes in the trajectory of Autonomous Vehicles (AVs), thereby affecting driving safety. Therefore, studying

the  characteristics  of  autonomous  vehicles  trajectory  deviation  has  theoretical  significance  for  optimizing  highway  alignment  safety  design.

Driving simulation tests were performed by using PreScan and Simulink to calibrate the lateral deviation. A machine learning approach called the

Gradient Boosting Decision Tree (GBDT) algorithm was implemented to build a model and express the relationship between space alignment

parameters and lane deviation. The results showed that the AV’s driving trajectory is significantly affected by the space alignment factors when

the vehicle is driving in the inner lane, the downhill section, and the left-turn section. These findings will provide a novel perspective for road

safety research based on autonomous vehicle driving trajectories.
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 Introduction

Autonomous  Vehicles  (AVs)  are  expected  to  transform  the
current transportation system into one that is safe and efficient
in  the  future[1].  At  present,  roads  are  used  by  vehicles  with  a
human  driver  (VHD),  and  the  geometric  design  of  roads  is
based  on  the  human  driver.  For  safe  and  efficient  road  trans-
portation, highway geometric design elements include horizon-
tal and vertical alignment, sight distances, superelevation, hori-
zontal  and  vertical  curves,  carriageway  width,  design  speed,
and  other  roadside  features.  In  comparison  to  AVs,  these
factors  are  different  from  human-driven  vehicles,  as  they  are
dependent on the perception of the human brain and decision-
making. A connected autonomous vehicle will reduce error and
geometrical  requirements  while  reducing  geometrical
elements[2].

Specifications  for  highway  geometric  design  have  been
implemented  in  most  countries,  such  as  the  USA's  Policy  on
Geometric  Design  of  Highways  and  Streets,  commonly  known
as the Green Book[3], and China's Design Specification for High-
way  Alignment[4],  but  the  specifications  are  based  on  human
drivers and do not consider AVs. The geometric design specifi-
cations  contain  three  sections  addressing  horizontal  align-
ments,  vertical  alignments,  and  cross-section  design;  each  set
of  guidelines  specifies  controls  for  design  elements  to  ensure

road  safety  and  comfort.  Some  controls  are  based  on  percep-
tion  parameters  and  others  are  based  on  non-perception
parameters.

However,  several  studies  have  demonstrated  that,  AVs
design  controls  for  complex  combined  horizontal  and  vertical
alignments  that  adhere  to  the  coordination  guidelines  follow
the  same  principles  as  controls  for  vertical  alignments.  For
combined alignments that do not adhere to the guidelines, the
required  preview  sight  distance  (PVSD),  for  which  perception
reaction time (PRT)  is  the only perception parameter  involved,
is the critical control. As it does for human drivers, the PVSD for
AVs increases with both the design speed and the radius of the
horizontal curve[5,6].

Several  studies  illustrated  that  perception  abilities  differ
between  human  drivers  and  AVs,  including  in  perception
range, and these perception differences should affect highway
geometric  design  controls  and  have  received  some  research
attention[7,8] investigated how the differences between human
drivers and AVs would impact road design.

AVs may be able to operate with less longitudinal and lateral
spacing  than  traditional  Human-driven  Vehicles  (HVs)  due  to
fast  and precise  control  technologies  and cooperative  maneu-
vers[9].  This can be accomplished by optimizing the amount of
space available for human error, which involves narrow streets
and  sharp  curves.  Human  limitations  such  as  reaction  time,
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sight  distance,  and  approximation  errors  are  currently  being
considered when designing roads. Our roads' geometric design
can be optimized for fully AVs if AVs can optimize these limita-
tions.  In addition,  the climatic impact will  be reduced,  and the
infrastructure costs will  be reduced. As a result,  optimizing the
geometric design of roads and improving the current roadway
system for  AVs is  vital  for  ensuring their  safety,  environmental
friendliness,  and  economic  viability[10,11].  Geometric  design
optimization of  the road for  AVs determines the road's  proper
and efficient design dimensions for AVs[12].

There has  however  been very limited research on the effect
of  current  highway  alignment  on  autonomous  vehicle  trajec-
tory, which is of paramount importance and concern right now
to make the road sustainable for  fully  AVs.  Welde & Qiao[1],  Ye
et  al.[2],  tested the feasibility  of  the current  design controls  for
fully-AVs  by  separately  computing  controls  for  vertical  align-
ments  and  combined  horizontal  and  vertical  alignments,
considering  the  AV's  perception  abilities  of  perception-reac-
tion time (PRT),  sensor height,  an upward angle from the hori-
zontal.  In  their  study,  the  required  stopping  sight  distance
(SSD) and the minimum length of sag and crest vertical curves
were derived and compared with those for human drivers, and
the  results  showed  that  AV-based  design  controls  on  vertical
curves were more tolerant than those based on human drivers.
Lin et al.  have studied the impact of  AVs on future transporta-
tion[13].  Zhao  et  al.  have  studied  the  first-of-its-kind  effort  to
evaluate  the  driving  safety  of  AVs  with  respect  to  pavement
friction[14].  In  their  studies,  an  explicit  relation  was  derived
between  pavement  friction  and  traffic  safety  in  terms  of  the
stopping sight distance. Zheng et al. have studied the effect of
AVs  on  braking  performance  parameters  and  dynamic  friction
on tire-pavement interaction are investigated[15] . Based on the
field test  of  the Coastal  Highway in Jiangsu province of  China,
their  paper  proposed  an  algorithm  to  determine  the  time-
dependent braking distance of AVs considering pavement fric-
tional properties. The geometric design of highways for AVs has
been the subject of few studies.

Vehicle  trajectory  is  a  continuous  spatial  curve,  and  its  de-
gradation will  inevitably cause changes in the trajectory of the
autonomous vehicle, affecting driving safety shown in Fig. 1[16].
Therefore,  this  research  is  focused  on  the  impact  of  highway
space  alignment's  continuous  degradation  on  AV's  TD,  at  the
same time comparing the impact of highway space alignment's
continuous  degradation  on  vehicle  trajectory  and  AV.  The
research on this subject is hoped to provide an additional refer-
ence  value  for  highway  geometric  and  intelligent  transporta-
tion system design.

 Objectives and hypothesis
Highway  alignments  obtained  by  traditional  horizontal  and

vertical  alignment  design  methods  exhibit  a  continuous  de-
gradation phenomenon in  Euclidean three-dimensional  space,
as shown in Fig. 1, indicating different degrees of curvature and
torsion values. This study uses lane deviation as an indicator of
lateral driving safety. The geometric variation of the alignment
at  the  space  level  is  analyzed  in  relation  to  lane  departure.
Further  studies  have  shown  that  there  is  a  certain  correlation
between  space  curvature,  torsion,  and  traffic  accidents[16].
Therefore, the primary purpose of this study was to analyze the
impact  of  highway  spatial  alignment  parameters  degradation
on  a  fully  automated  vehicle  Trajectory  Deviation  (TD).  AV's
driving trajectory was hypothesized to be significantly affected
by  the  space  curvature  and  torsion  variation.  The  trajectory
distribution of an AV was investigated on a complex road built
in  PreScan  with  different  curvatures  and  torsions  at  a  driving
speed  ranging  from  60  to  100  km/h  to  investigate  how  the
alignment  parameters  correlated  with  the  driving  trajectory
deviation. The discussion and conclusions of this paper discuss
the implications for  the safe deployment of  AV based on their
driving trajectory characteristics.

 Methodology and data preparation

Obtaining data for studies involving AVs is often difficult, as it
could  be  dangerous  to  participate  in  various  scenarios  under
different conditions. Therefore, a virtual reality experiment was
implemented  in  the  present  study  to  tackle  the  difficulties  of
data  collection.  This  study  used  PreScan  software,  a  newly
developed physics-based program that  can be used to  design
and create vivid road environments and supposed traffic char-
acteristics  such as dynamic traffic  flow,  pedestrians,  and traffic
control  signals[17].  Using  PreScan  can  establish  a  much-
improved realistic experimental environment. Experimenting in
simulated  virtual  environments  can  minimize  external  factors
that  may  influence  vehicles  and  facilitate  repeated  experi-
ments. Virtual environments facilitate various tests of functions
and  applications  that  are  difficult  to  put  into  real  vehicle
testing.

 Overview
Figure  2 illustrates  the  workflow  of  this  research,  which  has

two  main  steps.  The  first  step,  step  1  used  a  physics-based
simulation  platform  to  build  virtual  scenarios  in  which  design
speeds,  highway  alignment  (horizontal  and  vertical  align-
ments),  and  Sensor's  technical  parameters  were  defined  as
input values to calibrate Av's TD. Following the validation part

 
Fig. 1    Variation of curvature and torsion in Euclidean three-dimensional space.
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where  we  analyzed  the  simulation  data  with  a  Human-driven
vehicle  (HDV)  (field  test),  in  Step  2,  we  analyzed  the  relation-
ship  between  AV's  TD,  and  highway  space  alignment-related
variables  (i.e.,  space  curvature,  and  torsion).  However,  in  the
next section, each step is detailed.

 Simulation platform
PreScan (version 2021.1.0) integrated with MATLAB/Simulink

(version  2018b)  was  used  as  a  physics-based  simulation  plat-
form allowing for robust testing of AV functionality[18]. PreScan
offers  a  huge  actor  database  of  vehicle  models,  user-defined
actors'  trajectories,  roads  with  varied geometric  characteristics
(e.g.,  the  curve  radius),  and  top-notch  sensor  models  (actual
LiDAR technical parameters, e.g., resolution). MATLAB/Simulink
which allows real-time data access (i.e., sensor output and vehi-
cle path information) from PreScan through a COM-based inter-
face was used to program the TD extraction algorithm.

 Experimental design

 Vehicle type
The vehicle used in this study is an Audi A8. This is the typi-

cal type of passenger vehicle in PreScan. The main vehicle dimen-
sions  include  length  =  5.21  m,  width  =  2.04  m,  and  height  =
1.44 m, as shown in Fig. 3. The experiment vehicle was set with
the  following  components:  camera,  monocular,  monochrome,
50 fps, 375 * 500 resolution, lane marker sensor to analyze the
lane markers, and GPS to track the vehicle position. The camera
sensor is positioned between the windshield and the rear-view
mirror and faces front. By using sensors, the vehicle could track
the  oncoming  lanes  and  the  surrounding  objects.  The  system
controls  the  vehicle  with  all  this  information.  The  lane  marker
sensor  allows  the  tested  vehicle  to  follow  the  lane  marker  in
absence of any prescribed trajectory.

 The simulated AV sensor system configuration
After choosing the test vehicle, the next step is to configure

the  sensor  system.  In  the  present  research,  the  simulated  AV
was equipped with the Lane Keeping Assistant System (LKAS).
The  LKAS  is  a  vehicle  lateral  guidance  system  and  is  meant  to
help  the  driver  keep  the  vehicle  in  the  lane  when  driving  on

motorways.  The  system  uses  sensors  to  classify  and  track  the
traffic  lines  and  calculate  the  estimated  distance  between  the
lines and the vehicle. To build the LKAS, two geometric dimen-
sions  were  considered  as  shown  in Fig.  4.  The  first  is  the
distance  between  the  sensor  center  and  the  first  lane  marker,
left and right. The second is the angle between the car's longi-
tudinal  axis  and  the  right  lane  marker.  The  LKAS  model  uses
information from the camera and the lane marker sensor (indi-
cator  light  is  on/off,  etc.),  and  feeds  the  vehicle  dynamics
model.

 Add control system
As shown in Fig. 5, known as the additional control system or

third step of the simulation, involves interpreting and verifying
the  sensor  data  through  a  compilation  sheet  that  is  handled
using  MATLAB/Simulink  interface.  As  shown  in Fig.  6,  the
compilation sheet is constituted by the infrastructure, the vehi-
cle  tracking  information,  the  display  ports,  and  the  sensors
used in the scenario made in PreScan. Furthermore, the compi-
lation  sheet  contains  all  the  relevant  connections  to  the  PreS-
can  simulation  engine  and  the  existing  actors  in  the  different
PreScan  classes. Table  1 describes  the  elements  used  in  the
simulation  scenario.  Each  element  is  located  in  a  sheet  where
the user can enter values to configure the elements' character-
istics. The elements in Table 1 are also shown in Fig. 5.

 Design speeds
Road geometry conditions are unlikely to contribute solely to

limited  autonomous  vehicle  sight  distance  when  the  design
speed  (Vd)  exceeds  100  km/h[19] because  geometry  controls
(e.g.,  required  horizontal  sight  line  offset,  curve  radius,  lane
width)  for  high-speed  highways  are,  the  minimum  selectable

 
Fig. 2    Proposed pipeline for this study.

 
Fig. 3    Illustration of the vehicle used in this study.

a b

 
Fig.  4    Lane  marker  detection  system.  (a)  Center  line.  (b)  Angle
DSL:  Distance  between  the  Sensor  to  the  Left  Line  DRS:  Distance
between  the  Sensor  to  the  Right  Line α:  the  drift  angle  between
sensor heading direction (= vehicle heading).
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preset  speed  within  the  operational  design  domain  of  driving

automation  systems  is  typically  greater  than  40  km/h,  or  the

driver's  desired  speed[20].  As  a  result,  this  study  considered  Vd

ranges between 40 and 100 km/h with a constant interval of 10
km/h.

 Tested highway
The  tested  highway  was  built  in  PreScan  by  referencing  a

highway  located  in  the  southern  part  of  Guangdong  Province
(China). The road was designed in PreScan in a way to meet the
Chinese  Design  Specification  of  Highway  Alignment
standards[4].  To  ensure  the  accuracy  and  reliability  of  the
collected  data,  the  tested  highway  should  have  various
complex  alignment  conditions.  The  experiment  road  used  in
this was a two-lane highway with constant width of 3.75 m. This
method allows us to track the impact of  inner and outer lanes
on  AV's  driving  behavior.  Previous  studies  have  used  the  one-
lane  method  to  analyze  the  ASD  (Available  Sight  Distance)
assessment  on horizontal  curves[21].  The different  type of  road
section used in this study were as follows:

(1) Slope type: according to the threshold of ± 3%, the slope
types  are  classified,  namely  downhill  (S  <  −3%),  flat  slope
(−3% ≤ S ≤ 3%), and uphill (S > 3%).

 
Fig. 5    LKAS controller with the visual features connections.

 
Fig. 6    Control system of infrastructure, actors, and sensors in MATLAB/Simulink.

Table  1.    Description  of  the  components  involved  in  the  simulation
scenario.

Block Description

Simulation
information

Containing all the simulation data

ACTOR The vehicle used on the simulation senario
SELF Containing data of all the object
Trajectory (TRACK) Containing all trajectories that the actor does in

the simulation scenario
Camera Views of the scenario
TIS Technology Independent Sensor
PreScan sensor
simulation

Once the simulation starts, the actuator blocks
and sensors blocks are initialized directly or
indirectly from the data models that come with
the experiment

Lane Marker sensor Provides information about the lane lines
present on the road.

 
Impact of highway alignment degradation on autonomous vehicle trajectory

Page 80 of 88   Wang et al. Digital Transportation and Safety 2023, 2(2):77−88



(2)  Steering  type:  the  tested  highway  was  divided  into
tangents  and  curves.  Compared  with  a  tangent,  curved  steer-
ing was divided into a left turn and a right turn.

In Table 2,  JD represents the intersection points  of  the hori-
zontal alignment.

 Space alignment parameter calibration
The space curvature indicates the rotation speed of the unit

tangent vector of the curve in relation to the arc length, which
is  the  degree  of  curve  bending.  The  larger  the  curvature,  the
faster  the  tangent  vector  changes  direction  and  the  narrower
the vision range is for the AV's sensors and camera.

According  to  the  combination  of  horizontal  and  vertical
alignment, the experiment road was first split into a series of six
types  of  segments  as  follows:  Tangent  +  tangent  slope  seg-
ment (TT), transition curve + tangent slope segment (ST), hori-
zontal  curve  +  tangent  slope  segment  (CT),  tangent  +  vertical
curve  segment  (TV),  spiral  curve  +  vertical  curve  segment  (SV)
and horizontal curve + vertical curve segment (CV) see Table 3,
and then spatial alignment parameters were calculated on this
basis.

l

la
lb

lS
Rh

Rv

i1 Zo

The  formula  for  calculating  the  spatial  alignment  curvature
and torsion is given in Table 4. Where,  is the distance from any
point  on  a  section  after  division  to  the  starting  point  of  the
section,  is the distance from the starting point of this section
to the starting point of the highway, and  is the distance from
the  starting  point  of  the  road  section  to  the  starting  point  of
the highway,  is the distance between any point on SV and ST
section to  the  starting  point  of  the  spiral  curve,  is  the  road
section  horizontal  curve,  is  the  road  section  vertical  curve
radius,  is  the  backward  slope  of  the  road  section,  is  the
starting elevation of the highway and A is the parameter of the
spiral curve of the section.

Based on the above tables,  the space alignment parameters
variables (as shown in Fig. 7) were defined to accurately investi-
gate the impact of the traditional horizontal and vertical sepa-
rated design combined method on Av's driving TD.

 Experimental process
The  designed  Av  was  driven  several  times  along  the  tested

highway,  as  shown  in Fig.  8.  The  camera  registers  a
monochrome view of the road in front of the vehicle, partially ob-
structed  by  a  bonnet. Figure  8 shows  the  speed  and  accele-
ration  profile  along  the  tested  road. Figure  9c is  the  driver
console (GUI)  display of  the main parameters  of  the operation
of  the  system:  operation  mode  that  is  currently  active,  depar-
ture  warning  lights,  the  amount  of  steering  being  applied
autonomously  (referred  to  as  the  maximum  steering  applica-
ble  by  the  system)  and  driving  parameters  like  speed,  RPM,
braking. Figure 9e shows the filtered video output which repre-
sents  the  signal  after  processing  the  image  for  the  line  detec-
tion  system.  It  is  composed  of  trimming,  filtering,  and  chang-
ing to dial tone (black and white) - binary matrix. Figure 9d is a
historical measurement of the Av to-line distance. However, to
simplify  the  experimental  process  Av's  TD  was  measured  at  a
specific  interval  along  the  path  every  time.  In  this  study,  only
the Trajectory offset was analyzed (Fig. 9b & d). In addition, the
Av  used  in  this  (current  AVs  as  well)  was  designed  and
mandated  to  drive  with  a  minimal  deviation  from  the  lane
centerline (e.g., functions activated by lane centering control or
lane  keeping  assist  system)  at  the  constant  desired  speed[21].
The data of the simulation were collected in MATLAB/Simulink.

 Validation
To validate the effectiveness of the virtual simulation method

adopted in this study,  the impact of  highway space alignment
parameters  degradation on a  Human-driven vehicle's  TD data,
supervisor[22] through  field  tests  were  compared  with  those
collected from the simulation platform, where the road-related
variables  remained  the  same  as  those  used  in  this  study.  It
should be noted that AVs are set with sensors and cameras, and
their  reaction  time  is  faster  than  conventional  vehicles[23].
However,  this  section  was  designed  not  only  to  evaluate  the
results  of  this  study but  also to prove that  highway alignment

Table 2.    Experiment road geometric design parameters.

Intersection
Point

AVs speed
Range (km/h)

Radius
(m)

Transition curve
length (m)

Slopes
rank (%)

JD1

40−100

800 105 2−1.5
JD2 800 105 0.5−2.85
JD3 310 160 3−2.5
JD4 310 160 0−2.26
JD5 375 145 2.32−4
JD6 1,100 0 1.2−2.01
JD7 5,900 0 −0.8 − −4
JD8 600 115 −2

Table 3.    Experiment road segment division.

Horizontal
alignment

Vertical
alignment

Space combination
alignment

Code
name

Tangent Slope Tangent + slope TT
Vertical curve Tangent + vertical curve TV

Horizontal
curve

Slope Horizontal curve + slope CT
Vertical curve Horizontal curve +

vertical curve
CV

Spiral curve Slope Spiral curve + slope ST
Vertical curve Spiral curve + vertical

curve
SV  

Fig. 7    Diagram of horizontal and vertical curve parameters.
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Table 4.    Curvature and torsion calculation formula.

Road segment Curvature k calculation formula τTorsion  calculation formula

TT 0 0

TV 1

Rv

1+ (
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)2
3
2

(ls+ la)

A2
(
1+ i21

)

0
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(
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) i1 (ls+ la)

A2
(
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)
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R2
v
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Fig. 8    Experimental process.
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continous  degradation  affects  both  AVs  and  driven  vehicles'
driving trajectories.

 Simulation data analysis

In  the  present  study,  the  simulation  was  run  in  PreScan
(Fig.  9),  and  the  data  were  collected  in  MATLAB.  To  deeply
examine the relationship between AV's trajectory deviation and
space  alignment  parameters  degradation  (Table  5),  the  Gradi-
ent  Boosting  Decision  Tree  (GBDT)  model  in  integrated  learn-
ing was used to train the data and prove the effectiveness and
accuracy  of  gradient  boosting  tree  in  AV's  TD  prediction.  In
addition, SHAP was used to explain the GBDT model results.

 Gradient Boosting Decision Tree (GBDT)

n− th
Hn−1 (x) n−1

n−1

As  mentioned  above,  this  study  used  the  GBDT  model  to
demonstrate  the  effectiveness  of  space  alignment  parameters
degradation on AV's driving TD[24].  The GBDT model is an inte-
grated learning prediction model which is achieved by combin-
ing multiple learners that work together to form an integrated
learner  with  strong  performance[25].  GBDT  tree  model  is  a  rich
extension  of  the  boosting  tree  model  (Fig.  10).  In  the  GBDT
model, Mean Square Error (MSE) is used as the loss function. In
the  iteration,  the  negative  gradient  of  the  loss  function
with  respect  to  the  predicted  value  of  the  itera-
tion is exactly the residual of the model in the  iteration.

−∇Hn−1(x)LMS E (y,Hn−1 (x)) = −∂LMS E (y,Hn−1 (x))
∂Hn−1 (x)

=
1
m

(y,Hn−1 (x))

(1)
In the more general case, the loss of the model will change at

this point, not necessarily the MSE, and the prediction of the nth

round can then be written as:
Hn (x) = Hn−1 (x)−η∇Hn−1(x)L (y,Hn−1 (x)) (2)

where η ∈ (0,  1)  is  the  learning  rate,  i.e.,  the  optimization  step
size.  The  specific  steps  of  the  GBDT  regression  tree  are
summarized as follows:

H0 (x) = 0(1) Initialization of the tree, 

(2) For each n = 1, ...,N (N is the number of regression trees):
−∇Hn−1(x) L (y,Hn−1 (x))① Calculate  the  negative  gradient   of

the  loss  function  with  respect  to  the  predicted  value  of  the
previous round for each sample.

h (x;θn)

② The  input  features  remain  unchanged,  and  the  negative
gradient  calculated  in  1  is  used  as  a  new  label  to  train  a  new
regression  tree.  the  predicted  result  of  the  regression  tree  is

The  prediction  results  of  the  current  iteration  are  then
calculated,

Hn (x) = Hn−1 (x)+ηh (x;θn) (3)
③ The  final  gradient  boosting  regression  model  prediction

results are obtained by linearly summing the prediction results
of the regression trees constructed in each round.

a

c d e

b

 
Fig. 9    Data visualization in Prescan. (a) Av speed and acceleration profile. (b) Camera sensor output. (c) Lane keeping assistant GUI. (d) Car to
lane distance error. (e) Filtered image output.

Table 5.    Space alignment parameters index.

No. Parameters (independent variables) Symbol
definition

1 Lane L
2 Slope S
3 Direction (left turn, right turn) D
4 Upstream 300 m average spatial curvature SC300
5 Upstream 300 m spatial curvature composite index Xsc300
6 Upstream 300 m average spatial torsion ST300
7 Upstream 300 m spatial torsion composite index Xst300
8 Upstream 100 m average spatial curvature SC100
9 Upstream 100 m spatial curvature composite index Xsc300

10 Upstream 100 m average spatial torsion ST100
11 Upstream 100 m spatial torsion composite index Xst100
12 Maximum sudden change in spatial curvature nearest

to the road section
SCM

13 Maximum sudden change in spatial torsion nearest
to the road section

STM

14 Spatial curvature in the section SCS
15 Curvature difference of adjacent road section SCS-AD
16 Average curvature difference of adjacent road section SCS-A
17 Spatial curvature torsion SCT
18 Torsion difference of adjacent road section STS-AD
19 Average torsion difference of adjacent road section STS-A
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 Results analysis
To  further  analyze  the  correlations  between  the  19  indica-

tors  and  the  autonomous  vehicle's  driving  trajectory,  we  used
SHAP  values  to  explain  the  impact  of  each  feature  obtained
from the GBDT model on the AV's TD.

 Model analysis with GBDT and SHAP
As can be  seen from sorting the  contribution of  the  feature

importance scores, the first three indicators can have up to 60%
impact  as  shown  in Fig.  11.  The  impact  of  the  remaining  indi-
cators on the deviation of the AV's trajectory is not significant.
Therefore,  a  detailed  analysis  of  the  remaining  indicators  will
not be conducted in this study.

v (N) ∅i

To further analyze the correlations between the interactions
of  the  19  indicators  and  the  AV's  driving  trajectory,  the  SHAP
values  were  used  to  explain  the  model  output.  We  used  the
SHAP  values  to  explain  the  impact  of  each  feature  obtained
from the GBDT model on AV's TD. The SHAP value method uses
local interpretation and game theory to estimate each feature's
contribution[26].  Instead, suppose a GBDT model in which a set
N (with N features) is used to predict an output  (  refer-
ring to the contribution of the feature) is allocated according to
their marginal contribution. To help distribute the contribution
of  each  feature  fairly,  the  appropriate  value  is  determined  by
the following method：

∅i =
∑

S⊆N{i}
|s|!(n− |s| −1)!

n!
[v (S ∪{i})− v (S )] (4)

The linear function of the binary feature is defined based on
the following additional feature attribute method:

g
(
z′
)
= ∅0+

∑M

i=1
∅iz′i (5)

z′ ∈ {0,1}MWhere ，When the feature is observed, it is equal
to  1,  otherwise  it  is  equal  to  0,  M  is  the  number  of  input
features[27].

Under  the  SHAP  framework,  the  effectiveness  (positive  and
negative  effects)  of  the  19  indicators  on  the  GBDT  model  was
analyzed  as  illustrated  in Fig.  12.  The  left  side  of  the  figure

shows the names of each variable, and the right side of the vari-
able name corresponds to the range and size of the values after
each variable is mapped to the SHAP value, that is, the horizon-
tal axis is the SHAP value. The right side of the graph shows the
change in values in the variable from low to high vertically from
blue to red,  and the horizontal  side corresponds to the size of
the  SHAP  value.  The  results  of  the  SHAP  values  enabled  us  to
see  the  impact  of  each  indicator  obtained  from  the  GBDT
model on the tested AV's driving trajectory.

For example, the parameter lane (which was initially defined
as 0 for the inner lane, and 1 for the outer lane) mainly exists in
the model as a negative contribution, which can be seen from
Fig.  12.  In addition,  the color legend of  the graph on the right
that, the higher the value of the feature, the more obvious the
negative  effect  of  the  variable  on  the  model  prediction  pro-
bability value. When AV is driving in the inner lane, the offset of
the driving trajectory is positive, and the deviation value of the
driving trajectory is larger. By contrast, when it is driving in the
outer  lane,  the  driving  trajectory  offset  is  negatively  affected,
and the driving trajectory offset value is smaller.

 The mapping relationship of SHAP values among important
variables

Based on the SHAP value framework presented previously in
this study, each variable can be viewed as having both positive
and negative influences. This enables better observation of the
mapping  relationship  between  each  variable  and  the  SHAP
value.  The  changing  relationship  between  the  respective  vari-
ables  and  the  driving  trajectory  offset  can  be  better  analyzed,
and  a  SHAP  diagram  can  be  constructed  to  explain  model
output results.

To  assess  the  impact  of  independent  variables  on  the  devi-
ation of AV's trajectory under different lanes, turning directions,
and slopes,  the average spatial  curvature SC300 upstream and
the average spatial curvature difference between adjacent road
sections were used for comparison and analysis.

collect the tested AV
trajectory data

Sample size selection

Dividing the data set

Building the GBDT model

Parameters optimiztion

Model training and testing

Model accuracy and visualization

Data cleaning

Defining feature lists

 
Fig. 10    GBDT model overall framework.
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Fig. 11    Feature important score contribution ranking.
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 Lane
When  the  indicator  lane  is  a  single  variable,  the  following

observations can be made as can be seen in Fig. 13. In the inner
lane,  driving  positions  have  a  positive  effect  on  the  trajectory
offset, and the value of the trajectory offset is large; in the outer
lane, its effect is not apparent. In Fig. 13a, when considering the
interaction  with  the  SC300,  whether  in  the  inside  or  outside
lane,  when the SC300 is  high,  it  has  a  significant  effect  on the
vehicle  trajectory  offset. Figure  13b illustrates  how  there  is  no
obvious pattern to the interaction between the SSC-AD and the
vehicle  lane,  regardless  of  whether  the  vehicle  is  in  the  inside
lane or the outside lane.
 SC300

Figure  14 shows  that  SC300  has  a  positive  impact  on  AV's
trajectory offset. When the SC300 is higher than 0.002 m−1, the
SHAP  value  is  greater  than  0,  which  indicates  that  when  the
SC300 is greater than 0.002 m−1, increasing the average spatial
curvature  of  the  upstream  300  meters  of  the  road  section  will
increase the AV trajectory offset.
 SC100

When  considering  SC100  as  a  single  variable,  the  following
observation can be made as illustrated in Fig.  15.  The increase
of SC100 has no direct impact on the trajectory offset, which is
due to AV's reaction time, the sensors do not have enough time
to  adjust  the  vehicle  during  the  upstream  100  driving
processes,  resulting in the driving trajectory offset value when
the vehicle is in the corresponding section The regularity is not
strong.  Furthermore,  when  considering  the  interaction
between SC100 and SSC-AD, and SC100 and STM, the influence
between variables is not obvious.

 
Fig. 12    SHAP value (the positive and negative influence of each
variable under the value frame).

a b

 
Fig. 13    Lane variable SHAP value mapping.

 
Fig. 14    SHAP value mapping value when SC300 is a single variable (SC300 is m−1).
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 Conclusions and remarks

The  space  curvature  and  torsion  were  used  to  describe  the
highway's  traditional  design method's  impact  on autonomous
vehicle  driving  trajectory.  The  results  of  this  study  show  that
horizontal  and  vertical  alignment  separate  design  methods
cannot  guarantee  the  continuity  of  space  alignment.  Ye  et  al.
have  shown  that  have  demonstrated  that,  for  complex  com-
bined  road  alignments,  the  horizontal  and  vertical  alignments
should not be designed independently[2] .  Based on the above
analysis  results,  the impact  of  SC300,  SC100,  and Lane on Av's
driving trajectory  is  explained.  The above order  of  importance
and analysis shows that the related indexes of space curvature
and space torsion influence the Av driving trajectory lane devi-
ation.  The  influencing  factors  are  mainly  determined  by  the
space  curvature,  meanwhile,  the  space  torsion  has  no  signifi-
cant  impact  on  the  lane  deviation.  The  range  of  positive  and
negative  influence  levels  can  provide  a  reference  for  road
design.  For  example,  the  average  space  curvature  of  300  m
upstream, SC300, should not be much higher than 0.002 m−1.

In  the  present  study,  PreScan was  used to  build  the  simula-
tion  environment,  and  MATLAB  to  collect  the  simulation  data.
From the three-dimensional  curve description parameters,  the
main  parameter  variables  were  determined  as  the  highway
linear geometric feature description parameters, the lane offset
was  used  as  the  driving  deviation  characterization  index,  and
by  applying  the  GBDT  machine  learning  algorithm  we  were
able to construct the 19 characterization parameters that affect

the  driving  trajectory  offset.  Among  the  19  parameters,  three
were  revealed  to  significantly  impact  Av's  driving  TD.  Further-
more,  mapping  the  relationship  of  SHAP  to  relevant  variables
was  used  to  analyze  its  main  influence  indicator.  The  main
conclusions are as follows:

(1)  When  the  AV  drives  in  the  inner  lane,  the  driving  trajec-
tory offset is larger than the outer lane driving trajectory offset.

(2) When the Av is driving on a downhill road section, it posi-
tively affects its driving trajectory offset. The offset value of the
driving trajectory is relatively large, while the straight and uphill
sections are not obvious. When considering the interaction, the
larger  the  SC300  is,  it  has  the  restraining  effect  on  the  devia-
tion of the driving trajectory on the downhill section

(3)  The  average  space  curvature  of  the  upstream  300  m,
SC300,  should  not  be  greater  than  0.002  m−1.  However,
Litman[28] has  shown  that  the  controls  for  combined  align-
ments  are  found  to  be  more  tolerant  than  those  for  human
drivers because of the AV's better perception abilities.

The impact of space curvature significantly impacts Av's TD.
When  comparing  the  impact  of  highway  space  alignment

parameters degradation on conventional vehicles' TD with AV's
TD, the following remarks can be made as shown in Table 6. To
ensure that the driving trajectory matches the road alignment,
Upstream 300 m average spatial  curvature (SC300)  should not
be greater than 1.2 × 10−3 m−1 for conventional vehicles and for
AVs  the  SC300  value  should  not  be  greater  than  0.002  m−1.
Highway spatial  torsion does  not  have a  significant  impact  on
both AVs and human-driven vehicles driving TD.

 
Fig. 15    The mapping relationship between SHAP value when SC100 is a single variable (SC100 is m−1).

Table 6.    AVs and conventional TD behavior comparaison.

Spatial parameters Autonomous vehicle Conventional vehicle

Upstream 300 m average
spatial curvature (SC300)

10% of the impact.
When SC300 is higher, it has a positive impact on TD.
When the AV is driving on the downhill road section, the
TD is not affected.

17% of the impact factors.
When SC300 is higher, the TD is significantly affected, and
the larger SC300 is the more restrained the TD on the
downhill section

Upstream 100 m average
spatial curvature (SC100)

8% of the impact factors.
Has a positive and negative impact on the TD.
Increasing his value does not have a significant impact on
the TD due to the AV's rapid reaction time.

10.9% of the impact factors
The values remain between positive and negative.
SC100 has no direct impact on the deviation of the
driving trajectory. Due to the lack of time for the driver to
adjust the vehicle during the upstream 100, the deviation
value of the driving trajectory when the vehicle is in the
corresponding section remains the same

Lane 7% of the impact factors.
The AV's TD is positively affected when it is driving in the
inner lane and negatively affected when it is driving in the
outer lane.
When AV is making a left turn, it tends to shift outward.

12.2% of the impact factors.
When considering the interaction with SC300, the larger
the SC300 in the left-turn section, the more restrained the
deviation of the driving trajectory.
A serious left deviation occurs When a conventional
vehicle is making a left turn.
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Data  collected  in  this  study  were  used  to  investigate  the
impact of the highway space alignment parameters on Av's TD.
It is crucial to highlight that the method proposed in this study
establishes  a  framework  to  test  the  impact  of  highway  align-
ments  obtained  by  traditional  horizontal  and  vertical  design
methods'  continuous  degradation  phenomenon  in  Euclidean
three-dimensional space, without needing to know Av's under-
lying technology. Therefore, the findings of this study could be
used  for  highway  geometric  design  controls  that  are  safe  and
suitable for AVs,  an urgent matter as we are facing full  driving
automation  within  the  next  few  decades[29].  In  the  present
study, the following main limitations were observed:

(1)  The  employed  road  geometry  condition  only  considers
the horizontal and vertical curves.

(2)  Virtual  simulation  tests  were  developed  only  in  clear
weather conditions;

(3) Only the ideal driving path (lane centerline) and constant
speed  (Vd)  were  considered.  Consequently,  the  results  of  this
study  should  be  carefully  evaluated  in  terms  of  their  transfe-
rability  to  real-life  driving  situations.  Other  geometry  charac-
teristics such as cross-section could also have an impact on Av's
driving trajectory.

(4) Only space alignment parameters were considered.
Further research should give further attention to factors such

as  Av's  driving speed,  lane width,  and horizontal  curve deflec-
tion angle.

 Data availability
The  data  used  in  this  study  were  collected  from  our  simu-

lation  platform,  which  is  MATLAB,  and  are  available  from  the
corresponding author upon reasonable request.
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