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Abstract
Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors. Because of rapid advances in

emerging  vehicular  communication,  connected  vehicle  (CV)-based  signal  control  demonstrates  significant  improvements  over  existing

conventional  signal  control  systems.  Though  various  CV-based  signal  control  systems  have  been  investigated  in  the  past  decades,  these

approaches still  have many issues and drawbacks to overcome. We summarize typical  components and structures of these existing CV-based

urban traffic signal control systems and digest several important issues from the summarized vital concepts. Last, future research directions are

discussed  with  some  suggestions.  We  hope  this  survey  can  facilitate  the  connected  and  automated  vehicle  and  transportation  research

community to efficiently approach next-generation urban traffic signal control methods and systems.
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 Introduction

The emerging improvements in recent wireless communica-
tion  technology  that  have  enabled  vehicles  to  communicate
with  roadway  infrastructure,  and  with  each  other,  are  collec-
tively known as connected vehicle (CV) technology[1].  CV tech-
nology features low latency, real-time data, high reliability, and
high  security  in  a  high-mobility  environment[1].  It  has  devel-
oped  rapidly  for  its  potential  to  improve  the  mobility,  safety,
and  environmental  impact  of  traffic  systems  over  the  past
several  years[2−9].  These  three  challenges,  i.e.,  safety,  mobility,
and environment, are significant issues faced by modern trans-
portation  systems.  The  impact  of  these  three  issues  includes
significant economic loss, heavy casualties, as well as long-term
adverse environmental damage in large urban areas[10].

To  tackle  these  serious  problems,  urban  transportation
systems  have  relied  heavily  on  various  proposed  urban  traffic
control  systems  (UTCSs)  over  the  last  few  decades[1,11−16].
Considering  the  complexity  of  urban  transportation  networks
and performance dependency on different control  types,  both
the  choice  and  design  of  proper  traffic  signal  control  systems
are important. Thus, there is a large body of literature that has
investigated  developments  of  the  conventional  traffic  signal
control systems, and most of their methods can be categorized
into  three  strategies:  fixed-time,  actuated,  and  adaptive
control[1,17].

Within  the  current  practice,  fixed-time  control  systems  typi-
cally create best-suited timing settings for different times of the
day (TOD) determined by the historical traffic data. This method
assumes  that  the  traffic  demand  remains  fairly  constant  during

the  entire  period  of  a  particular  timing  plan.  However,  this
assumption  is  seldom  valid  in  realistic  scenarios,  causing  the
fixed-time strategy to demonstrate weak control performance[1].

Actuated control  systems collect  real-time traffic  flows  from
fixed  infrastructure-based  detectors,  e.g.,  loop  detectors,  and
apply simple logics, including phase calls, green extension, and
max  out,  to  change  the  timing  plans.  However,  these  systems
have  proven  to  be  sub-optimal  because  the  simple  logic  is
based on a set of pre-defined and static parameters[17,18].

The  existing  adaptive  signal  control  methods  use  real-time
traffic  data  to  predict  future  traffic  flows  and  obtain  optimal
signal timing settings.  Subsequent control decisions are based
on  defined  maximal  or  minimal  objective  functions[1,17].  The
adaptive signal control (ASC) has been widely applied to urban
arterial networks.

Furthermore, to provide smooth traffic flows and reduce the
number  of  stops  and  delays  along  an  urban  corridor  or  multi-
ple  intersections,  signal  coordination  systems  have  been
proposed  and  implemented  by  synchronizing  traffic  signals
along a corridor[19].

In  summary,  the  existing  literature[12−16] examines  existing
UTCSs  that  generally  consist  of  three  essential  components:
data,  traffic  model,  and  control  strategy,  graphically  repre-
sented in Fig. 1 below.

The data describes the spatial and temporal characteristics of
the  acquired  data  as  input,  where  usually  it  includes  typical
fixed  and  mobile  sensing  data.  The  traffic  model  depicts  the
dynamics  of  traffic  on  the  road  links,  which  include  micro-,
meso-,  and  macro-level  traffic  dynamics.  The  control  strategy
utilizes  various  timing  plans  to  control  traffic  dynamics,  for
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which standard signal variables include cycle length,  split,  and
offset  and  the  common  strategies  include  optimization-based
and  optimal  control-based  methods.  Generally,  every  UTCS
includes these three basic components, although not always in
some of the early-developed products.

Moreover, since the CV technology features low latency, real-
time  data,  and  two-way  communication  in  a  high-mobility
vehicular environment[1], it further enhances the existing signal
control systems[16,17,20−26]. Thus, there are many CV-based adap-
tive  signal  control  and  coordination  introduced  in  the  past
decade,  aimed  at  further  improving  the  efficiency  of
UTCSs[16,17,20−26]. Also, in general, these CV-based signal control
methods  can  be  discussed  from  the  previous  three  essential
components:  data,  traffic  model,  and  control  strategy.
Compared  with  the  traditional  UTCSs,  these  CV-based  signal
control  methods  feature  new  data  sources  and  quality,  new
varying-parametric  dynamics,  and  new  optimization  and
control strategy. The new data source and quality are collected
from  moving  connected  vehicles  as  well  as  connected  infras-
tructure  devices.  Next,  the  micro-level  traffic  dynamics  and
corresponding  time-varying  parameters  are  more  accessible
and  predictive  with  the  new  connected  data  inputs  and  the
new connectivity technique. Last, for the control strategy, more
complex,  advanced,  and  efficient  control  strategies  are
presented  considering  the  two-way  communication,  the  rich
data inputs, and the predictive dynamics.

Overall, in this paper, we summarize the typical components
and  structures  of  the  existing  CV-based  urban  traffic  signal
control systems and digest several important issues from these
three  key  concepts.  These  identified  issues  are  explained  and
discussed in detail.  Next,  some suggestions for future research
directions are provided. Last, the conclusion closes this review.
The structure of this review is shown in Fig. 2.

 Background

Before  discussing  further  details  of  the  three  basic  UTCS
components  in  the  literature  review,  a  brief  background  of
different  traffic  control  technologies  is  outlined  here,  thus
introducing traditional  and widely  implemented traffic  control
systems  in  current  transportation  systems,  i.e.,  adaptive  signal
control  and traffic  signal  coordination.  Also,  briefly  outlined in
this section is the emerging CV technology, as well  as updates

of  both  enhanced  adaptive  signal  control  and  coordination  in
the CV environment.

 Connected vehicles
CV  technology  leverages  vehicle-to-vehicle  (V2V)  and  vehi-

cle-to-infrastructure (V2I) communications based on dedicated
short-range  communication  (DSRC)  or  Cellular  Vehicle-to-
Everything  communication  (C-V2X)[16,17,20−23],  where  V2V  and
V2I  communication can be collectively  called vehicle-to-every-
thing  (V2X)  communication.  It  has  been  developing  rapidly
over  recent  years,  improving  efficiency,  safety,  and  environ-
mental benefits for traffic systems[2−9].

In  addition,  CV  technology  features  low  latency,  real-time
data, high reliability, and large security in a fast-mobility condi-
tion,  which  provides  a  new  control  dimension  in  solving  the
issues  of  signal  control.  For  example,  new  real-time  CV  data,
including  connectivity  indications,  signal  phase  and  timings,
and  vehicle  trajectories,  all  extracted  from  basic  safety
messages  (BSMs),  are  providing  the  potential  for  significant
performance improvements.

 Adaptive signal control
Conventional traffic signal control systems are classified into

three strategies: fixed-time, actuated, and adaptive control[1,17].
Characteristics  of  these  three  signal  control  systems  are
summarized in Table 1.

Compared with  both fixed-time and actuated signal  control
systems, the current adaptive signal control system utilizes real-
time traffic  data  to  forecast  near-future  traffic  flow conditions.
Subsequently,  an  optimal  signal  timing  setting  is  obtained  to
make  control  decisions  based  on  defined  performance-based
objective  functions.  The  adaptive  traffic  control  system  has
been  widely  applied  to  urban  arterial  networks  around  the
world  since  the  1970s  because  of  its  capability  to  respond  to
changes in traffic demand.

Different  system  architectures  and  algorithms  for  adaptive
traffic  control  systems  have  been  proposed  and  implemented
during the last  several  decades.  Typical  examples of  the adap-
tive  signal  control  systems  include  SCOOT  (Split,  Cycle,  and
Offset  Optimization  Technique)[27],  SCATS  (the  Sydney  Coordi-
nated Adaptive Traffic System)[28],  OPAC (Optimization Policies
for  Adaptive  Control)[29],  RHODES  (Real-time  Hierarchical  Opti-
mized  Distributed  Effective  System)[30],  ACS-lite  (Adaptive
Control System)[15], and the recent MOTION system[31].
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Fig. 1    Three basic components of urban traffic control systems (UTCSs).
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 Traffic signal coordination
Among various signal control strategies, traffic signal coordi-

nation is  another significant and widely implemented strategy
with enhanced performance measures[19,32] to improve the mo-
bility of arterial roads. Usually, the coordination system synchro-
nizes traffic signals over the span of a corridor to provide signal
progression  for  the  approaching  vehicle,  thus  reducing  the
number  of  stops  and  delays[19].  Since  the  signal  coordination
control  is  recognized  to  perform  better  than  other  control
strategies for corridors, a focus on coordination improvement is
essential,  indeed  critical,  for  current  urban  transportation
systems.

To  enhance  coordination  systems,  various  methods  have
been  proposed  to  achieve  better  performance[19,33,34].  These
approaches can be classified into two major types of optimiza-
tion  methodology[19]:  (1)  Advancement  of  the  quality  of  pro-
gression, like the classical MAXBAND[33], and (2) optimization of
a  performance  index,  like  the  mixed-integer  traffic  optimiza-
tion  program  (MITROP)  method[34].  For  the  former  methodo-
logy, the objective is to maximize the green bandwidth along a
particular  arterial  roadway.  For  the  latter  methodology,  differ-
ent objectives are formulated to minimize performance indices
like the number of stops, total delays, average travel times, or a
combination thereof.

 CV-based adaptive signal control and signal
coordination

Existing  signal  control  systems  are  usually  based  on  traffic
flow data from fixed location detectors[1,17,19].  Due to the rapid
advances  in  the  emerging  vehicular  communication,  the  CV-
based signal control demonstrates significant improvements as
compared  to  existing  conventional  signal  control
systems[1,19,35,36].  As  a  result,  many  CV-based  adaptive  signal
control  methods[1,35,37−39] and  coordination
approaches[19,32,40−44],  aimed  at  improving  the  efficiency  of
adaptive  and  coordination  systems,  have  been  introduced  in
the  past  several  years.  They  can  be  summarized  into  several
categories:  adaptive  signal  control  methods  aiming  for  an
isolated  signalized  intersection,  adaptive  signal  control  meth-
ods  for  multiple  signalized  intersections,  and  signal  coordina-
tion  for  multiple  signalized  intersections.  Typical  examples
include  PAMSCOD  (platoon-based  arterial  multi-modal  signal
control  with  online  data)[42] and  its  variants[45],  proposed  in
2012 and 2014, respectively.

The general definition of a real-time signal control consisting
of both adaptive signal control (ASC) and signal coordination in
the CV environment is described in Fig. 3. As depicted in Fig. 3,
a  vehicle  platoon  approaches  a  corridor  with  two  signalized
intersections  and  then  passes  through  it.  The  vehicle  platoon
might  encounter  red  lights  at  the  signalized  intersections  and
thus  experience  potential  stop  delays,  thus  increasing  total
travel  time  significantly.  To  mitigate  stop  delays,  a  CV-based
adaptive  signal  control  and  coordination  framework  is
deployed as a real-time and, therefore, efficient method.

In such a CV-based signal control framework, including both
adaptive  signal  control  and  coordination,  the  critical  real-time
data  transmission  between  the  CVs  and  the  connected
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Fig. 2    The structure of the current review for the traditional and CV-based urban traffic control systems.

Table 1.    Summary of three conventional signal control systems.

Signal control Data type Traffic prediction Control strategy

Fixed-time Historical N/A Pre-defined
timing plans

Actuated Real-time N/A Simple logics
Adaptive Real-time Predictions by

traffic models
Signal

optimizations
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roadside infrastructure, as well as the real-time control strategy,
improves  traffic  control  performance  to  be  more  flexible  and
efficient[19].  These data generated from the CV technology can
be categorized into two fundamental classes[32]. The first class is
the  real-time  CV  data,  including  trajectories,  motion  data,  and
signal  priority  request  data.  The  second  class  is  the  real-time
infrastructure-based  data  providing  signal  phasing  and  timing
(SPaT), the roadway geometry, and current priority status data.
These  real-time  data  offer  an  opportunity  to  develop  a  new
generation  signal  control  using  these  real-time  CV  data.  Thus,
the full  utilization of this highly valuable data could be further
exploited  to  decrease  the  total  travel  time  in  the  CV-based
signal control framework.

However, existing works on CV-based adaptive signal control
and  coordination  methods  still  have  outstanding
issues[17,19,43,46],  and,  therefore,  the  potential  of  CV  technology
in this domain warrants further study.

 Literature review

This  section  engages  in  a  comprehensive  review  of  existing
urban  traffic  signal  control  methods,  including  the  following
points:

1. Adaptive signal control,
2. Traffic signal coordination,
3. Connected vehicle-based adaptive signal control,
4. Connected vehicle-based traffic signal coordination,
5. Detailed comparisons and limitation analysis. These analy-

sis  are  conducted  for  both  the  existing  traditional  (non-CV-)
and connected vehicle- (CV-) based signal control systems from
three  fundamental  components.  These  three  components  are
data, traffic model, and control strategy, previously outlined in
Fig. 1.

 Adaptive signal control
The adaptive signal control uses real-time traffic flow data to

predict  future  traffic  flow  conditions,  then  generates  an  opti-
mal  signal  timing  plan.  There  have  been  numerous  adaptive
signal  control  systems  proposed  and  developed  over  the  past
several  decades.  From  the  surveys  by  Stevanovic  et  al.  and
Wang  et  al.[15,16],  there  are  more  than  20  implemented  urban

adaptive traffic control systems. Ten of the most widely imple-
mented urban traffic control systems (UTCSs) are reviewed and
analyzed  in  detail  in  the  published  NCHRP  (National  Coopera-
tive Highway Research Program) report[15].

In  the  following  discussion,  various  ASC  systems,  including
SCOOT[27], SCATS[28], are examined in detail to understand their
system  architectures  and  algorithms  based  on  performance
indices. Then a summary of these systems is given in a table to
distinguish them using several different metrics.

The SCATS[28] utilizes a subsystem consisting of several adja-
cent  intersections  that  is  a  centralized  signal  control  system.
Each near subsystem can be joined together to build one larger
subsystem,  or  divided to build  smaller  subsystems.  Each inter-
section  of  one  subsystem  is  controlled  by  an  actuated  signal
control  system.  The  changes  in  the  cycle,  split,  and  offset  are
based  on  heuristic  algorithms  without  traffic  models.  The
heuristic  algorithm  chooses  one  timing  plan  from  several  pre-
defined timing plans to balance the saturation degree on each
traffic approach. Only stop-bar detectors are required to record
traffic occupancy and volume data when obtaining the satura-
tion data.

SCOOT[27] utilizes  a  platoon dispersion model  and an online
optimization method to obtain a proper real-time signal timing
setting, which is a hierarchical traffic control system. The delay
minimization  is  implemented  to  change  the  current  timing
plan, in which three parameters are optimized: split, cycle, and
offset.  Before  adjusting  the  current  signal  timing  plan,  the
signal  timing  is  used  as  a  fixed  timing  plan.  Upstream  and
advanced detectors are required to obtain traffic counts, resid-
ual queues, and lower bounds of queues, respectively.

Other  UTCSs  worth  mentioning  include  the  following.
OPAC[29] is  a  real-time  signal  optimization  system  based  on
dynamic programming (DP). The deployed DP-based optimiza-
tion  model  minimizes  delays  over  a  finite  future  prediction
horizon  and  can  eventually  be  used  for  a  coordinated
network[47].

RHODES[30] is based on a hierarchical framework, where it has
both an upper level determining the network flow control and
a  lower  level  minimizing  the  intersection  level's  performance
indices. In the lower level, a rolling horizon scheme-based DP is
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Fig.  3    A  graphical  statement  of  signal  control  in  a  mixed  CV  environment,  with  an  urban  road  segment  with  two  adjacent  signalized
intersections.
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proposed  to  achieve  performance  optimizations[48,49].  Both
stop-bar  and  advanced  detectors  are  required  to  predict  an
arrival table for an intersection-level control at the lower level.

ACS-lite[15] focuses  on  developing  lower  maintenance  and
installation  costs  and  a  deployable  adaptive  signal  control
system. The ACS-lite system is composed of three algorithms: a
time-of-day  (TOD)  planner,  a  run-time  refiner,  and  a  transition
controller[47]. The TOD planner changes the current timing plan
for  different  TODs  and  is  responsive  to  existing  traffic  condi-
tions.  The  run-time  refiner  determines  the  optimal  time  to
change  one  timing  plan  to  another.  The  transition  controller
determines  the  optimal  transition  strategy  during  the  transi-
tion period.

Other  recent  adaptive  signal  controls  include  the  MOTION
system  proposed  by  Brilon  &  Wietholt  in  2013[31],  the  FITS
system introduced by Jin et al. in 2017[50], and the Deep Learn-
ing  (DL)-based  system  proposed  by  Gao  et  al.  in  2017[51].  The
MOTION ASC system[31] possesses typical  architecture,  and the
system  itself  determines  optimal  timing  plans  at  the  global
network  level  and  utilizes  the  actuated  signal  control  at  the
local  intersection  level[50].  The  FITS  system[50] introduced  an
intelligent  control  system  based  on  fuzzy  logic  to  optimize
timing  plan  parameters.  The  DL-based  system[51] proposed  a
deep  reinforcement  learning  method-based  system  to  auto-
matically  distill  useful  flow  features  from  raw  traffic  condition
data  to  obtain  optimal  timing  plans.  Considering  the  differ-
ences  with  respect  to  three  key  components  discussed  here,
these  ASC  systems  can  be  summarized  into  three  categories:
adjusted  control,  responsive  control,  advanced  adaptive
control[14–16,52]. This classification is shown in Table 2.

As  shown  in Table  2,  all  existing  UTCSs  are  divided  into  the
three  outlined  categories[14−16,52].  The  more  advanced  the
control  system,  the  higher  the  sensor  density  level  and  UTCS
generation. At the same time, the responsive change frequency
and  control  strategy  are  faster,  higher,  and  more  comprehen-
sive.  A  detailed  analysis  of  this  is  shown  in  the  following  sub-
chapter 'comparisons and limitations'.

As shown in Table 2, the traffic-adjusted control uses both L1
(Level  1)  and  L1.5  sensor  density  levels,  which  means  there  is
less than one sensor and up to one sensor per link. The respon-
siveness  to  demand  is  a  slow  reactive  response  with  a  mini-
mum of a 15-min change frequency. This kind of control system
is  categorized  as  UTCS  G1  (Generation  1)  and  G1.5.  A  typical,
widely implemented example is SCATS.

Second, the traffic responsive control uses L2 sensor density
level, which means there is one sensor per link up to one sensor
per  lane.  The  responsiveness  to  demand  is  prompt  and  reac-
tive,  with  a  minimum of  a  5  to  15-min change frequency.  This
type  of  control  system  is  categorized  as  UTCS  G2.  A  typical
example is SCOOT.

Lastly,  the  advanced  adaptive  control  utilizes  L3  sensor
density level, which means that there are two sensors per lane.
The  responsiveness  to  demand  is  rapid  and  proactive,  with  a
several-seconds-level  change  frequency.  This  type  of  control
system  is  categorized  as  UTCS  G3.  Typical  examples  include
OPAC, RHODES, and ACS Lite.

However, there are two significant limitations related to data
quality  and  sensor  costs  because  the  current  ASC  systems  are
mostly  utilizing  data  from  infrastructure-based  sensors[17,30]

that include video-based and pavement-based loop detectors.
First,  these  infrastructure-based  sensors  are  fixed-location
sensors  that  are  only  providing  the  instantaneous  individual
vehicle  data  when  a  vehicle  passes  over  the  installation  loca-
tion. There is no spatial  vehicle status,  such as location, speed,
and acceleration, provided by these point sensors. Second, the
installation  and  maintenance  costs  of  these  point  loop  detec-
tors  are  high.  If  any  detectors  are  not  working  correctly,  the
performance  of  implemented  ASC  systems  significantly
degrades[17,30].  The  additional  disadvantages  of  control  strate-
gies  are  existed.  Thus,  a  significant  need  to  develop  new
advanced approaches to fix the two limitations is still present.

 Traffic signal coordination
Among various signal control strategies, traffic signal coordi-

nation is  another  important  and widely  implemented strategy
with  enhanced  performance[19,32].  Usually,  the  coordination
system  synchronizes  traffic  signals  over  the  span  of  a  corridor
to  provide  signal  progressions  for  approaching  vehicles  to
reduce  the  number  of  stops  and  delays[19].  Even  though  the
coordination  control  performs  better  than  other  control  stra-
tegies for corridors, it still needs improvement.

To enhance the performance of the signal coordination, vari-
ous  methods[33,34,54−74] are  proposed  to  achieve  better  perfor-
mance  measures.  These  approaches  are  classified  into  two
categories  of  optimization  methodology[19]:  advancement  of
the  quality  of  progression,  like  the  classical  MAXBAND[33],  and
optimization of a performance index, like using the mixed-inte-
ger  traffic  optimization  program  (MITROP)  method[34].  This  is
shown in Table 3.

Table 2.    Fine classifications of adaptive signal control (ASC)[14–16,52].

Category Adjusted control Responsive control Advanced adaptive control
a Data quality: sensor density
level (L)

Static sensor data
L1 & L1.5, less than one sensor up to
one sensor per link

L2, one sensor per link up to one per
lane

L3, two sensors per lane

a Responsive to demand
variations

Slow reactive response based on
pre-calculated historical traffic flow

Prompt reactive response based on
changes in regularly disrupted traffic

Very rapid proactive response based
on short-term predicted movements

a Change frequency in control
plan (HZ)

Minimum of 15 minutes, usually
several times during a rush period,
(< 1/900 HZ)

Minimum of 5-15 minutes, per
several cycles, (< 1/300 HZ)

Continuous adjustments are made to
all timing parameters, per several
seconds (< 1/5 HZ)

c Control strategy Pattern matching from pre-stored
plans by static optimization

Cyclic timing plan generating and
matching via static/dynamic
optimization

Real-time timing adjusting via
dynamic optimization and optimal
control

a,b Generations of UTCSs (G) G1 & G1.5a , e.g., SCATS[28] G2a, e.g., SCOOT[27] G3b , e.g., OPAC[29], RHODES[30],
ACS Lite[53]

Coordination included Mostly yes Mostly yes Yes

a Adopted from Klein et al.[14] and Stevanovic et al.[15]. b Summarized from Gartner et al.[52] and Wang et al.[16]. c Identified in this report drawn from across a
number of studies.
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Regarding  the  first  class,  improving  the  quality  of  progres-
sion, many optimization methods have been tried to maximize
green  bandwidth[33,55−68].  Little  et  al.  proposed  several  mixed
integer  linear  programming  (MILP)-based  models  to  synchro-
nize traffic signals for maximizing the bandwidth along a corri-
dor;  these  proposed  methods  were  called  the  MAXBAND
series[33,55,56].  Many  extensions  of  the  MAXBAND  were  then
proposed  considering  more  traffic  variables  and  phenomena.
Two  classes  that  showed  significant  improvement  are  MULTI-
BAND[57−62] and PASSER series[63–67]. The MULTIBAND series was
designed by Gartner et al.[57–62] to introduce the variable band-
width  progression  considering  dynamic  changes  in  traffic
volumes[19],  while  the  PASSER  series  (progression  analysis  and
signal  system evaluation routine)  proposed by  Messer,  Chang,
and Chaudhary[63–67] further considered a phase sequence opti-
mization method and a queue clearance method for the band-
width maximization via heuristic algorithms. Recently, an asym-
metrical  multi-BAND  (AMBAND)  model  proposed  by  Zhang  et
al.  extended  the  MULTIBAND  to  achieve  a  broader  bandwidth
by  relaxing  the  requirement  of  the  symmetrical  progression
band[68].

Regarding  the  second  category,  optimization  of  a  perfor-
mance  index,  various  algorithms  have  been  proposed  to
improve  one  or  more  performance  measures[34,54,69−74].  These
performance  indices  include  delay,  travel  time,  number  of
stops, and their combinations. Several examples of these meth-
ods  are  described  below  in  order  to  illustrate  their  effective-
ness.

Early  on,  Gartner  et  al.  developed  the  mixed  integer  traffic
optimization program (MITROP) to minimize the platoon's aver-
age  delays  using  a  proposed  platoon  flow  model  and  link
performance  function.  The  optimal  offset  values  are  deter-
mined  by  a  piece-wise  linear  approximation  of  the  platoon
delay model[34].  Then, the faster computation was achieved by
Köhler  et  al.  using  an  extended,  simplified  formulation  of  the
original  model[69].  Hu  &  Liu  recently  developed  an  improved
offset  optimization  method  to  minimize  total  delays  using
high-resolution loop detector  data[70].  Also,  an individual  vehi-
cle travel times data-based method was presented by Shoup &
Bullock to achieve optimal offset settings using vehicle re-iden-
tification equipment[71].  Furthermore,  a  weighted combination
function  of  the  number  of  stops  and  the  delay  is  used  by
several  widely  recognized  signal  optimization  tools  to  obtain
optimal coordination plans[19,72,74,54].

However,  since  existing  coordination  systems  are  mostly
based  on  fixed-location-based  detectors  and  sensors,  these
sensors have two limitations related to data quality and sensor
costs[19].  Also,  the  limitations  of  traffic  prediction  models  and
control  strategies  are  given  in  the  following  sections.  Thus,
improving signal coordination is crucial.

 Connected vehicle-based adaptive signal control
Most  of  the  existing  ASC  systems  rely  on  traffic  conditions

from  fixed-location-based  detectors[1,17,19].  Because  of  rapid
advancements  in  emerging  vehicular  communication,  CV-
based  signal  control  demonstrates  significant  improvements
over  existing  conventional  signal  control  systems[1,19,35,36].  As
already  highlighted,  CV  technology  features  low  latency,  real-
time  data,  high  reliability,  and  large  security  in  a  fast-mobility
condition,  thereby  providing  a  new  perspective  to  solve  the
issues of signal controls. The real-time data includes connectiv-
ity  indication,  transmitted  SPaT  data,  and  vehicle  status  data
extracted  from  the  BSM  and  other  data.  Thus,  by  utilizing  the
CV-based data, traffic signal control strategies are more dynam-
ically  reactive  to  real-time  fluctuations  and  changes  in  traffic
conditions.

Various  CV-based  adaptive  signal  control  approaches  have
been proposed, and they are divided into two types regarding
their  applied  scopes:  one  type  applies  to  a  single  isolated
signalized  intersection,  and  the  other  type  applies  to  multiple
signalized intersections.

In terms of methods aimed at an isolated signalized intersec-
tion,  they[1,36,75−93] are  categorized into  different  types  accord-
ing  to  their  different  performance  indices.  These  performance
indices include delay, queue length, waiting time, travel time, or a
combination of them. This is shown in Table 4.

For  the delay index,  which  is  the  focus,  Gradinescu  et  al.  in
2007[75] proposed  an  ASC  based  on  an  optimization  model  to
decrease  the  average  delay.  Pandit  et  al.  in  2013[81] proposed
an  ASC  based  on  the  oldest  arrival  algorithm  to  minimize
delays.  Kari  et  al.  in  2014[83] developed  an  agent-based  online
ASC  to  minimize  travel  delays via the  arrival  time  prediction.
Younes & Boukerche in  2016[85] presented a  new ASC to  mini-
mize  delays.  Feng  et  al.  in  2015[1] proposed  an  ASC  using  an
enhanced  controlled  optimization  of  phases  (COP)  algorithm
and  an  Estimation  of  Location  and  Speed  (ELVS)  method  of
unequipped vehicles  to minimize vehicle  delays.  Feng et  al.  in
2018[87] presented  a  real-time  detector-free  CV-ASC  to  opti-
mize  total  delays.  Ban  et  al.  in  2018[89] developed  a  new  ASC
method  to  reduce  delays.  Li  et  al.  in  2021[91,92] proposed  a
predictive  model  to  investigate  the  ASC  and  signal  coordina-
tion  performances  under  low  penetration  conditions  to  mini-
mize the delays. Mo et al. in 2022[93] developed a decentralized
reinforcement  learning-based  signal  control  to  optimize  the
average delays.

For  the queue  length index,  Ahmane  et  al.  in  2013[79]

presented  an  ASC  to  minimize  queue  lengths.  Tiaprasert  et  al.
in  2015[84] presented  a  queue  length  estimation-based  ASC  to
minimize  queue  lengths  for  both  saturated  and  under-satu-
rated  conditions.  Islam  &  Hajbabaie  in  2017[88] proposed  a

Table 3.    Classifications of signal coordinations in UTCSs[19].

Category Adjusted control Responsive control Advanced adaptive control
a Data quality: sensor density level (L)

Same as Table 2

a Responsive to demand variations
a Change frequency in control plan
c Control strategy
a,b Generations of UTCSs (G)
Specific control strategy for
Coordination

Advancement of the quality of progression,
e.g., classical MAXBAND[33] and recent AMBAND[68]

Optimization of a performance index,
e.g., MITROP[34]
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distributed  optimization  method  with  a  modified  MILP  for
minimizing the queue lengths.

For the waiting time index, Nafi & Khan in 2012[77] introduced
an  ASC  to  minimize  average  waiting  time.  Liu  et  al.[39] devel-
oped  reinforcement  learning-based  ASC  systems.  Cheng  et  al.
in  2017[86] developed  a  Fuzzy  group-based  ASC  to  minimize
average waiting time.

For  the travel  time index,  Cai  et  al.  in  2013[80] developed  a
travel-time-based  ASC  using  approximate  dynamic  program-
ming  (ADP)  to  reduce  travel  times.  Lee  et  al.  in  2013[82]

presented  a  cumulative  travel-time-based  ASC  to  minimize
cumulative travel times.

For  the combination index,  which  is  the  second  key  point,
Chou et al. in 2012[76] presented a passenger feeling-based ASC
to  minimize  passenger  delays,  as  well  as  vehicle  delays  and
stops.  Chang  &  Park  in  2013[78] proposed  an  ASC  to  reduce
junction  waiting  times  and  queue  lengths.  Guler  et  al.  in
2014[36] proposed an ASC based on a discharging sequence to
decrease the total delay and number of stops. Al Islam et al.[90]

in  2020  developed  a  real-time  distributed  framework  for  adja-
cent signal controllers.

Regarding proposed methods applied to multiple signalized
intersections,  they  are  described  as  follows[35,37,94]:  In  2013,
Goodall  et  al.[35] proposed a  predictive  microscopic  simulation
algorithm  (PMSA)  for  the  ASC.  The  algorithm  obtains  vehicle
status data from CVs and inputs them into a microscopic-level
simulation  model  to  forecast  near-future  traffic  flows.  Then,  a
rolling  horizon  scheme  with  a  15  s  interval  was  deployed  to
optimize a combination of several performance indices, such as
delays, stops, and accelerations. The status of unequipped vehi-
cles was estimated based on the status of the CV[94].  Consider-
ing the high computational costs of parallel simulations for the

prediction  process,  this  method  cannot  be  used  in  real-time
conditions[1].  Also,  the  performance  degraded  in  undersatu-
rated conditions. In 2013, Maslekar et al.[37] presented a cluster-
ing  algorithm  to  obtain  optimal  cycle  lengths,  green  intervals,
and  other  parameters  by  estimating  the  density  of  approach-
ing  vehicles.  A  modified  Webster's  model  was  deployed  to
calculate  cycle  length.  Simulations  presented  that  the
proposed method reduced the average waiting times  and the
number of stops.  Also,  though several  research projects evalu-
ated their models in both under-saturated and saturated traffic
conditions  in  a  CV  environment[35,42,84],  their  performances
could significantly  decrease in both under-saturated and satu-
rated conditions.  To  address  saturated conditions,  Christofa  et
al.  (2013)[95] proposed  queue  spillback  detection  based  on  CV
data  then  mitigated  the  queue  spillbacks.  In  2011,  Venkata-
narayana et al.[38] presented a signal control method using loca-
tion  and  speed  in  the  CV  environment.  The  control  strategy
detected  the  real-time  queue  length  at  the  downstream  to
responsively  change  splits  at  the  upstream  intersection.
However, the method was only evaluated in a simple network.

Also,  the  use  of  recent  machine  learning  and  agent  tech-
niques  to  develop  ASC  for  multiple  intersections  was  demon-
strated  by  Xiang  &  Chen  in  2016[96].  Xiang  at  el.  presented  a
multi-agent-based  ASC.  The  intersection  was  modeled  as  an
agent  and  was  modeled  by  a  Markov  decision  process.  The
signal  control  was  optimized  based  on  vehicle  status,  actions,
and other  parameters.  However,  this  method did not  consider
the offset optimization in the CV environment, thus decreasing
the effectiveness.  Liu et al.[39] and Yang et al.  in 2017[97] devel-
oped  reinforcement  learning-based  ASC  systems  to  obtain
optimal  timing  plans.  However,  both  systems  still  require  a
proper coordination to run along a corridor.

Table 4.    Summary of the objective functions in the existing CV-based ASCs applied to both the isolated intersection and multiple intersections.

Author, year
Objective functions+

Delay1 Queue length2 Waiting time3 Stop4 Travel time5 Type

Gradinescu et al.[75] in 2007 Average delay 1
Chou et al.[76] in 2012 Vehicle and

Passenger delay
Stops *

Nafi and Khan[77] in 2012 Average waiting time 3
Chang and Park[78] in 2013 Queue length Junction waiting time *
Ahmane et al.[79] in 2013 Queue length 2
Cai et al.[80] in 2013 Travel time 5
Pandit et al.[81] in 2013 Delay 1
Lee et al.[82] in 2013 Cumulative

Travel time
5

Kari et al.[83] in 2014 Travel delay 1
Guler et al.[36] in 2014 Total delay Stops *
Tiaprasert et al.[84] in 2015 Queue length 2
Feng et al.[1] in 2015 Vehicle delay Queue length 1
Younes and Boukerche[85] in 2016 Delay 1
Feng et al.[32] in 2016 Vehicle delay 1
Islam et al.[88] in 2017 Queue length 2
Liu et al.[39] in 2017 Average waiting time 3
Cheng et al.[86] in 2017 Average waiting time 3
Feng et al.[87] in 2018 Total delay 1
Ban et al.[89] in 2018 Delay 1
Al Islam et al.[90] in 2020 Average delay Total travel time *
Li et al.[91, 92] in 2021 Delay 1
Mo et al.[93] in 2022 Average delay 1

+ Index type: 1 delay, 2 queue length, 3 waiting time, 4 stop, 5 travel time, * combination.
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According  to  differences  with  respect  to  the  three  compo-
nents, the existing CV-ASC systems are classified in Table 5.

As  shown  in Table  5,  the  first  significant  difference  of  CV-
based ASC as compared to previous traditional ASC systems is
the  emergence  of  mobile  sensor  data  introduced  by  CV
technology.  The  second  difference  is  that  the  CV-ASC  has  a
higher  change  frequency  (i.e.,  less  than  1  HZ)  in  the  control
plan  because  of  recently  developed  control  strategies.  This
higher  change  frequency  gives  the  CV-ASC  systems  faster
response times to the demand variations.

According to  the  differences  in  the  data  types,  i.e.,  different
market penetration rates, these existing CV-based ASC systems
are classified into two types: 1) basic CV-ASC, and 2) advanced
CV-ASC.  The  basic  CV-ASC  system  can  only  work  in  100%
market  penetration  rate  conditions,  while  the  advanced  CV-
ASC  system  can  perform  well  in  both  partial  and  full  market
penetration rate conditions. However, a significant issue is that
the  real-time  ASC  performance  degrades  in  low  market  pene-
tration  conditions.  In  addition,  there  are  limitations  to  the
prediction models and control strategies, as given in the follow-
ing sections.

 Connected Vehicle-based traffic signal coordination
The  limitations  caused  by  the  infrastructure-based

detectors[19],  coupled with the substantial  benefits  of  CV tech-
nology, have prompted the rapid development of both the CV-
based ASC and CV-based signal coordination.

Several  recent  CV-based  coordination
approaches[19,32,40–43,46,98,99] have  been  introduced,  aimed  at
improving  the  efficiency  of  the  coordination  systems.  These
approaches  are  briefly  outlined  in Table  6 by  author,  country/
region, and institution.

Further,  these  proposed  approaches  can  be  classified  into
two types, offline 'detector-free' offset optimization and online
priority-based coordination, shown in Table 7.

As  shown  in Table  7,  the  first  type  is  the  so-called offline
'detector-free'  offset  optimization originated  from  Day  et
al.[98,40,41,46].  These  researchers  presented  detector-free  offset
optimization  studies,  where  CV  data-based  trajectories  were
used  to  generate  'virtual  detections'.  Then,  arrival  profiles
created by virtual  detections were used to obtain signal  offset
optimization for signal coordination. Later, an extension model
of this method was proposed to better determine coordination
plans  under  low  penetration  rate  conditions[43] by  integrating
similar  historical  automated  vehicle  location  data.  In  2018,
Zheng  et  al.[99] proposed  a  method  to  utilize  CV-based  trajec-
tory data to assess signal coordination quality, thus optimizing
the traffic signals.  However, the current detector-free methods
are not capable of real-time signal coordination control use[100],
which means they do not feature CVs' real-time data.

The second type is  an online  priority-based  method,  which is
shown in Table 7. This method has a higher frequency response
to  demand  variations  but  requires  a  high  market  penetration,
i.e., Pcv_min = 25%. Feng et al.  evaluated an online coordination
with fixed offset values in a CV environment, where the coordi-
nation was  integrated with  an  adaptive  control  algorithm in  a
high  penetration  rate  situation[32].  The  model  was  then
extended to optimize offsets along a corridor using a CV-based
corridor-level  optimization[19].  However,  the  optimal  common
cycle  length  was  determined  offline  by  average  flow  data,
which degenerates optimal effectiveness. Also, He et al.  tested
a platoon-based arterial signal control using the CV technology
that included the dynamic signal coordination for both under-
saturated  and  saturated  traffic  conditions[42].  Within  their
method, they tried to obtain a multi-modal dynamical progres-
sion  for  significant  platoons  by  considering  existing  queue
delays.  In  addition,  Li  et  al.  investigated  a  platoon-based
bicyclic  coordination  diagram  (Bi-PCD)  for  offset  optimization
in a CV environment[101]. However, CV penetration rates signifi-
cantly  influence  the  positive  performances  of  those  CV-based
algorithms discussed above, which presents a challenge[19,32,42].
The prediction results are sensitive to market penetration rates
because  variations  are  largely  yielded  in  low  penetration  rate
conditions[19,42].

Consequently,  one problem is that the real-time coordination
performance degrades with incomplete information in low mar-
ket  penetration  conditions.  In  other  words,  achieving  progres-
sive  improvements  in  online  CV-based  coordination  methods
with  higher  response  frequencies  in  lower  penetration  rate
conditions  is  critical.  Also,  the  limitations  of  prediction  models
and control strategies are given in the following section.

Table 5.    Fine classifications of the CV-based ASC[14−16,52].

Category CV-based basic ASC CV-based advanced ASC

a, c Data quality: sensor density level (L)
and market penetration rate (Pcv)

Mobile sensor data
L4a, Pcv = 100%,
i.e., 100 % market penetration rate

L3.5c & L4a, Pcv < 100% & Pcv = 100%,
i.e., both non-full and full market penetration rate

Each connected vehicle (CV) regularly reports its location, speed, and possibly its destinationa

b Responsive to demand variations Very rapid proactive response based on short-term traffic predictions
b Change frequency in control plan (HZ) Continuous adjustments, per several seconds to per second (< 1 HZ)
c Control Strategy Real-time timing adjustment via static optimization, dynamic optimization, and optimal control
c Generations of UTCSs (G) G4c, e.g., work by Gradinescu et al.[75] G4.5c , e.g., PAMSCOD[42] and detector-free ASC[ 87]

a Adopted from Klein et al.[14], Stevanovic et al. [15]. b Summarized from Gartner et al. [52], and Wang et al. [16]. c Identified in this report.

Table  6.    Summary  of  the  CV-based  advanced  signal  coordination
systems’ research teams and outputs.

Author, year Country/
region Institution

He et al.[42] in 2012 USA University of Arizona
C.M. Day et al.[40] in 2016 USA Purdue University
Li et al.[41] in 2016 USA Purdue University
Feng et al.[32] in 2016 USA University of Arizona
Beak et al.[19] in 2017 USA University of Arizona,

University of Michigan
C.M. Day et al.[98] in 2017 USA Purdue University
Remias et al.[46] in 2018 USA Purdue University
Zheng et al.[99] in 2018 USA,

China
University of Michigan,

Didi Chuxing LLC
Mo et al.[93] in 2022 USA Columbia University
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 Comparisons, limitations, and discussions

In  this  section,  we  present  some  comparisons  and  limita-
tions  for  these  existing  methods  reviewed  in  the  previous
contents. As was shown in Fig. 1, there are three basic compo-
nents  in  the  existing  traditional  (non-CV-)  and  CV-based  (CV-)
ASC and coordination systems: 1) data quality, 2) traffic model,
and 3) control strategy.

Several of the previous tables are put together now to clarify
significant  differences  among  different  non-CV-  and  CV-based
ASC  and  signal  coordination  systems.  The  summarized  tables
are shown in Tables 8 & 9.

Some rough descriptions of these existing systems from the
three  perspectives  are  given.  After  that,  a  detailed  limitation
analysis is presented.

There  are  several  preliminary  observations  from  these  two
tables.  First,  a  data  paradigm  shift  appears;  the  mobile  sensor
data  almost  replaces  the  traditional  static  sensor  data.  Also,
new issues related to data quality emerge in the data paradigm
shift when switching to the new mobile sensor data basis.

Second,  the  control  strategies  feature  fewer  delays  and

better real-time and efficient response performance over time,
but  they  are  becoming  more  complex.  For  example,  the  most
advanced  control  methods  are  always  adopted  in  the  most
recent CV-based signal control systems.

Lastly,  various  traffic  models  are  widely  used  in  both  tradi-
tional  ASC  and  signal  coordination  systems.  These  models
include different  major  micro-/meso-/macroscopic  models.  On
the  other  hand,  traffic  models  included  in  the  emerging  CV-
based ASC and signal  coordination systems are mostly depen-
dent on microscopic models.

The above discussions are summary descriptions of the exist-
ing  systems  from  three  perspectives:  data,  traffic  model,  and
control  strategy.  A  further  detailed  comparison  and  limitation
analysis of them is given in the following sections.

 Traffic data

 Static (fixed) sensor data
As shown in Tables 8 & 9, the traditional ASC and signal coor-

dination  systems  are  based  on  fixed  location-based  detectors
with  different  sensor  density  levels[17,30].  These  fixed  location-
based  sensors  include  video-based  and  pavement-based  loop

Table 7.    Fine classifications of the CV-based advanced signal coordination systems[19,32,40−43,98].

Category CV-based advanced signal coordination systems

a, c Data quality: sensor density level (L) and
market penetration rate (Pcv)

Mobile sensor data
L3.5c & L4a, Pcv < 100% & Pcv = 100%, i.e., both non-full and full market penetration rate

b Responsive to demand variations Slow reactive response based on
historic traffic flows

Rapid proactive response based on short-term
predicted movements

b Change frequency in control plan (HZ) Minimum of 15 min−3 h,
(< 1/900 HZ)

Continuous adjustments, usually per cycle
(< 1/100 HZ)

Minimum Pcv_min 0.1% for per 3 hrs change, 5% for
per 15 mins change

25% for per cycle change

Specific control strategy of coordination offline offset method,
e.g., detector-free method [98,40,41,46]

online priority-based method,
e.g., adaptive coordination method[19,32,42]

c Generations of UTCSs (G) UTCS G4.5c

a Adopted from Klein et al.[14], Stevanovic et al. [15]. b Summarized from Gartner et al.[52], and Wang et al.[16]. c Identified in this report.

Table 8.    Fine classifications of traditional (non-CV-based) and CV-based ASC*.

Category Non-CV-based
Adjusted control

Non-CV-based
Responsive control

Non-CV-based
Advanced adaptive

control

CV-based
Basic ASC

CV-based
Advanced ASC

a Data quality: sensor
density level (L)

Static sensor data Mobile sensor data
L1 & L1.5, less than
one sensor up to one
sensor per link

L2, one sensor per link
up to one per lane

L3, two sensors per lane L4a, Pcv = 100%, i.e.,
100% market
penetration rate

L3.5c & L4a, Pcv < 100%
& Pcv = 100%, i.e., both
non-full and full market
penetration rate

a Responsive to
demand variations

Slow reactive
response based on
pre-calculated
historical traffic flow

Prompt reactive
response based on
changes in regularly
disrupted traffic

Very rapid proactive
response based on
short-term predicted
movements

Very rapid proactive response based on short-
term traffic predictions

a Change frequency in
control plan
(HZ)

Minimum of 15 min,
usually several times
during a rush period,
(< 1/900 HZ)

Minimum of 5−15 min,
per several cycles,
(< 1/300 HZ)

continuous adjustments
are made to all timing
parameters, per several
seconds
(< 1/5 HZ)

Continuous adjustments, per several seconds to
per second (< 1 HZ)

c Control strategy Pattern matching from
pre-stored plans by
static optimization

Cyclic timing plan
generating and
matching via
static/dynamic
optimization

real-time
timing adjustment via
dynamic optimization
and optimal control

Real-time timing adjustment via static
optimization, dynamic optimization, and
optimal control

a,b Generations of
UTCSs (G)

G1 & G1.5a,
e.g., SCATS[28]

G2a, e.g., SCOOT[27] G3b, e.g., OPAC[29],
RHODES[ 30],
ACS Lite[53]

G4c, e.g., the work by
Gradinescu et al.[75]

G4.5c, e.g.,
PAMSCOD[42] and
detector-free ASC[87]

Coordination included Mostly yes Mostly yes Yes Mostly yes Mostly yes
Traffic model Microscopic/ macroscopic/ mesoscopic models Mostly microscopic models

* Summarized from previous Tables 2 & 5, where further details of the above notations are available.
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detectors.  They  generate  static  sensor  data,  including  occu-
pancy, flow data, and speed profiles.

However,  there  are  several  limitations  to  traditional  fixed
detector-based  static  sensor  data  related  to  data  quality  and
sensor  costs.  First,  these  sensors  are  fixed-location  detectors
that  only  give  instantaneous  individual  vehicle  data  when  a
vehicle  passes  through  the  installation  location.  There  is  no
direct  spatial  vehicle  data  provided  by  these  point  sensors,
such as location, speed, and acceleration.

Second,  the  installation  and  maintenance  costs  of  these
sensors are significantly high. These high installation and main-
tenance  costs  make  re-installations  and  functional  operations
of  detectors  inefficient.  Thus,  if  any  detectors  are  operating
inefficiently  or  incorrectly,  the  performance  of  the  imple-
mented urban signal control systems can significantly degrade
to  low  levels[17,30].  Additionally,  proactive  information,  like
signal  priority  request  commands,  cannot  be  integrated  into
the  static  sensor  data.  This  limitation  can  incur  additional
device installation and maintenance costs when implementing
a priority-based traffic control, like transit priority control.

 Mobile ( CV-based ) sensor data
CV technology features low latency, real-time data, high reli-

ability,  and high security in a high-mobility environment.  Each
CV regularly broadcasts its  position,  speed,  and possible desti-
nation. Thus, when compared to the static sensor's data quality
and  costs,  it  avoids  the  previous  two  limitations  by  its  advan-
tages  of  real-time  spatial  motion  reports  and  low  installation

and  maintenance  costs.  More  importantly,  CV  technology
enables  a  vehicle  to  acquire  SPaT  data  from  signal  controllers
and  issue  a  signal  priority  request  to  signal  controllers,  some-
thing beyond the capability of fixed sensors.

However, during the initial implementation stage of CV tech-
nology, not every vehicle is a CV. Consequently, the initial stage
is characterized by a low market penetration rate situation that
possesses two major drawbacks.

First,  during  the  initial  deployment  stage,  there  are  limited
numbers of CVs on the road generating limited amounts of CV
data.  Consequently,  the  limited  CV  data  volume  degrades  the
performance of the CV-based signal control system[19,43,102,103].

Second,  there  are  large  numbers  of  non-CVs  on  the  road  at
the same time. They are not connected, and their motion infor-
mation  is  missing.  This  lack  of  non-CV  data  creates  uncertain-
ties  for  performance  quality  as  well  as  large  fluctuations  and
disturbances within the road traffic, thereby increasing compu-
tation  complexity  when  obtaining  optimal  timings[17].  In  addi-
tion,  the  high  frequency  of  data  exchange  also  increases  data
disturbances and fluctuations, thus adding to the complexity of
the CV environment.

A  summary  of  the  above  comparisons  and  limitations  is
given in Table 10.

As  shown  in Table  10,  the  mobile  sensor  data  outperforms
the  traditional  static  sensor  data  in  three  respects:  1)  spatial-
temporal  property,  2)  cost,  and  3)  the  capability  to  provide
extra  proactive  data.  However,  it  still  has  two  issues  in  low

Table 9.    Fine classifications of traditional (non-CV-based) and CV-based signal coordination*.

Category Non-CV-based
Adjusted control

Non-CV-based
Responsive control

Non-CV-based
Advanced adaptive

control

CV-based
Advanced signal coordination systems

a Data quality:
sensor density
level (L)

Static sensor data Mobile sensor data
L1 & L1.5, L2, L3, L3.5c & L4a, Pcv < 100% & Pcv = 100%, i.e., both non-full and

full market penetration rate
a Responsive to
demand
variations

Same as Table 8 Slow reactive response
based on historical traffic
flows

Rapid, proactive response based
on short-term predicted
movements

a Change
frequency in
control plan
(HZ)

Minimum of 15 min−3h,
(< 1/900 HZ)

Continuous adjustments,
usually per cycle
(< 1/100 HZ)

c Minimum Pcv_min 0.1% for per 3 hrs change,
5% for per 15 mins
change

25% for per cycle change

a,b Generations of
UTCSs (G)

G4.5c ,

Specific control
strategy for
Coordination

Advancement of quality of progression,
e.g., classical MAXBAND[33] and recent
AMBAND[68]

Optimization of a
performance index,
e.g., MITROP[34]

Offline offset method,
e.g., detector-free
method[98,40,41,46]

Online priority-based method,
e.g., adaptive coordination
method[19,32,42]

Traffic model Microscopic/ macroscopic/ mesoscopic models Mostly microscopic models

* Summarized from previous Tables 3 & 7, where further details of the above notations are available.

Table 10.    Summary of the data comparisons and limitations for both the static and mobile sensor data.

Data Type Spatial-temporal
property of traffic data

Cost* Extra proactive data Pros/
Cons

Static sensor data Instantaneous data at fixed location High No Cons
Mobile sensor (CV) data Full penetration Complete spatial and temporal CV data,

high frequency of data exchange
Low Yes, e.g., priority request data Pros

Low penetration Limited CV data Cons
Large missing of non-CV data

* Usually considering the installation and maintenance cost.
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penetration conditions,  which are the limited CV data and the
missing non-CV data.  These two issues  need to  be resolved in
order  to  provide  better  control  performance.  Additionally,  an
exploration  of  the  new  method  is  also  needed  to  utilize  the
extra proactive data fully.

 CV-based signal control systems in low penetration rate
conditions

Low  penetration  conditions  cause  two  critical  issues:  1)  the
limitations  on  CV  data  and  2)  missing  non-CV  data.  Some
current  research  works  aiming  to  solve  these  issues  in  the  CV
environment are discussed below.

(a)  Limited  CV  data.  Most  of  the  existing  CV-based  ASC  and
signal coordination methods do not design unique methods to
overcome this issue. Thus, these widely accepted practical stud-
ies  can  only  perform  well  with  sufficient  CVs,  i.e.,  when  the
penetration rate is  above a minimum penetration rate.  Results
of different minimum penetration rates (Pcv_min) are identified in
many  studies[40,87,94].  There  are  few  studies[19,40,41,46,87,98] that
worked  at  solving  this  problem.  From  2016  to  2018,  Day  et
al.[98,40,41,46] proposed a detector-free coordination series based
on  historical  limited  CV  data.  However,  their  work  was  not
implemented  in  real-time  conditions.  In  2017,  Beak  et  al.[19]

tested  a  stop-bar  detector-assisted  method  to  achieve  adap-
tive  coordination.  In  2018,  Feng et  al.[87] presented a  real-time
detector-free  CV-ASC  using  a  probabilistic  estimation  model
based  on  both  a  prior  arrival  distribution  assumption  and
historical CV data.

In  2020,  Islam  et  al.[90] developed  a  real-time  distributed
signal  coordination  framework  by  exchanging  information
between adjacent signal controllers. In this framework, non-CV
trajectories  are  estimated  by  car-following  concepts  based  on
both  loop  and  CV  data.  Also,  the  spatial  vehicle  distributions
over  the  road  segment  are  estimated  by  temporal  CV  data.  In
2021, Li et al.[91,92] proposed a probabilistic single-vehicle-based
predictive model to investigate the signal coordination perfor-
mances under low penetration conditions. In 2022, Mo et al.[93]

developed a decentralized reinforcement learning-based signal
control  for  signalized  intersections.  Both  non-CV  and  CV  data
are used for offline training in low penetration conditions, while
only  CV  data  are  utilized  in  the  real-time  signal  control.
Recently,  in  2022,  Zhang  et  al.[104] also  presented  a  hybrid
offline-online  signal  control  strategy.  In  this  framework,  an

offline  signal  parameter  optimization  is  developed  first,
followed by an online deep recurrent Q-learning (DRQN) signal
optimization.  Specifically,  a  Bayesian  deduction  is  utilized  to
estimate the traffic volumes.

Thus,  there  is  no  applied  method  to  solve  this  issue  in  low
( around 10% ) and ultra-low ( around 5% ) penetration condi-
tions when considering real-time.

(b)  Missing non-CV data.  Similar to the concern of limited CV
data,  most  of  the  existing  CV-based  ASC  and  signal  coordina-
tion systems do not design specific methods to overcome this
issue.  A  few  researchers[1,94] have  tried  methods  that  estimate
the  status  of  unequipped  vehicles.  In  2014,  Goodall  et  al.[94]

utilized  a  micro-simulation-based  method  to  estimate  non-CV
locations, but it could not be applied in real-time. In 2015, Feng
et al.[1] extended Goodall's method by proposing an estimation
algorithm  of  the  vehicle  location  and  speed  (EVLS)  based  on
Wiedemann's model. However, Wiedemann's model still  needs
further  extensions,  and  there  is  no  field  validation  for  this
proposed method.

A summary of the existing methods for these two issues are
shown in Table 11.

In conclusion, the existing studies that are aiming at solving
two issues in low penetration rate conditions have their  draw-
backs. Thus, research on this topic is still needed.

 Traffic model
As shown in Tables 8 & 9, the second observation is that vari-

ous  traffic  models  are  used  in  the  traditional  ASC  and  signal
coordination  systems.  These  models  include  different  micro-
/meso-/macroscopic models.

However,  models  included  in  the  emerging  CV-based  ASC
and  signal  coordination  systems  are  based  mostly  on  micro-
scopic  models.  The  following  content  gives  a  brief  review  of
existing traditional and CV-based signal control systems.

 Microscopic models
Microscopic models describe details of various components'

behaviour  that  makeup  moving  traffic  streams  on  the
road[105−107].  These  components  include  vehicles,  roadside
controllers,  static  detectors,  road  geometry,  and  so  on.  The
most  widely  used  microscopic  models  are  various  car-follow-
ing models and lane-change models.

However, there are several limitations to microscopic simula-

Table 11.    Summary of studies targeting the low-penetration issue for urban signals.

Low penetration
rate issue

Limited CV data issue Missing of non-CV data issue CV
applications

Min Pcv
Proposed methods

Goodall et al.[94] in 2014 n/a Micro-simulation-based estimation
of the non-CV position

CV-ASC 10%−25%

Feng et al.[1] in 2015 n/a EVLS algorithm CV-ASC 25%−50%
Day et al.[98, 40, 41, 46] from
2016 to 2018

Historical limited CV data-based
aggregation

n/a detector-free
coordination

5%,
15 mins
change

Beak et al.[19] in 2017 Stop-bar detector-assisted method n/a adaptive
coordination

25%

Feng et al.[87] in 2018 Probabilistic model based on both prior
arrival distribution and historical CV data

n/a CV-ASC 10%

Al Islam et al.[90 ] in 2020 Spatial vehicle distribution estimation by
CVs

vehicle trajectories via both the loop
and CV data

CV-ASC and
coordination

0%, 10%

Li et al.[91, 92] in 2021 Vehicle-triggered platoon dispersion n/a CV-based
coordination

5%, 10%

Mo et al.[93] in 2022 Decentralized learning method n/a CV-ASC 10%
Zhang et al.[104] in 2022 Bayesian deduction n/a CV-ASC 5%, 10%
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tion  models[105−107].  First,  the  microscopic  modeling  of  large
participated  components  like  vehicles  introduces  a  large
computational  cost  when  simulating  large  arterial  networks.
The  second  is  that  the  digital  coding  of  the  road  surface
network incurs substantial complexity and financial cost. Third,
there  is  limited  availability  of  the  real-time  control  plans  from
modern  controllers  when  requiring  complete  information.  In
particular,  there  is  a  lack  of  SPaT  data  dynamic  descriptions.
Last,  it  is  challenging  to  obtain  details  of  the  fluctuations  and
disturbances  from  the  surrounding  traffic  demands  and  traffic
streams.

 Mesoscopic models
Mesoscopic  models  are  usually  identified  to  fill  the  gap

between  high-level  aggregations  of  macroscopic  models  and
high-level  disaggregations of  microscopic models  and work at
an  intermediate  level  of  detail[105–107].  Typically,  these  popular
mesoscopic  models  are  classified  into  three  types[105−107].  The
first type is the queuing approach for both freeways and signal-
ized arterial roads. In this method, the queuing theory is intro-
duced to model interaction between arrival patterns and signal
status. The second form is the cellular automata-based method.
In this method, the road is discretized into cells that each vehi-
cle  can  occupy  based  on  specific  rules.  The  last  alternative
groups  individual  vehicles  into  packets  or  cells.  The  packet  or
cell controls the aggregate individual vehicles.

However,  due  to  high-level  aggregated  representations  of
traffic streams and road geometry in these mesoscopic models,
dynamic  behaviour  of  facilities  cannot  be  accurately  analyzed
or replicated[105–107]. Mainly, it lacks dynamic descriptions of the

SPaT  data.  Also,  large  participating  components  like  vehicles
introduce huge computational costs when simulating big arte-
rial networks.

 Macroscopic models
There  are  various  macroscopic  models  that  describe  the

moving  traffic  stream  at  a  high  level  of  aggregation  as  traffic
flow[105−107].  Macroscopic  models  are  a  widely  used  strategy
within many UTCSs. Various typical UTCSs[15,108−110] that applied
different  macroscopic  traffic  models  from  1960s  to  2010s  are
shown  in  the  following Table  12.  These  macroscopic  models
can be classified into three generalized as well as typical types:
dispersion-and-store  model  (DSM),  cell  transmission  model
(CTM), and store-and-forward model (SFM).

(a) Dispersion-and-store model (DSM)[73,120,121]. The DSM, origi-
nally  proposed  by  Pacey  et  al.  in  1956  and  Robertson  in
1969[73,120−123],  is  an empirical  observation mimicking both the
platoon  dispersion  behaviour  during  a  green  signal  and
platoon storage during a red signal. Usually, two forms are used
for  this  modeling:  a  normal  distribution form and a  geometric
distribution form. The geometric distribution form is also called
Robertson's  Platoon  Dispersion  Model  (RPDM)  and  has  been
widely  incorporated  in  many  UTCSs,  e.g.,  SCOOT[120,121].
However,  the  DSM  cannot  model  real-time  precise  complex
queue  formulation  and  dissipation  since  the  road  segment
between  any  two  adjacent  intersections  is  considered  as  one
link.  In  addition,  its  adaptiveness  to  traffic  fluctuations  is  diffi-
cult to calibrate[124].

(b) Cell  transmission  model  (CTM).  The  CTM  proposed  by
Daganzo  in  1994[125] discretized  the  continuum  of  Lighthill  &

Table 12.    Summary of traditional UTCSs applied different traffic models.

Decade Typical UTCSs Dataa Global optimization formulation
and/or solution algorithm Traffic model

1960s TRANSYT in UK in 1968 Loop data Domain-constrained optimization DSM model[15]

1970s SCATS in Australia in 1979 SL, Loop data Strategic and tactical control Flow-delay profiles[15]

SCOOT in UK in 1979 US, Loop data Domain-constrained optimization Flow-occupancy profiles,
DSM model[15]

DYPIC in UK in 1974 [108] US, Loop data Backward dynamic programming[108],
Rolling horizon approach

DSM model

1980s -1990s OPAC in US in 1983[15] MB & SL, Loop data Complete enumeration / exhaustive
enumeration[111, 112],
Rolling horizon
approach

DSM model[15]

RHODES in US in 1992[ 15] MB & SL, Loop data Dynamic programming[111, 112], Rolling horizon
approach[30]

DSM model[15]

UTOPIA /SPOT in Italy in 1985[15] US & SL, Loop data Online dynamic optimization and off-line
optimization[108] , Rolling horizon approach[113]

DSM model

PRODYN in France in 1984[108] US, Loop data Forward dynamic programming[111, 112] ,
Rolling horizon approach[109]

DSM model

2000s ACS-lite in US in 2003[15] US, Loop data Domain-constrained optimization, three
levels of optimization methodology

DSM model

2010s Aboudolas et al. in 2010[109] AL, Loop data Quadratic programming, Rolling horizon
approach

SFM model

Liu & Qiu in 2016[110] US & SL, Loop data Multi-objective optimization problem and
an evolutionary algorithm

Extended SFM model

Hao et al. in 2018[114, 115] US, Loop data Model predictive control-based method
integrating optimizations

CTM model

Han et al. in 2018[116] n/a Linear quadratic model predictive control Extended CTM model
Lu et al. in 2019[117] n/a Explicit model predictive control SFM model
Pedroso and Batista in 2021[118] US Decentralized and decentralized-decoupled

traffic-responsive urban control
Decentralized SFM

Souza et al. in 2022[119] Loop data, Historical
data

Integrating signal control and routing Multi-commodity SFM

a SL = stop-line, MB = mid-block, US = upstream, AL = arbitrary location, adopted from Stevanovic et al. [15] and Aboudolas et al.[109].
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Witham's  kinematic  model  (LWR)  into  multiple  cells.  In  this
case, the road network is represented by many small cells. One
cell's  vehicle  dynamics  are  based  on  a  transition  process
between two consecutive cells. In 2018, Hao et al. extended the
CTM to  an extended urban cell  transmission model  (UCTM)  to
obtain the average travel delays of the vehicles in the upstream
approaches  of  each  intersection[114,115].  However,  the  major
disadvantage  of  CTM  is  that  the  fine  discretization  of  the
arterial network requires substantial computational complexity
and sensor density. A shortage of sensors and limited computa-
tional capability significantly degrade the performance of CTM-
based control methods[124].

(c) Store-and-forward model  (SFM).  Gazis et al.  originated the
SFM model in 1965, which was extended by Aboudolas et al. in
2009 to model traffic dynamics in congested arterials[112]. Simi-
lar  to  CTM,  vehicles  in  the SFM model  are  either  stored within
the current link in the red signal or forwarded to the next link in
the green signal. The link dynamic is given by the conservation
law.  The  most  significant  characteristic  of  the  SFM  is  that  the
discrete  time  step Tk is  equal  to  cycle  length C,  i.e., Tk = C[124].
This  leads the model  to describe a  continuous (uninterrupted)
average outflow from each link outside of the consideration for
a  queuing  formulation  or  for  dissipation  due  to  a  green-red
switching  mechanism[112].  In  other  words,  SFM  has  difficulty
modeling  real-time  accurate  complex  queue  formulations  and
dissipations, similar to the disadvantage of the DSM. This model
only  provides  an  efficient  representation  of  the  dynamics  in
congested networks.

In  conclusion,  the  dynamics  of  facilities  are  not  accurately
analyzed and replicated[106,107,126],  similar  to the disadvantages
of  mesoscopic  models  with  the  high-level  aggregated  repre-
sentation  of  the  traffic  streams  and  road  geometry.  For  exam-
ple, macroscopic models lack dynamic descriptions of the SPaT
data. Also, DSM, CTM, and SFM have the difficulty with model-
ing  real-time  accurate  complex  queue  formulations  and  dissi-
pations.  In  other  words,  there  is  a  problematic  level  of  perfor-
mance degradation because of queuing uncertainties.

 Hybrid models
The  hybrid  models  that  combine  the  advantages  of  two  or

more levels of  the individual models,  emerge as possible solu-
tions[127].  There  are  two  major  types:  mesoscopic–microscopic
models  and  macroscopic-microscopic  models[107,128].  Usually,
researchers  aim  to  integrate  the  strengths  of  macroscopic  or
mesoscopic  models  (better  modeling  of  large  networks  and
easier  calibrations)  with  microscopic  models  (greater  details
and modeling control strategies capability)[107,128]. However, all
of  these  studies  are  based on simulations  that  have extraordi-
nary  computational  complexity.  Consequently,  existing
research  studies[107,127,128] are  only  suitable  for  offline  verifica-
tion and evaluation of different ITS and signal strategies rather
than for real-time signal control use.

 Models in CV-based ASC and coordination systems
Most of the existing CV-based ASC[1,36,75−87] and signal  coor-

dination[19,32,40−43,46,98] systems depend on microscopic models.
Thus,  they  suffer  the  problems  described  above  in  the  sub-
chapter  'microscopic  models'.  One  major  issue  is  that  perfor-
mances degrade because of a shortage of sensors and compu-
tational capability.

There  are  not  many  works  utilizing  the  mesoscopic  models
and macroscopic models for the CV-based ASC and signal coor-
dination.  Zhang  et  al.  in  2022[129] demonstrate  a  distributed

queueing model to improve the signal control performances in
an  edge  computing  environment.  Chen  &  Qui  in  2021[130]

implement  the  CTM  with  dynamic  routing  plans  for  a
distributed signal  control  in  an edge computing environment.
Souza et al.  in 2022[119] propose a multi-commodity SFM utiliz-
ing a  destination-based turning rate  to  improve signal  control
performances.  Yao et al.  from 2019 to 2020[131−134] proposed a
real-time  dynamic  dispersion  model  in  a  CV  environment,
where  travel  time,  vehicle  speed,  vehicle  location,  or  their
combination  is  utilized.  Li  et  al.  in  2021[92] proposed  a  predic-
tive dispersion model to investigate signal coordination perfor-
mances under low penetration conditions in a CV environment.

To the best of our knowledge, none of the existing CV-based
ASC  and  signal  control  systems  are  based  on  hybrid  models.
Thus,  they  cannot  benefit  from  the  advantages  of  the  hybrid
models.

 Control strategy
The  second  observation,  as  summarized  in Tables  8 & 9,  is

that the control strategies feature fewer delays, and better real-
time and more efficient response performance over time whilst,
at the same time, are becoming more complex. The responsive-
ness to demand has upgraded from a slow reactive response to
rapid proactive response. The change frequency of the control
plan is  evaluated to around 1 HZ for traditional  advanced ASC
and CV-based advanced ASC. As for the CV-based signal coordi-
nation, the offset is quickly adjusted at per cycle level.

What is apparent is that these adopted control strategies are
becoming more complex over time. In this study, these control
strategies  are  divided  into  three  types:  (1)  static  optimization-
based  basic  control  strategy[135],  (2)  dynamic  optimization-
based intermediate  control  strategy[135],  and (3)  model  predic-
tive control (MPC)-based advanced control strategy[136].

 Static optimization
A static optimization-based basic method refers to a method

where a signal control system achieves an optimal timing plan
by solving a static optimization problem. The word 'static' used
in the term 'static optimization' means that objective functions
and constraints are time-independent, where they are focusing
on the current time step. Most of the existing methods[15] utiliz-
ing  static  optimization  omit  the  term  'static'.  However,  this
thesis uses the term 'static optimization' to clarify and claim the
time-independent  characteristics  of  these  methods.  Usually,
mathematical  programming,  e.g.,  linear  programming  (LP),
mixed integer linear programming, is used for solving this static
optimization.

This  static  optimization-based  basic  control  strategy  is  used
in  various  traditional  adjusted  control  and  responsive  control
systems, e.g., SCATS. Furthermore, if no other feedback control
methods (e.g., rolling horizon method[109]) are added, the static
optimization-based  method  is  an  open-loop  system  without  a
feedforward  control.  Consequently,  it  causes  these  control
systems  to  have  slow  reactive  responses  with  a  slow  change
frequency to demand variations. This means that these systems
are  readily  affected  by  traffic  demand  fluctuations  and  traffic
stream disturbances.

Thus, the static optimization-based method has limited capa-
bility to optimize timing plans in high-dynamic conditions. The
control  performance is  significantly affected by traffic demand
fluctuations and traffic stream disturbances.
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 Dynamic optimization
Compared  to  the  basic  control  strategy  using  'static opti-

mization', 'dynamic optimization' is widely used in the interme-
diate  control  strategy  and  is  a  method  whereby  the  decision
variables  of  constraints  involve  sequences  of  decisions  over
time  or  multiple  periods[135].  In  other  words,  it  has  a  dynamic
model,  i.e.,  traffic  model,  as  a  constraint  to  describe  traffic
dynamics,  whereby  the  traffic  model  can  be  either  a  micro-
scopic,  a  mesoscopic,  or  a  macroscopic  model.  The  deployed
traffic  model  predicts  the  future  status  of  the  traffic  system.
Usually, this type of control system is labeled as a model-based
control.

Without  adding  other  feedback  control  strategies  (e.g.,
rolling  horizon  method[109]),  this  dynamic  optimization  causes
the  intermediate  control  strategy  to  be  an  open-loop  system
with  a  feedforward  control.  Thus,  this  intermediate  control
strategy performs better than the basic control strategy since it
has a prior feedforward control and is adopted in most respon-
sive control systems and advanced adaptive control systems, as
shown  in Tables  8 & 9.  Typical  examples  include  SCOOT[27],
MOTION[31],  BALANCE[15],  ACS  Lite[53],  MOVE[15],  OPAC[15],
RHODES[15], UTOPIA[15], PYODYN[15], DYPIC[15], and Aboudolas et
al.[109] amongst others.

In  order  to  solve  dynamic  optimization  problems,  there  are
several proposed methods: (a) dynamic programming (DP), (b)
rolling horizon approach, and (c) other intelligent approaches.

(a) Dynamic  programming  (DP).  Dynamic  programming  is  a
technique  that  can  be  used  for  solving  many  optimization
issues  over  time  (i.e.,  dynamic  optimization)[124,135].  In  most
applications,  DP  breaks  the  original  large-scale  and  complex
problem into a series of  small,  solvable problems by Bellman's
equation.  DP  has  been  used  in  some  signal  control  systems,
including  OPAC  V1[15] and  studies  by  Caceres  et  al.[137−140].
However,  the  DP  method  has  problems  to  overcome  for  the
real-time  control[108].  In  detail,  the  DP  method  requires  com-
plete future information for the optimization horizon,  which is
very  hard  to  achieve  in  the  real-time  operation  since  the
upstream sensor may only provide 5-10 s future vehicle arrival
data.

(b) Rolling  horizon  approach.  The  rolling  horizon  approach

refers  to  a  'rolling  planning  horizon'  that  has  a  rolling  mecha-
nism  with  a  planning  horizon  consisting  of Kp time
intervals[108,124]. The planning horizon has two portions: a head
portion with first KH time intervals and a remaining tail portion
with next ( Kp − KH ) time intervals. The traffic status is updated
by  measured  data  during  the  head  portion  and  predicted  by
traffic  models  during  the  tail  portion.  The  dynamic  optimiza-
tion is then solved during the whole planning horizon with the
measured and predicted traffic status. Thus, a sequence of opti-
mal  control  actions (e.g.,  split,  offset)  over  the whole planning
horizon  is  obtained.  In  practice,  only  the  first  optimal  control
action[108,124] or  a  sequence  of  control  actions  over  the  head
portion[111] is  implemented.  After  that,  a  rolling  mechanism  is
applied, in which the planning horizon moves forward into the
future by one rolling period, and the above routine is repeated.
Moreover,  the  rolling horizon approach introduces  a  feedback
loop  that  further  increases  the  system's  performance.  Various
traditional  UTCSs[15,108−110] that  have  applied  the  rolling  hori-
zon approach are shown in Table 13.

However,  there  is  a  concern  that  the  rolling  horizon
approach  does  not  always  abide  by  the  optimality  principle  if
the parameter design (e.g.,  length of the projection horizon) is
not  well  devised[124].  The  concern  is  that  the  rolling  horizon
approach  causes  a  disadvantage  where  it  degrades  its  perfor-
mance  in  highly  dynamic  environments,  especially  in  CV  envi-
ronments.

(c) Intelligent  approaches. Intelligent  approaches  use  other
models  that  usually  are  not  traffic  models  to  update  timing
plans. There are several typical examples: the Fuzzy logic-based
system  like  Jin  et  al.  in  2017[50],  the  deep  learning  (DL)-based
system like Gao et al. in 2017[51], the reinforcement learning (RL)
technique  like  Mo  et  al.[93] in  2022,  and  the  distributed  signal
control  using  the  emerging  edge  computing  technique  like
Chen et al.[142] in 2022. This is shown in Table 14.

However, for these Intelligent approaches, like either a deep
learning-based or a reinforcement learning-based method, the
sophisticated learning structure for the low penetration condi-
tions is still missing[93]. In addition, the detailing mechanisms of
raw CV data types and amounts, and their real-time controlling
capabilities  for  either  centralized  or  distributed  signal  control
are still remaining unclear[93].

Table 13.    Summary of traditional UTCSs using the rolling horizon approach.

Typical UTCSs Dataa Rolling horizon
approach Global optimization formulation and/or solution algorithm

OPAC[15] MB & SL, Loop data Yes[15] Complete enumeration (CE) / exhaustive enumeration[111, 112]

RHODES[15] MB & SL, Loop data Yes[30] Dynamic programming[ 111, 112]

UTOPIA/SPOT[15] US & SL, Loop data Yes[113] Online dynamic optimization and off-line optimization[ 108]

PRODYN[108] US, Loop data Yes[109] Forward dynamic programming[111, 112]

DYPIC[ 108] US, Loop data Yes[ 108] Backward dynamic programming[ 108]

Aboudolas et al.[109] in 2010 AL, Loop data Yes Quadratic programming
Liu & Qiu[110] in 2016 US & SL, Loop data Yes Multi-objective optimization problem and an evolutionary

algorithm
Hao et al.[114, 115] in 2018 US, Loop data Yes MPC-based method integrating optimizations, CTM model
Jamshidnejad et al.[141] in 2018 Loop data Yes Sustainable model-predictive control, S-model
Han et al.[116] in 2018 Loop data Yes LQ-MPC, extended CTM, corridor
Lu et al.[117] in 2019 Loop data Yes Explicit model predictive control (EMPC), SFM model
Pedroso & Batista[118] in 2021 Loop data One-step Decentralized and decentralized-decoupled traffic-responsive

urban control, Decentralized SFM
Souza et al.[119] in 2022 Loop data Yes Integrating signal control and routing, Multi-commodity SFM

a SL = stop-line, MB = mid-block, US = upstream, AL = arbitrary location, adopted from Stevanovic et al. [15] and Aboudolas et al. [109].
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 Model predictive control (MPC)
A  special  advanced  model-based  control  strategy  called

model  predictive  control  (MPC)  is  considered  in  this
section[113,136].  MPC  is  the  most  widely  accepted  modern
control strategy to offer a compromise between optimality and
computation  speed[136].  Generally  speaking,  MPC-based  traffic
control utilizes both a traffic model and the current traffic state
to predict the dynamic evolution of traffic states,  then applied
to  obtain  optimal  signals.  An  MPC  controller  includes  several
basic components, including a state estimation module, a state
evolution model, and an optimization module[113],  with further
details  of  MPC  outlined  by  Kouvaritakis  &  Cannon[136].  It  is
widely  recognized  that  MPC  can  further  decrease  the  adverse
effects of traffic disturbances[148].

Traffic  controls  that  explicitly  use  MPC  were  originally
proposed by Bellemans in 2003[149] and Hegyi et al. in 2005[150]

for both ramp metering (RM) and the variable speed limit (VSL)
studies  on  freeways.  In  recent  years,  Hegyi  et  al.[113,151],  Papa-
georgiou  et  al.[148,152],  and  Wang  et  al.[153−156] further  summa-
rized,  extended,  and  validated  the  MPC-based  RM  and  VSL
studies on freeways. Studies that focus on traffic signal controls
that  explicitly  employ  MPC  focus  on  congested  arterial
networks  include  Dotoli  et  al.[157],  Aboudolas  et  al.[112],  Lin  et
al.[158],  Liu  &  Qiu[124,159],  and  Baldi  et  al.[160].  Only  few  works
explored performance in non-congested arterials[114,115] .

There  are  other  traffic  control  systems[15,108] that  use  similar
schemes, shown in Table 13. These systems also obtain optimal
signals  by  applying  predictions  and  models,  but  they  are  not
formulated  and  implemented  explicitly  to  the  MPC  structure
correspondingly[113].  Thus,  these  systems  cannot  feature  the
benefits of MPC without simultaneously solving their problems.

Although  MPC  shows  good  performance  ability  in  RM  and
VSL control on freeways and signal control on congested arteri-
als,  several  concerns  arise  concerning  its  capability  on  non-
congested arterials. First, the traffic dynamic and signal mecha-
nism  are  more  involved  in  under-saturated  arterials  without  a
simplified  traffic  model,  causing  a  lack  of  computational
tractability.  Second,  the performance of  traffic  control  systems
can degrade from unpredictable demand variations and traffic
disturbances on the road when using an open-loop prediction
model  of  the  MPC.  The  reason  for  the  open-loop  structure  is
that  the  nominal  future  demand  and  signal  control  variables
are still functions of time.

 Control strategies in the CV environment
Corresponding  to  the  above  classification,  the  existing

control  strategies  in  various  CV-based  signal  control  systems
are  categorized  into  the  following  approaches:  (1)  static  opti-
mization-based  control,  (2a)  dynamic  optimization-based
control  with  the  DP,  (2b)  dynamic  optimization-based  control
with  the  rolling  horizon  scheme,  (2c)  dynamic  optimization-
based  control  with  other  intelligent  approaches,  and  (3)  MPC-
based control. This classification is shown in Table 15.

From Table 15, the existing control strategies usually fall into
the  static  and  dynamic  optimization-based  options.  There  are
no  existing  studies  based  on  the  MPC.  Therefore,  the  existing
CV-based signal  control  systems suffer from the original  draw-
backs  of  these two control  types.  Furthermore,  it  cannot  draw
upon  the  benefits  of  the  MPC.  Finally,  the  high  frequency  of
data  exchange  and  the  low  penetration  issue  increases  data
disturbances  and  fluctuations.  This  causes  more  complexity
when  designing  an  MPC  in  the  CV  environment.  In  particular,
the  slow  revision  of  timing  plans  in  existing  MPC-based
controls is  not compatible with the rapid,  high-frequency data
communication in the CV environment.

 Further discussions
In this section, more discussions about the intelligence types

and mixed traffics in different environments are presented.

 Intelligence types in different environments
The essential parts of different environments are the connec-

tivity  and  the  automation.  The  connectivity  and  the  automa-
tion  are  important  but  different  in  connected  and  automated
transportation systems[20–26].

With  the  connectivity  technology,  different  communication
methods,  including  the  vehicle-to-vehicle  (V2V)  communica-
tion  and  vehicle-to-infrastructure  (V2I)  communication,  are
collectively  called  the  Connected  Vehicle  (CV)  environment.
With the automation technology, the vehicle has the capability
to  perform  different  levels  of  automation,  like  highly  auto-
mated vehicle  (HAV)  and full  automated vehicles  (FAV),  where
this  environment  with  different  automated  vehicles  can  be
called  the  Automated  Vehicle  (AV)  environment.  Correspond-
ingly, if a vehicle is connected to other vehicles, road infrastruc-
ture,  and  operates  at  a  particular  level  of  automation,  the
resulting  transportation  system  can  be  referred  to  as  a
connected and automated vehicle (CAV) environment.

The existing signal control methods in CV, AV, and CAV envi-

Table 14.    Summary of UTCSs using modern intelligent approaches.

Typical works Platforma Intelligent strategy Control features

Jin et al.[50] in 2017 Embedded device Fuzzy-based A fuzzy group-based approach, machine-to-machine
connectivity

Gao et al.[51] in 2017 Centralized
structure

Deep reinforcement learning-based Convolutional neural network for automatic feature crafting,
experience replay and target network for stability

Wu et al.[143] in 2019 Edge computing Deep reinforcement learning-based Distributed reinforcement learning
Zhou et al.[144] in 2021 Hierarchical

structure
Deep reinforcement learning-based Multi-agent training with rich CV data, hierarchical control

Zhang et al.[145] in 2021 Edge computing Deep reinforcement learning-based Multi-agent actor-critic control, value decomposition, a
cooperative scheme

Wu et al.[146] in 2022, Edge computing Deep reinforcement learning-based Game theory-aided reinforcement learning
Wang et al.[147] in 2022 Edge computing Deep reinforcement learning-based Social features and connections
Mo et al.[93] in 2022 Decentralized Deep reinforcement learning-based Asymmetric advantage actor-critic, non-CV, and CV data for

offline training, CV data for online control
Chen et al.[142] in 2022 Edge, distributed Distributed dynamic route-based Distributed backpressure principle, dynamic route control
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ronments  can  be  classified  into  three  types  based  on  the
object[20–26]:  vehicle  intelligence  (such  as  GLOSA,  Green  Light
Optimized Speed Advisory), infrastructure intelligence (such as
advanced  signal  control  system),  and  joint  intelligence  that
integrates both vehicle and infrastructure intelligence (such as
integrated vehicle routing and signal optimization[119,130]).

 Mixed traffic environment
In  general,  in  mixed  traffic  scenarios,  there  is  a  mixed  flow

composed  of  human-driven  vehicles  (HDVs),  CVs,  AVs,  and
CAVs.  Mixed  traffic  flow  has  brought  new  opportunities  and
challenges, which have received extensive attention from both
academia  and  industry.  Numerous  research  works  have  been
conducted  in  this  area.  There  are  two  key  points  in  the  mixed
flow research: one is the driving parameter, and the other is the
penetration impact.

First,  in  mixed  traffic  scenarios,  according  to  our  current
understanding,  there  are  no  significant  differences  in  driver
behaviors between connected vehicles and traditional vehicles
at signal-controlled intersections, specifically from a car-follow-
ing  driving  perspective.  This  is  because  both  types  of  vehicles
are operated by human drivers.  However,  different automated
vehicles  with  different  automation  levels  may  have  different
driving  behaviors,  like  different  reaction  times[162−164].  Thus,
considering human driving is assisted by low-level automation
intelligence  in  a  CV  environment,  there  may  exist  little  differ-
ences  other  than  significant  differences  in  driver  behaviors

between CVs and traditional vehicles.
Moreover,  regarding  the  definitions  of  penetration  rates  for

vehicles with connectivity and automation, there are three typi-
cal types in existing studies[20–26]. They are the penetration rate
of  the  CV,  the  AV,  and  the  CAV,  respectively.  Usually,  these
penetration  rates  are  different  and  are  not  necessarily  equal
with  each  other.  However,  most  existing  methods  have  a
certain  requirement  for  the  proportion  of  CAVs.  These  meth-
ods  are  applicable  to  mixed  traffic  flow  with  higher  penetra-
tion  rates,  where  the  higher  penetration  rate  refers  to  the
proportion  of  CAVs  in  mixed  traffic  flow  exceeding  20%-30%.
These existing research works are constrained by high penetra-
tion  rates  and  even  require  known  specific  values.  When  the
penetration  rate  is  low  or  ultra-low,  there  are  still  challenges,
such  as  large  state  estimation  errors,  decreased  control  effec-
tiveness,  and  parameter  mismatch  bias[20–26].  Thus,  low  pene-
tration  rate  (LPR)  and  ultra-low  penetration  rate  (ULPR)  condi-
tions need further improvement.

 Challenges and future research directions

Based  on  the  comprehensive  literature  review,  there  are
already  numerous  works  and  systems  which  have  been
presented  and  demonstrated  during  the  last  several  decades.
Though  they  have  shown  powerful  and  efficient  advantages,
there  are  still  some  challenges  and  concerns  for  both  on-CV
and  CV-based  ASC  and  signal  coordination  systems.  These

Table 15.    Summary of CV-based signal control systems.

Authors CV data Rolling horizon
approach

Global optimization formulation
and/or solution algorithm*

CV
applications

Benefit+

Gradinescu et al.[75] in 2007 Online No Static optimization1 CV-ASC 28.3%1

Priemer et al.[161] in 2009 No Dynamic optimization with DP &
Complete enumeration2a

CV-ASC 24%1

Lee et al.[82] in 2013 No Static optimization1 CV-ASC 34%5

Cai et al.[80] in 2013 No Dynamic optimization2c CV-ASC 11.69%5

Pandit et al.[81] in 2013 No Dynamic optimization2c CV-ASC ~25%1

Kari et al.[83] in 2014 No Static optimization1 CV-ASC 57.31%1

Guler et al.[36] in 2014 No Dynamic optimization2c CV-ASC ~50%*

Younes et al.[85] in 2016 No Scheduling algorithm2c CV-ASC 25%1

Islam et al.[88] in 2017 No Modified MILP1 CV-ASC 27%2

Liu et al.[39] in 2017 No Reinforcement learning2c CV-ASC ~30%3

PAMSCOD[42] and its variant [45]

in 2012 and 2014, respectively
Yes MILP2b CV-ASC 25%1

Goodall et al.[35] in 2013 Yes[16] Dynamic optimization with
rolling horizon2b

CV-ASC 20%4

Feng et al.[1] and its variant[87]

in 2015 and 2018, respectively
Yes Hybrid structure2b CV-ASC 16.33%1

C.M. Day et al.[98, 40, 41, 46]

from 2016 to 2018
Offline No Static optimization1 CV-based

coordination
−

Priority-based method [32][42] in 2016 Online No Static optimization1 CV-based
coordination

25%1

Beak et al.[19] in 2017 Online No Static optimization1 CV-based
coordination

19%1

Al Islam et al.[90] in 2020 Online Yes Dynamic optimization with
rolling horizon2b

CV-ASC and
coordination

50%*

Li et al.[91, 92] in 2021 Online Yes MPC3 CV-based
coordination

35%1

Zhang et al.[104] in 2022 Offline &
online

No Deep reinforcement learning-based2c CV-ASC 66%1

Mo et al.[93] in 2022 Offline &
online

No Deep reinforcement learning-based2c CV-ASC 30%1

* 1  =  static  optimization-based  control,  2a  =  dynamic  optimization-based  control  with  the  DP,  2b  =  dynamic  optimization-based  control  with  the  rolling
horizon scheme, 2c = dynamic optimization-based control with other intelligent approaches, 3 = MPC. + index type: 1 delay, 2 queue length, 3 waiting time, 4
stop, 5 travel time, * combination.
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problems  and  challenges,  as  well  as  potential  future  research
directions, are discussed in this section.

 Challenges
In  this  section,  the  key  challenges  requiring  answers  are

summarized from three fundamental component perspectives,
i.e.,  data,  traffic  model,  and  control  strategy.  For  the  sake  of
clarity,  this  section  now  provides  a  comprehensive  issue
summary of these systems.

 Data
First,  let  us  discuss  some potential  challenges regarding the

CV  data  as  well  as  some  further  emerged  data  types.  For  the
CV-based  mobile  data,  there  are  still  several  new  issues.  Most
significantly,  these  issues  are  caused  by  low  market  penetra-
tion  conditions.  Two  issues  are  apparent  at  this  point.  The
primary concern is the small CV samples among the large traf-
fic flow population when there is a low penetration rate (LPR) of
CVs. The low penetration rate condition will continue for many
years  before  a  critical  threshold  rate  is  reached  that  can  take
the  use  of  CV  technology  to  the  next  level  of  benefit  (e.g.,
20%−30% for traffic signal control[94] ).  Even worse, at the very
early stage, there exists ultra low penetration rate (ULPR) condi-
tion, where the penetration rate of CV can be as low as 1%−5%.
The  LPR  (5%−10%)  as  well  as  ULPR  (1%−5%)  conditions  will
continue to cause the loss of  CV data and degrade the perfor-
mance of the CV-based signal control framework[19,43,43,102,103].

Furthermore,  the  presence  of  a  large  number  of  non-CVs
causes incomplete information, accumulates disturbances, and
increases  uncertainty  when  obtaining  optimal  signal
timings[17].  Moreover,  there  are  few  proposed  methods[1,94] to
estimate  the  state  of  non-connected  vehicles  from  different
perspectives  (e.g.,  location,  speed,  acceleration).  The  existing
techniques  that  are  aimed  at  solving  these  two  issues  in  low-
penetration  conditions  continue  to  demonstrate  performance
drawbacks.  Thus,  before  reaching  a  critical  threshold  rate,  the
LPR as well as ULPR are our key challenges.

 Model
For the traffic models, we have witnessed the huge improve-

ments  over  the  last  several  decades.  This  limited  review
selected  some  typical  models  and  some  challenges  are
discussed  for  the  fast-developing  and  will-coming  connected
and  automated  vehicle  and  transportation  era.  First,  for  the
microscopic  models,  they  introduce  considerable  computa-
tional complexity, and have limited availability when requiring
complete information. Specifically, they lack a dynamic descrip-
tion of signal status. Next, macroscopic and mesoscopic models
provide  limited  details  due  to  the  high-level  aggregate  repre-
sentations  when  modeling  the  control  and  information
systems.  Furthermore,  for  traffic  models  in  these  existing  CV-
based ASC and coordination systems, several issues are raised.
As  for  the  microscopic  models  in  the  existing  CV-based
ASC[1,36,75–87] and  signal  coordination[19,32,40–42,46,98] systems,
they  still  are  suffering  high  computational  costs  with  limited
utility when the information is incomplete. In addition, though
hybrid  models  combine  advantages  of  two  or  more  levels  of
the other models, none of the existing CV-based ASC and coor-
dination  systems  are  based  on  hybrid  models.  Thus,  develop-
ing  efficient  and  accurate  traffic  models  for  the  fast-changing
connected and automated transportation era is still  a big chal-
lenge for the researchers and practitioners.

 Control strategy
As  for  control  strategies  in  a  CV  environment,  the  existing

deployed control  strategies  usually  use either  the static  or  the
dynamic optimization-based control strategy. There are several
problems  with  these  strategies.  First,  the  existing  CV-based
signal  control  systems  suffer  from  the  original  drawbacks  of
static  and  dynamic  optimization-based  control  strategies.
There  are  few  existing  CV-based  ASC  and  signal  coordination
techniques  based  on  the  model  predictive  control  (MPC)
method. In particular, there are few existing designed MPCs for
non-congested arterials in the CV environment.

Then,  the  low-penetration issue,  the  high frequency of  data
exchange,  and  the  issues  of  microscopic  models  increase
disturbances  and  fluctuations,  which  further  cause  more
complexity when designing an MPC in the CV environment. For
example,  the  slow  timing  plan  revision  capability  of  the  exist-
ing  MPC-based  control  is  not  compatible  with  rapid,  high-
frequency  data  communication  by  V2V  and  V2I  communica-
tion  in  the  CV  environment.  Furthermore,  the  performance  of
MPC-based  traffic  control  systems  can  still  be  degraded  by
unpredictable  demand  variations  and  traffic  disturbances  on
the  road when using an  open-loop optimization model  of  the
MPC.  Thus,  considering  that  existing  non-CV-  and  CV-based
ASC and coordination systems continue to  have challenges  to
overcome, the potential of CV technology needs further study.

 Future research directions
In  order  to  provide an efficient  real-time CV-based adaptive

signal  control  and  coordination  framework  for  the  fast-chang-
ing connected and automated transportation era, while resolv-
ing  the  outlined  existing  challenges,  several  future  research
directions  are  investigated  and  discussed  in  this  work[20–24].
These  future  potentials  are  also  provided  from  three  key
aspects.

First,  as  for  the data perspective,  the  current  context  is  that
the reaching of a critical threshold rate of connected vehicles or
connected  and  automated  vehicles  still  needs  a  long  time
period.  Thus,  investigating  comprehensive  data  sampling  and
acquisition  methods  with  only  a  few  CV  data  in  either LPR  or
ULPR conditions  is  still  a  potential  way  to  explore  the  mixed
traffic  characteristics  fully.  The  enhanced  data  acquisition
method for LPR or ULPR conditions can present enough spatial-
temporal  traffic  characteristics  and  phenomena.  In  addition,
considering  that  there  are  still  a  large  number  of non-CV  vehi-
cles (human-driven  vehicles)  on  the  road,  developing  efficient
sensing  and  sampling  methods  to  capture  the  complexity  of
microscopic driving behaviors via these human-driven vehicles
might  improve  the  mixed  traffic  flow  characteristics  further.
The  estimation  method  is  a  compensated  data  source  to  im-
prove  the  performance  of  the  CV-based  methods,  like  vehicle
trajectories[165]. Also, considering the fast-developing new lidar
sensing  technique,  the  lidar  data  have  several  advantages,
including  high  positioning  accuracy,  direct  depth  information,
and bird's-eye view perception (BEV)[165,166]. The corresponding
generated new  data type,  i.e.,  the point-cloud map,  might  fur-
ther contribute to the traffic flow characterizing improvements.
Currently,  the  future  potential  methods  might  include  the
probabilistic  approach[104],  the  car-following  principle-based
approach[90],  or  the  learning-based  data-driven  approach[93].
More  explorations  are  needed  further  for LPR/ULPR CV  data,
non-CV data, and newly-emerged data.
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Next, during the last decade, we also stepped into the super-
fast development of learning techniques and edge computing
capabilities.  To  resolve  the  changllenges  of  the control  strate-
gies,  these  super-fast  developing  techniques  show  us  some
potentials.  The learning  techniques further  extend  the  existing
optimization or predictive strategies' capability to handle auto-
mated  machine-crafted  features,  to  learn  control  design,  to
preserve  safe  or  robust  control[167].  These  learning  techniques
include  deep  learning  (DL),  reinforcement  learning  (RL),  deep
reinforcement  learning  (DRL)[93,104],  large  pre-trained  tech-
niques[165,166],  and  their  developments.  Also,  the  recent
successes  of edge  computing in  the  computer  science  and
communication  communities  bring  large  computational  capa-
bilities  to  the  edge  or  terminal  devices[142].  The  improved
computing  capability  in  the  vehicle  or  road  infrastructure
further  welcomes  powerful  and  efficient  sensing  and  control-
ling  techniques  to  improve  the  control  performances.  This
enhanced  computing  in  the  edge  facilitates  the  local  sensing,
planning,  and  controlling  in  a  distributed  way.  Thus  they  may
have  the  potential  to  improve  performances  of  the  decentral-
ized  or  distributed  control  strategies  when  handling  the  huge
complexity introduced by both a large number of road partici-
pators  as  well  as  their  microscopic  driving  mechanisms  and
behaviors.

Last,  we discuss  some opportunities  for  the traffic models in
this  connected  and  automated  transportation  era.  The  key
potentials among the traffic models have some similar trends in
this  new  paradigm  of  traffic  flows.  The  traditional  or  classic
micro-,  miso-,  and  macroscopic  models  might  further  be
updated  and  extended.  For  the  urban  traffic  flows,  large
network-level  or  regional models  and multi-modal systems  for
huge cities or areas are needing[20–23],  like Macroscopic Funda-
mental  Diagram  (MFD)  developments,  since  more  and  more
road  participators  and  road  infrastructure  are  included  in  the
future.  Also,  considering  the  emerging  techniques,  including
connectivity,  automation,  and  edge  computing,  the new  tech-
nique-driven model  developments  require  more  efforts  and
works, like connected and automated vehicle dynamics, micro-
scopic human safety behaviors, high-fidelity driving, and traffic
simulator-based  data-driven  models,  trajectory-based  traffic
models[23],  and  distributed/decentralized  traffic  spatial  charac-
teristics.

 Conclusions

Existing traditional signal control systems for urban traffic are
usually based on traffic flow data from fixed location detectors.
Because of rapid advances in the emerging vehicular communi-
cation,  connected  vehicle  (CV)-based  signal  control  demon-
strates  significant  improvements  over  existing  conventional
signal control systems. Though various CV-based signal control
systems  have  been  investigated  in  the  past  decade,  these
approaches  still  have  some  issues  and  challenges.  Thus,  to
better utilize and implement these existing CV-based and non-
CV-based  research  works,  their  pros  and  cons  are  fully
weighed-up  in  this  review.  In  summary,  the  contributions  and
findings of this review are listed as follows:

First, in this review, the typical components and structures of
these  CV-based  and  non-CV-based  urban  traffic  signal  control
systems  are  summarized.  The  typical  components  are  data,

traffic  model,  and  control  strategy.  Across  the  unified  three
components,  a  clear  demonstration  of  the  differences  and
evolutionary relationship between both CV-based and non-CV-
based methods is presented across three components. In detail,
with this foundation, the advantages and disadvantages of CV-
based signal control methods are comprehensively illustrated.

Second,  several  important  issues  of  these  CV-based  urban
traffic signal control systems are digested and identified. These
identified  issues  include  sub-optimal  results  in  low  market
penetration  conditions,  a  lack  of  uncertainty  consideration  for
rapidly  changing  demands  and  driving  modes,  and  non-
scalable and complex signal control systems architecture.

Next, some future directions and potential topics are pointed
out  with  the  hopes  of  overcoming  these  existing  revealed
issues.  These  topics  are  still  categorized  into  new  data,  new
traffic model,  and new control strategy. For example, one new
data  source  is  the  Lidar-based  data  source  with  a  bird's-eye
view.  The  corresponding  new  data  type,  i.e.,  the  point-cloud
map, can further obtain more characteristics of the traffic flows,
including  not  only  the  vehicles  but  also  surrounding  pedes-
trians  and  bicycles.  The  other  interesting  topic  examples
include new automation-driven model and new learning-based
control strategy.

In  summary,  we  hope  this  review  can  highlight  some  key
research  areas  as  well  as  identify  several  essential  research
questions,  where  it  can  highly  promote  the  further  develop-
ment of this exciting and promising urban traffic signal control
in  the  fast-developing  connected  and  automated  transporta-
tion era.
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