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Abstract
Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.

With  cutting-edge  artificial  intelligence  and  sensing  technologies,  autonomous  vehicles  (AVs)  are  expected  to  have  exceptional  perception

systems to capture instantaneously their driving environments for predicting lane changes. By exploring the Waymo open motion dataset, this

study proposes a framework to explore autonomous driving data and investigate lane change behaviors. In the framework, this study develops a

Long  Short-Term  Memory  (LSTM)  model  to  predict  lane  changing  behaviors.  The  concept  of  Vehicle  Operating  Space  (VOS)  is  introduced  to

quantify  a  vehicle's  instantaneous  driving  environment  as  an  important  indicator  used  to  predict  vehicle  lane  changes.  To  examine  the

robustness  of  the  model,  a  series  of  sensitivity  analysis  are  conducted  by  varying  the  feature  selection,  prediction  horizon,  and  training  data

balancing ratios. The test results show that including VOS into modeling can speed up the loss decay in the training process and lead to higher

accuracy and recall for predicting lane-change behaviors. This study offers an example along with a methodological framework for transportation

researchers to use emerging autonomous driving data to investigate driving behaviors and traffic environments.
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 Introduction

Vehicle  trajectory  data  has  been  frequently  used  in  trans-
portation  research[1−9] to  provide  insights  from  the  micro-
scopic level (vehicle behaviors) to the macro level (traffic condi-
tions).  The  methods  of  collecting  vehicle  trajectories  include
probe  vehicles  with  GPS  devices[2−7,10,11],  video-based  vehicle
detection[12−15],  connected  vehicles[8,9,16] and  autonomous
vehicles[17−19].  The  advancement  of  technology  has  led  to  an
expansion  of  research  on  vehicular  behaviors,  with  a  focus  on
examining  the  microscopic  operations  of  individual  vehicles
and their interactions with other traffic participants.

Vehicles  equipped  with  GPS  devices  provide  a  continuous
record of their tracks, which can be used as a source for moni-
toring  traffic  and  unveiling  the  overall  dynamics  of  vehicular
flow.  However,  due  to  the  penetration  rate  of  the  probe  vehi-
cles,  it  may  be  not  adequate  to  manifest  the  detailed  interac-
tions  between  the  vehicles.  Connected  vehicle  projects  like
Safety  Pilot  Model  Deployment  Data[16] provide  comprehen-
sive  vehicle  operation  information  (e.g.,  speed,  acceleration,
maneuvers,  etc.),  but  are  still  limited  by  the  penetration  rate,
which makes it  difficult to examine the interactions with other
traffic agents. Continuous vehicle trajectories on a specific road
segment can be recorded and identified using high-resolution
bird's-eye view cameras[12−15].  The Next  Generation Simulation
(NGSIM)  trajectory  data[12],  which  is  acquired  using  this
method,  is  widely  used  in  traffic  analysis  and  behavior
prediction[20−23].

The latest advancements in autonomous driving have broad-
ened  the  scope  of  data  sources  for  understanding  traffic
beyond  just  vehicles,  now  encompassing  both  dynamic  traffic
agents  and  static  environments.  Autonomous  vehicle  industry
players  such  as  Waymo  and  Lyft  released  their  data  to  the
public  to facilitate the related research[17,18].  The Waymo data-
set  provides  comprehensive  information  of  the  vehicle  opera-
tions and the surrounding environments. Waymo released both
the  perception  and  motion  data  about  autonomous  vehicles
which  encompasses  trajectories  of  the  surrounding  traffic
agents, as well as the geometrics and connections of the road.
This  can  be  utilized  to  fully  understand  the  vehicle  behaviors
and interactions under constraints of the road geometrics.

Research on the trajectory data[24] has demonstrated that the
traffic agents could influence each other while operating on the
roads.  The human drivers would follow a process of observing
the surrounding traffic objects and environments, planning for
the path,  and then performing the  proper  control  to  maintain
safe driving[25]. Autonomous driving vehicles also follow a simi-
lar process of operation: perception, localization, planning, and
control[23].  Autonomous vehicles need to identify the potential
risks  from  the  surrounding  vehicles  and  make  the  right  deci-
sion to avoid collisions. This required the self-driving cars to not
only  track  the  positions  of  the  surrounding  objects  but  also
forecast their future positions and behaviors.

Understanding  the  intentions  of  the  surrounding  vehicles
and  predicting  the  vehicle  trajectories  and  behaviors  remains
to be the focus of  transportation research[26,27].  The prediction
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of the vehicle operations could be roughly categorized into two
streams:  (1)  directly  predicting  the  trajectories[20−22,28] and  (2)
predicting the vehicle maneuvers[23,29−32]. Predicting the trajec-
tories  is  using  either  the  kinematic  or  machine  learning
methods to forecast the exact position coordinates of the vehi-
cles.  However,  due  to  the  inherent  stochastics  and  sparsity  of
the  vehicle  trajectories,  it  is  difficult  to  provide  reasonable
predictions when the distributions of future positions for differ-
ent  intentions  are  large.  Therefore,  some  researchers  sample
trajectory proposals from the historical dataset and predict the
future  motions  based  on  drivers'  intentions[33−36].  Predicting
the  driver's  intention  which  firstly  defines  a  series  of  vehicle
operations (e.g., lane keeping, lane changing) and utilizes previ-
ous vehicle trajectories and kinematics to infer the future inten-
tions of the vehicles. Among all the driving maneuvers like lane
keeping,  lane  changing,  and  turning,  lane  changing  can  be  a
critical  behavior that can cause potential  risks for autonomous
vehicles.  Lane  changing  maneuvers  involve  both  longitudinal
and lateral control of vehicles and require cooperation between
the  ego  vehicle  and  surrounding  vehicles.  For  self-driving
vehicles,  accurately  predicting  the  potential  lane  changing
behaviors  of  other  vehicles  is  a  critical  task  to  ensure  opera-
tional safety.

This research is conducted to determine the prediction of the
lane  changing  behaviors  of  the  vehicles  utilizing  the  Waymo
motion  dataset.  As  introduced,  the  Waymo  dataset  provides
high-frequency vehicle tracks and various operation scenarios.
A  processing  framework  is  developed  to  identify  the  lane
changing  behaviors  of  all  detected  vehicles  and  extract
features  for  model  training.  The  concept  of  Vehicle  Operating
Space  (VOS)  is  introduced  to  evaluate  the  space  around  the
vehicle for possible maneuvers. The VOS is also compiled to the
feature map to testify its impact on the prediction performance.
A  long-short  term  memory  (LSTM)  model  is  developed  for
predicting  lane  change  behavior.  In  order  to  examine  the
robustness  of  the  model,  a  series  of  sensitivity  tests  are  con-
ducted on the feature inputs,  prediction horizons and training
data balancing.

This study contributes by introducing the concept of the VOS
to incorporate the interactions between the vehicles.  The VOS
provides valuable insights into the underlying factors influenc-
ing lane changing behaviors. Different to the other end-to-end
models,  the  LSTM  with  crafted  features  proposed  in  this
research, utilizes domain knowledge to reduce the training cost
and  improve  the  interpretability  of  the  model.  This  study  also
contributes  to  the  field  by  revealing  how  prediction  horizon
and  training  dataset  balancing  affect  prediction  performance.
These  findings  are  crucial  for  researchers  and  practitioners  in
the field to optimize the model's performance and improve the
accuracy  of  lane  changing  behavior  prediction.  Overall,  this
study provides a significant contribution to the field and serves
as  a  valuable  reference  for  future  research  in  the  area  of
autonomous driving and vehicle behavior prediction.

 Literature review

 Traditional trajectory prediction
Before the rise of deep learning, the researchers estimate the

vehicle traceries from the kinematic or behavioral. According to
the  survey[26],  the  traditional  prediction  methods  could  be
classified  into  three  levels,  with  an  increasing  degree  of

abstraction:  (1)  Physics-based  motion  models,  (2)  maneuver-
based models, and (3) interaction-aware motion models.

Physics-based  motion  models  are  depending  on  the  dyna-
mics  and  kinematics  of  the  vehicles.  Following  the  laws  of
physics, the vehicle positions in the short term future could be
inferred by the current vehicle kinematics, for instance, current
positions,  heading,  and  speed.  Based  on  this  conceptual  idea,
the Gaussian noise simulation[37,38] and Monte Carlo simulation
model[39] were developed to incorporate the uncertainty of the
kinematics in prediction.

Instead  of  directly  predicting  the  vehicle  trajectories,  the
maneuver-based models generally follow a two-step process to
make the prediction: first, infer the intention of the drivers, and
second estimate the trajectories  either  from a deterministic  or
stochastic  manner.  An  intention  model  based  on  the  vehicle
states  (position,  acceleration,  etc.),  road  network  information
(geometry and topology of the road, signal control, traffic rules,
etc.),  and driver behavior (head movements, driving style, etc.)
is  developed to determine the possible  maneuver  of  the vehi-
cle  in  the  short  future.  With  the  inferred  intention,  the  model
will  select  one  possible  set  of  trajectories  from  the  prototype
trajectories  or  generate  trajectories  from  Gaussian
Processes[40,41].

Interaction-aware  motion  models  provide  a  more  compre-
hensive  method  for  trajectory  prediction  by  considering  the
interactions  between  vehicles.  There  are  two  major  methods
for this kind of model, one based on trajectory prototypes[42,43]

and the other based on dynamic Bayesian networks[44,45].

 Application of machine learning
The  emergence  of  machine  learning  provides  researchers

and  practitioners  with  a  powerful  tool  to  estimate  vehicle
trajectories. Mahajan[46], Li & Ma[47] and Xue et al.[48] used tradi-
tional  machine  learning  methods  (e.g.,  gradient  boosting,
XGBoost  and  support  vector  machine)  for  lane  changing
prediction. Compared with the traditional methodologies, deep
learning can capture tracks of the ego vehicle and interactions
with  other  road  users  in  a  complex  driving  scenario[27].  The
major  contributions  of  the  current  research  could  be  catego-
rized into  two parts:  (1)  the  innovation in  deep learning back-
bone and (2) the way of incorporating the contextual informa-
tion. Table 1 summarizes the methodological major considera-
tions in contextual information.

 Deep learning backbone
For  the  trajectory  data  sequences,  there  exists  an  inherent

notion of  progress of  steps and time.  This  feature requires the
prediction  methodology  to  have  the  ability  of  'sequential
memory' that captures and memorizes the sequential patterns.
The  traditional  neural  network  structures  (e.g.,  multi-layer
perceptron)  lack  the  intuitive  mechanism  to  address  the
sequences  of  the  data.  Dealing  with  this  issue,  the  Recurrent
Neural  Network  (RNN)  is  introduced,  followed  by  the  Long-
short Term Memory Network (LSTM) and Attention Mechanism.

The  trajectory  prediction  is  one  typical  sequence-to-
sequence  prediction  problem. Figure  1 illustrates  the  general
model  structures  for  trajectory  prediction.  Note  that  the
encoder  and  decoder  of  the  sequence-to-sequence  model
could be either RNN layers or LSTM layers which are explained
in Fig. 1a & b. The LSTM, compared to the RNN, is more widely
used because of its capability of solving the gradient vanishing
and  exploding[49,50].  As  shown  in Fig.  1,  the  LSTM  has  a  more
complex design that includes the addition of memory cells and
three types  of  gates:  forget  gate,  input  gate,  and output  gate.
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The  design  of  LSTM  networks  provides  a  key  advantage  over
traditional RNNs, which is the ability to selectively remember or
forget  information  over  extended  periods.  This  is  made  possi-
ble using the forget gate,  which allows the network to discard
irrelevant  information,  and  the  input  gate,  which  enables  the
selective  storage  of  new  information.  As  a  result,  LSTM
networks  can  more  effectively  capture  long-term  dependen-
cies and prevent the loss of critical information over time.

Another  innovation  in  trajectory  prediction  is  the  attention
mechanism.  An  attention  mechanism  was  introduced  to  deal
with  the  gradient  vanishing  in  the  long  sequence[51].  The  trans-
former,  which  employs  the  substantial  attention  mechanism
without RNN, was introduced to the trajectory prediction[52]. The
TF-based  models  have  better  performance  in  long  sequence
prediction and can deal with the missing input observations.

 Context information
The vehicle behaviors and trajectories are strongly tied with

the contextual  features,  e.g.,  road geometrics,  and traffic  flow.
One  of  the  methods  is  to  incorporate  the  relative  positions  of

the surrounding vehicles in a grid amp as input features[28]. One
popular way of encoding the surrounding environment is social
pooling which was introduced by Alahi et al.[53].  Social pooling
indicates a convolutional neural network that is applied to the
birds-eye-view  of  the  environment  around  the  object.  Deo  &
Trivedi[20] introduced  social  pooling  into  trajectory  prediction
by encoding the surroundings into grid cells for LSTM training.
Zhao  et  al.[21] employed  a  CNN  to  the  satellite  image  to  exact
the latent features of the environments (e.g.,  road geometrics)
and then used social  pooling to cover the contextual  informa-
tion. Messaoud et al.[54] added the attention mechanism to the
previous  social  pooling  structure  to  capture  the  interactions
between all the surrounding vehicles.

Most of the previous research used the NGSIM data collected
from a limited number of freeway segments. The emergence of
the  autonomous  driving  data  such  as  Waymo  motion  dataset
expands  both  the  data  diversity  and  magnitude.  Additionally,
the  road  geometrics  and  traffic  rules  (e.g.,  stop  signs,  signal
control) are coded and included in the dataset. This enables the
neural  network  to  comprehensively  learn  and  understand  the
interactions  between  the  vehicle  behaviors  and  the  surround-
ing  environments.  Waymo  and  its  research  team  have  pro-
posed  several  end-to-end  frameworks  to  learn  the  vectoriza-
tion of road geometrics and trajectories. Gao et al.[56] proposed
to  represent  the  agent  dynamics  and  HD  map  features  with
vectorized  representation  and  developed  a  hierarchical  graph
network  to  learn  the  latent  relationships.  TNT  and  DenseTNT
were  proposed  based  on  VectorNet  to  exact  the  interactions
between the vehicles and the surrounding environments[57,58].

 Waymo motion data

Waymo,  as  one of  the  pilot  companies  in  autonomous driv-
ing,  first  released  its  self-driving  car  perception  data  and  then
followed  it  with  the  motion  data[61].  In  comparison  with  the
previous autonomous driving data like  Lyft  Level  5,  NuScenes,
and Argoverse,  the Waymo motion data  provides  a  larger  and

Table  1.    Summary  of  deep  learning  in  trajectory  and  behavior
prediction.

Reference Methodology Contextual information

Deo et al.[20] LSTM, CNN, Social Pooling Surrounding Vehicles
Hou et al.[22] LSTM Surrounding Vehicles
Kim et al.[28] LSTM Surrounding Vehicles
Liu et al.[52] Stacked Transformer HD map,

Surrounding Vehicles
Messaoud
et al.[54,55]

Attention, LSTM, Social
Pooling

Surrounding Vehicles

Gao et al.[56] VectorNet HD map,
Surrounding Vehicles

Zhao et al.[57] LSTM, CNN, Social Pooling Surrounding Vehicles,
Satellite Image

Zhao et al.[57]

Gu et al.[58]
VectorNet, Goal-based
Prediction

HD map,
Surrounding Vehicles

Choi et al.[59] Attention, LSTM -
Lin et al.[60] Attention, LSTM -

a. RNN b. LSTM 

 
Fig. 1    Recurrent neural network and long short-term memory cell structure.
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more  diverse  dataset  with  detailed  road  geometrics[62].  The
Waymo  motion  data  is  composed  of  more  than  100,000
segments  with  over  1,750 km.  For  each segment,  comprehen-
sive static map features are encoded, including but not limited
to the lane centers,  boundaries,  stop signs,  signal  control,  and
the boundary types.  In  the following release,  the lane connec-
tion  and  neighbor  information  are  added  but  only  limited  to
part of the dataset[63]. The object track states are sampled at 10
Hz and each segment contains 20-second tracking. For predic-
tion,  the  20-second  tracking  is  further  split  into  9-second
scenarios  (1  second  of  history  and  8  seconds  of  future  data)
with  5  seconds'  overlap.  The  object  tracks  encompass  the
motion features of all other traffic agents (e.g., vehicles, cyclists)
around the ego vehicle.

The  structure  of  the  Waymo  motion  data  can  be  demon-
strated  in Fig.  2.  It  is  noted  that  Waymo  released  several
versions of the data, each version may be not the same in struc-
ture and contain different sets of features.  In this research, the
subdataset  'uncompressed_scenario_validation_validation'  is
used,  and Fig.  2 introduces  the  structure  of  this  dataset.  The
information within one scenario can be categorized into three
major parts:

1.  Scenario  Features:  This  category  includes  the  basic  infor-
mation  about  the  current  scenario,  e.g.,  the  scenario  ID,  the
index of the self-driving car, etc.

2.  HD  Map  Features:  Both  the  static  and  dynamic  map
features  are  within  this  category.  The  dynamic  map  features
include  the  traffic  signal  states  and  the  static  map  features
contain  comprehensive  information  about  the  road  geomet-
rics  and  connection.  Waymo  provides  the  explicit  coordinates
for  the  lanes,  boundaries,  crosswalks,  etc.  For  each  road
segment,  the  indices  of  upstream/downstream  lanes  and  the
neighbor lanes are recorded in the corresponding attributes.

3.  Tracks:  This  attribute  stores  the  motions  of  all  observed
objects in the scenario. There are a total of four types of objects:
vehicles,  pedestrians,  cyclists,  and  others.  The  states  of  the
objects  are  recorded  at  a  10  Hz  frequency  and  each  state
consists of the coordinates of the object (x, y, z), size (width and
height),  motion  (heading,  longitudinal  and  lateral  speed),  and
valid flag.

 Predicting vehicle maneuvers

Based  on  the  structure  of  Waymo  motion  dataset,  this
research  develops  a  conceptual  framework  to  conduct  the
vehicle  maneuver  prediction  from  the  raw  dataset. Figure  3
demonstrates the working flow of the proposed methodology.
As  shown  in  the  figure,  the  framework  is  constituted  of  two
major sections: (1) data processing and (2) prediction model.

The  data  process  section  consists  of  a  series  of  automatic
scripts  to  parse  the  motion  data  from  the  TFRecord  files  and
then extract the metrics used for further modeling. As shown in
Fig.  3,  this  research  mainly  fetches  3  sets  of  motion  features:
kinematics  (position  coordinate,  speed,  and  heading),  vehicle
operating  space  (VOS),  and  lane  changing  behaviors. Figure  4
shows a snapshot of the lane-changing in the dataset.

Notably, the VOS of a vehicle is captured as the instant-level
driving environment.  The VOS refers  to  the  immediate  object-
free  space  around  a  vehicle  which  somehow  determines  the
instantaneous driving decisions such as accelerating and decel-
erating. Figure  5 conceptualizes  the  VOS  for  an  ego  vehicle,
divided  into  eight  zones  representing  eight  directions  or
dimensions in the vehicle's  immediate space:  Front,  Back,  Left,
Right, Front Left, Front Right, Back Right, and Back Left, respec-
tively. The VOS is measured as an eight-dimensional space, and
its  shape  is  determined  by  the  distances  between  the  ego  car

 
Fig. 2    Structure of the Waymo motion dataset (uncompressed_scenario_validation_validation).
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and  its  immediate  objects  (e.g.,  other  road  users  or  roadside
units). Figure 5a shows a typical shape of a VOS which is object-
free  within  the  range  of  an  AV's  perception  system; Figure  5b
shows the shape of a VOS is limited by surrounding vehicles.

As  stated above,  the VOS of  an ego vehicle  is  defined as  an
eight-dimensional space; the shape and size of a VOS are deter-
mined by the distances between the ego vehicle and its imme-
diate  objects  in  eight  dimensions.  A  safe  driving decision may
require  a  driver  or  ADS  to  pay  attention  to  all  surrounding
objects  in  eight  dimensions  while  the  attention  may  be
unequally  weighted  for  different  dimensions.  For  instance,

drivers  would  spend  more  time  focusing  on  the  vehicles  in
front than those in the back. This study proposes a measure to
quantify  the  VOS  by  weighting  and  combining  distances
between  the  ego  vehicle  and  its  immediate  objects  in  eight
dimensions:

VOS i =

8∑
j=1

w jdi j (1)

VOS i i w j

j di j

j

Where  represents the VOS measure for an instance ;  is
the weight for the distance on dimension ;  is the distance to
the nearest object on the dimension .

Since the Waymo motion data provide comprehensive road
geometrics  and  connections,  by  joining  the  HD  map  with  the
vehicle  positions,  the  lane  changing  behaviors  of  the  vehicles
could be identified. The extracted track information is compiled
into  the  tensors  for  further  machine  learning  modeling.  The
dimension of the tensor is compiled as follows.

Tensor (N,T,F) (2)

N T

F

Where,  indicates  the  number  of  the  track  traffic  object; 
indicates  the  number  of  consecutive  sequences  of  the  object
track (at 10 Hz, in total of 91);  represents the number of object
features extracted.

To  predict  the  vehicle  behaviors  and  trajectories,  this
research  utilizes  the  LSTM  as  the  backbone  of  the  prediction
model. The LSTM is one of the deep learning frameworks which
are widely used for sequence-to-sequence perdition, especially
in vehicle trajectory prediction[20,22,28,57]. LSTM is improved from
the recurrent neural network and could effectively alleviate the
gradient  vanishing[64].  This  study  utilized  the  vanilla  LSTM  for
the  behavior  prediction  for  the  lane  changing  prediction.
Figure 1b demonstrates the design of the LSTM cell.  As shown
in the figure,  the LSTM cell  consists  of  forget  gate,  input  gate,
and output gate:

 
Fig. 3    Conceptual framework.
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1)  Forget  gate:  The  forget  gate  takes  the  information  from
the current input and previous hidden state and uses a sigmoid
function to decide the information to be retained.

2) Input gate: This gate takes the current input and previous
hidden  state  and  determines  the  information  to  be  written
onto the internal cell states.

3) Output gate: The output gate regulates the current hidden
state  for  prediction,  which  utilizes  the  previous  hidden  state
and current input.

The mechanism of the LSTM and gates can be formulated as
the  following  equations.  For  prediction,  the  softmax  function
and linear function are used for behavior and trajectory predic-
tion, respectively.

ft = σ(Wu f ut +Wh f ht−1+b f ) (3)

it = σ(Wuiut +Whiht−1+bi) (4)

ot = σ(Wuout +Whoht−1+bo) (5)

ct = ft ⊙ ct−1+ it ⊙ tanh(Wucut +Whcht−1+bc) (6)

ht = ot ⊙ tanh (ct) (7)
σ (x) x⊙ y

ut tth

W b
ft, it,ot

ct ht

Where,  represents the sigmoid function;  represents the
element-wise  product;  represents  the  input  vector  of  the
sequence;  is  the  linear  transformation  matrix;  is  the  bias
vector;  represent  the  outputs  of  the  forget  gate,  input
gate, and output gate, respectively;  is the cell state vector;  is
the hidden state vector.

The mean binary cross-entropy (BCE) is used for loss calcula-
tion  and  backpropagation.  The  BCE  measures  the  difference
between the predicted probabilities and the actual  labels,  and
penalizes  the  probabilities  based  on  the  difference.  The  loss
function can be formulated as follows:

L = − 1
N

N∑
i=1

[yilogxi+ (1− yi)log(1− xi)] (8)

L yi

i xi i
Where,  represents the BCE loss for the given batch;  indicates
the actual label of ;  represents of the model prediction of .

 Model training and validation

This study uses the Waymo motion data for training, testing
and  validation.  Limited  by  the  computation  power  and  local
storage,  this  research  only  uses  one  TFRecord  file  (File  ID:
tfrecord-00018-of-00150) for modeling. More datasets would be
employed  when  stronger  computation  power  was  available.
The used dataset  contains  in  total  of  314 scenarios.  After  data
parsing  and  lane  changing  identification,  there  are  5,503
objects  fully  tracked in  a  9.1  second period (at  10  Hz)  without
missing  data.  There  are  1,477  times  lane  changing  behaviors
observed.  The  training,  testing,  and  validation  datasets  are
randomly sampled from the original  datasets according to the
ratio of 60%, 20%, and 20%, respectively.

The  model  was  trained  on  the  Ubuntu  platform  with  CUDA
support.  The  hyperparameters  of  the  vanilla  model  can  be
found  in Table  2. Figure  6 shows  the  training  and  testing  loss
changes  during  the  training  process.  It  could  be  found  that
both the training and testing loss dramatically decrease in the
first  five  epochs  and  keeps  fluctuating.  For  most  cases,  the
training loss is lower than the testing loss which indicates that
the  model  is,  to  some  extent,  overfitting.  To  further  examine
the model performance,  the training and testing accuracy and
recall  during  the  training  process  are  recorded  in Fig.  7.  Note
that the threshold of 0.5 is chosen to determine the positive vs
the negative predictions. According to Fig. 7, both the training
and  testing  accuracy  significantly  increase  in  the  first  five
epochs. The training accuracy varies around 0.825 and the test-
ing  accuracy,  at  around  0.80.  Both  accuracies  are  higher  than
0.5 which is a naïve random guess on the training dataset. The

a

b

 
Fig. 5    Describing the driving buffer around the ego car. (a) Vehicle Operating Space in eight dimensions; (b) Vehicle Operating Space affected
by surrounding vehicles.
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focus  of  this  study  is  on  predicting  the  lane  changing  behav-
iors and the recall is therefore one important metric for evalua-
tion.  As  shown in Fig.  7,  both the training and testing recall  is

stabilized at around 0.75 which means 75% of the lane chang-
ing behaviors are correctly predicted. Table 3 demonstrates the
trained model performance on training, testing, and validation
tests, respectively. Though the model is to some extent overfit-
ted, the overall  performance on the testing dataset proves the
robustness of the prediction model.

 Sensitivity analysis

The  main  purpose  of  developing  the  LSTM  model  is  to
predict the lane changing behaviors of the vehicles. Besides the
hyperparameters,  the  model  prediction  accuracy  can  also  be
influenced by the model inputs. As shown in Fig. 2, the original
Waymo  motion  data  contains  comprehensive  information
about the object kinematics and road environment. However, it
could  be  a  challenging  task  to  compile  all  the  information  in
the  modeling.  In  some  cases,  introducing  more  information

Table 2.    Hyperparameter setup for the vanilla model.

Hyperparameter Value

Learning Rate 0.005
Number of Recurrent Layers 1
Number of features in
hidden state

64

Batch Size 32
Number of Epochs 100
Threshold 0.5
Sequence Length 4
Selected Features Longitudinal speed,

Lateral Speed,
Heading, VOS

 
Fig. 6    Training and testing loss during training process.

 
Fig. 7    Prediction accuracy and recall for training and testing datasets.
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might  bias  the  model  results  and  make  the  model  difficult  to
converge.  In  order  to  testify  the  influence  of  different  inputs,
this study conducted a series of sensitivity analyses to examine
their  potential  impacts  on  the  model  performance.  In  this
section,  three  parameters  are  investigated:  (1)  selection of  the
features,  (2)  prediction  horizons,  and  (3)  training  dataset
balancing.

 Feature selection
The vanilla model contains four features of the vehicle opera-

tion:  longitudinal  speed,  lateral  speed,  heading  direction,  and
VOS. It could be assumed that significant changes in speed and
heading might  always  be associated with  the  changing of  the
vehicle  behaviors  while  it  is  uncertain  that  whether  VOS  will
play  a  role  in  prediction.  This  study  therefore  introduces  the
coordinates  and  kinematics  independently  as  the  input
features  to  examine  their  impacts  on  the  model  performance.
Figure  8 shows  the  loss  changes  during  the  process  for  each
model.  The sensitivity  test  controls  the hyperparameter  to  the
same and uses the training loss decay speed and depth as the
indicators of the model performance.

As shown in Fig. 8, after introducing the vehicle coordinates,
both training and testing loss are larger than the other models.
The  model  with  coordinates  is  hard  to  converge  at  the  given
set  of  hyperparameters.  This  could  possibly  be because of  the
large  variation  and  sparsity  of  the  coordinates.  Since  Waymo
motion data collected the vehicle trajectories in various condi-
tions. The value of the coordinates varies in a large range from
–33,000 to +40,000 (for the TFrecord file used in this study). The
sparsity of the trajectories could dominate the training process
and make the model hard to learn and converge.

VOS measures the clear space around the vehicle. It could be
believed that the vehicle can only make the lane change when

the space is allowable. As shown in Fig. 8, introducing the VOS
could  significantly  improve  the  training  process  and  lead  to
better  prediction  accuracy  and  recall  (Table  4).  The  VOS  and
vehicle  trajectories  convey  information  about  the  surround-
ings and ego operation, respectively. Both of them are assumed
to  be  indicators  of  lane  changing  behaviors.  However,  in  the
end-to-end deep learning models, the raw features like vehicle
trajectories  could  require  more  time  in  training  to  extract  the
latent  features.  The  VOS  is  extracting  the  relative  distance  to
the car of interest. This concept is in line with some practices of
prediction[56,65] in which the coordinates are normalized to the
last  observed  position  of  the  target  agent  for  each  data
sequence.  Overall,  the  VOS,  as  a  manually  crafted  feature,  can
reduce  the  effort  of  tuning  and  make  the  model  easy  to
converge.

 Prediction horizon
Predicting  the  vehicle  trajectory  and  the  vehicle  behaviors

are  dependent  on  historical  information.  Long-term  trajectory
and maneuver prediction is a continuous challenge. According
to  the  current  practice  in  related  research[66],  the  prediction
accuracy would decay with the increase in the prediction hori-
zon, that is, when the historical information used for prediction
is  far  before  the  decision  point,  it  is  hard  to  make  the  right
prediction.  As  shown  by  Xing  et  al.[66],  the  prediction  horizon
varies from 0.5 to 3.5 s. In order to examine the horizon impacts
on  the  proposed  method,  this  section  conducts  a  sensitivity
analysis on the different horizons from 0.4 to 7.4 s.

The  analysis  results  are  shown  in Fig.  9.  Both  the  testing
accuracy and recall imply decreasing trends with respect to the
prediction horizons. It could be assumed that as the prediction
horizon  increases,  the  model  accuracy  would  approach  0.5
which  is  a  naïve  random  guess  on  the  dataset  (with  a  1:1
balanced dataset).

 Training dataset balancing
The  lane  changing  behaviors  are  rare  vehicle  operations

compared  with  lane-keeping.  As  introduced  previously,  the
lane changing behavior only composes a small part of the vehi-
cle operations captured. In the model training, the accuracy can

Table 3.    Model performance on training, testing, and validation datasets.

Datasets Number of observation Accuracy Recall

Training Set 1806 0.85 0.79
Testing Set 602 0.81 0.75
Validation Set 602 0.79 0.74

 
Fig. 8    Training loss decay for different feature combinations.
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be  biased  by  the  true  negative  observations  (lane  keeping).
One  of  the  common  ways  to  alleviate  this  issue  is  to  balance
the  training  dataset[67] which  uses  over-sampling  or  under-

sampling to get a 1:1 training dataset for True Positive (TP) and
True  Negative  (TN)  observations.  In  order  to  investigate  the
possible influence of the data balancing, this research compose
the  training  dataset  with  different  TN/TP  ratios  and  test  the
model performance on the same ratio testing set.

Figure 10 shows the testing accuracy and recall after training
the  model  with  the  given  ratio.  The  ratio  increases  from  0.1
with the step size of  0.1  to 10.  At  the same time,  the accuracy
will  drop  in  the  first  several  step  sizes  and  increase  afterward
while the recall keeps decreasing. Figure 10 also demonstrates
the TN/TP ratio curve, and it can be found that the curve over-
laps with the accuracy curve after around ratio 3. This is caused
by the loss function design. Since the BCE loss is used for train-
ing,  it  considers  both the prediction correctness of  TP and TN.
However, as the number of TN increases, the correctness of TN
will  dominate the model  training and therefore leads to a  low
recall.

Table 4.    Model performance for different feature combinations

Feature selection Feature
dimension Datasets Accuracy Recall

Longitudinal Speed
Lateral Speed
Heading

3 Training Set 0.81 0.80
Testing Set 0.79 0.79

Validation Set 0.77 0.75
Longitudinal Speed
Lateral Speed
Heading
Vehicle Coordinates

5 Training Set 0.62 0.60
Testing Set 0.64 0.63

Validation Set 0.54 0.54

Longitudinal Speed
Lateral Speed
Heading
VOS

11 Training Set 0.85 0.79
Testing Set 0.81 0.75

Validation Set 0.79 0.74

 
Fig. 9    Testing accuracy and recall for different prediction horizons.

 
Fig. 10    Testing accuracy and recall for different data balancing.
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 Limitations

The  Waymo  motion  dataset  contains  comprehensive  infor-
mation about vehicle kinematics and the driving environments.
However,  due  to  the  computation  source  available  to  the
authors,  this  study only  used part  of  the data and information
for data modeling. This research employed the vanilla LSTM for
the  model  framework  which  is  not  the  most  up-to-date  deep
learning  backbones  for  the  sequential  data.  Advanced  model
frameworks  such  as  Transformers  and  Graph  Neural  Network
could  be  utilized  for  the  lane  changing  behavior  prediction.
Besides,  some  of  the  limitations  are  from  the  Waymo  dataset.
The  motion  data  of  the  surrounding  vehicles  are  collected  by
the  camera  and  Lidar  sensors  which  is  limited  to  a  range
around the ego car. This leads to the issue that the tracks of the
surrounding objects  are  interrupted if  it  was  shadowed or  out
of range. Only a portion of objects have a complete and consis-
tent track. This would lead to the sparsity of the valid tracks and
furthermore, the lane changing behaviors.

 Conclusions

With  the  development  of  autonomous  vehicle  technology,
more  real-world  autonomous  driving  test  data  are  becoming
available  for  research.  The  research  of  developing  methods  to
predict  instantaneous  vehicle  maneuvers  and  to  anticipate
vehicle  trajectories  or  motions  is  gaining  growing  interest
among  both  transportation  researchers  and  industry  innova-
tors. Predicting vehicle maneuvers such as merges, lane chang-
ing  and  turns  requires  the  understanding  of  the  surrounding
static  and  dynamic  environments.  With  the  open  motion
dataset provided by Waymo, this study proposed a framework
to  explore  autonomous  driving  data  and  investigate  vehicle
maneuvers,  specifically  lane  change  behaviors.  In  this  frame-
work,  this  study  develops  a  Long  Short-Term  Memory  (LSTM)
model to predict lane changing behaviors to support the auto-
mated  driving  decision  making.  A  concept  of  Vehicle  Operat-
ing Space (VOS) is introduced to measure the possible space for
vehicle maneuvers. The features are compiled as tensors for the
prediction. This study used the vanilla LSTM as the backbone of
the prediction model.

The  proposed  model  shows  fair  performance  on  the  lane
changing  prediction.  With  a  prediction  horizon  of  0.4  s  and  a
balanced training dataset, the model is able to achieve an accu-
racy of 0.81 and recall of 0.75 on the testing dataset. In order to
examine  the  robustness  of  this  model,  a  series  of  sensitivity
analyses  are  conducted  on  three  key  parameters:  (1)  feature
selection,  (2)  prediction  horizon,  and  (3)  training  dataset
balancing. As shown in the discussion, introducing the VOS can
increase  the  speed  of  loss  decay  and  achieve  higher  accuracy
and  recall.  While  in  comparison,  involving  the  raw  vehicle
trajectories  may  make  it  difficult  for  the  model  to  converge.
Though  deep  learning  is  heading  toward  end-to-end  training
and  prediction,  in  some  cases,  the  manually  crafted  metrics
(such  as  VOS  proposed)  may  help  for  better  model  perfor-
mance. The test on different prediction horizons shows that as
the horizon increase, the model performance will be worse and
approach the naïve random guess  results.  Balancing the train-
ing data is one common way to deal with the rare event predic-
tion  (e.g.,  lane  changing  behavior  in  this  study).  This  study
raises  a  discussion  on  the  sampling  ratio  of  true  positive  over

true negative. By testing different ratios,  it  is found that as the
ratio  decreases,  the  accuracy  will  gradually  be  dominated  by
the  majority  of  the  observations  which  is  lane  keeping.  The
recall keeps decreasing which indicates the model is not effec-
tive  in  making  the  right  prediction  on  the  lane  changing.  In
other words, inappropriate training data balancing could some-
how bias the results.

This study develops a methodological framework to explore
and predict lane changing behaviors using the Waymo motion
dataset.  This  research  provides  an  extended  discussion  on
several  critical  issues  affecting  the  model  performance.
However, the design of the proposed sensitivity analysis is not
impeccable.  Continuing  research  is  needed  to  improve  both
the  prediction  model  design  and  parameter  tests.  The  future
study is expected to incorporate more dynamics (refined object
tracks)  and  statics  (road  geometrics)  into  the  model  and
conduct training and testing using a large dataset.
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