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Abstract
In the future connected vehicle environment, the information of multiple vehicles ahead can be readily collected in real-time, such as the velocity

or headway,  which provides more opportunities for information exchange and cooperative control.  Meanwhile,  gyroidal  roads are one of the

fundamental road patterns prevalent in mountainous areas. To effectively control the system, it is therefore significant to explore the evolution

mechanism of traffic flow on gyroidal roads under a connected vehicle environment. In this paper, we present a new continuum model with the

average  velocity  of  multiple  vehicles  ahead  on  gyroidal  roads.  The  stability  criterion  and  KdV-Burger  equation  are  deduced via linear  and

nonlinear stability analysis, respectively. Solving the above KdV-Burger equation yields the density wave solution, which explores the formation

and  propagation  property  of  traffic  jams  near  the  neutral  stability  curve.  Simulation  examples  verify  that  the  model  can  reproduce  complex

phenomena, such as shock waves and rarefaction waves. The analysis of the local cluster effect shows that the number of vehicles ahead and the

radius information, and the slope information of gyroidal roads can exert a great influence on traffic jams. The effect of the first and second terms

are positive, while the last term is negative.
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 Introduction

In the past decade, car ownership has significantly increased
and  poses  tremendous  pressure  on  urban  traffic  commuting,
which raises serious issues of traffic pollution, traffic noise, and
traffic  safety.  Improvement  of  traffic  efficiency  has  attracted
strong  interest  from  both  industry  and  the  scientific  commu-
nity.  In  practice,  a  number  of  external  countermeasures  have
been  applied  to  ease  traffic  congestion,  such  as  road  marking
redesign  and  one-way  traffic  management.  Another  branch
focuses  on  understanding  the  formation  and  propagation
mechanism of traffic jams to more effectively control the traffic
system, yielding a variety of traffic flow models.

Methodologically,  existing  traffic  flow  models  can  be
grouped into microscopic traffic flow models and macroscopic
traffic  flow models.  The  research subject  of  the  former  is  each
vehicle,  focusing  on  the  kinetic  behavior  of  running  vehicles,
which  is  represented  by  car  following  models[1−6] and  cellular
automata  models[7−8].  However,  a  sufficiently  large  number  of
vehicles  will  significantly  complicate  model  development  and
problem-solving. In contrast, the latter analogizes traffic flow to
compressible  continuous  fluid,  thereby  establishing  a  partial
differential  equation  based  on  speed  and  density.  By  solving
this equation, the relevant dynamic behavior of traffic flow can
be  explored,  which  is  represented  by  lattice  hydrodynamics
models[9−16] and continuous models[17].  Compared with micro-
scopic models, less simulation time is required for macroscopic
models  to  replicate  the  overall  characteristics  of  traffic  flow,
being independent of the number of vehicles.

Macroscopic  traffic  flow  models  originated  from  the  LWR
model  proposed  by  Lighthill  &  Whitham  and  Richards[18−20],
whereas  the  velocities  in  this  model  are  always  under  equilib-
rium, which cannot analyze various equilibrium traffic phenom-
ena.  Payne[21] presented the first  high-order continuum model
by  replacing  the  relationship  of  equilibrium  velocity  and
density in the LWR model with the kinetic equations of velocity,
in which the velocity is allowed to deviate from the equilibrium
velocity. In 1995, Daganzo[22] found that the propagation veloc-
ity of small disturbances in Payne’s model was greater than the
macroscopic  velocity,  which  meant  that  the  vehicle  is
restrained  by  the  vehicles  behind,  and  he  criticized  that  the
model  violated  the  fundamental  properties  of  anisotropy  of
traffic  flow.  Subsequently,  Zhang[23] and  Jiang  et  al.[24] substi-
tuted the density gradient term in previous continuum models
with the velocity gradient term, and established the anisotropy
of the macroscopic traffic flow model.

As  an  important  branch  of  macroscopic  traffic  models,
continuous models have gained wide attention from the scien-
tific  community.  Interested  readers  are  referred  to  the  repre-
sentative  works  in Table  1.  Notwithstanding  that,  existing
studies  mostly  focus  on  the  kinetic  behavior  of  traffic  flow  on
regular  roads,  whereas  research  on  continuous  models  on
spiral  roads  is  rare.  In  many  rural  and  mountainous  areas,  the
roads  exhibit  a  gyroidal  upward  or  downward  pattern  due  to
geology  and  geomorphology.  Compared  with  regular  roads,
the  force  of  vehicles  driving  on  gyroidal  roads  is  much  more
complicated Fig.  1.  The  vehicles  will  not  only  be  affected  by
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gravity  but  also  by  centripetal  force.  However,  existing  traffic
flow  models  on  gyroidal  roads  are  mostly  analyzed  in  the
context  of  microscopic  models[53,54].  Given  the  practical  and
theoretical significance of macroscopic models, it is imperative
to  propose  a  customized  continuum  model  and  analyze  the
formation and spreading mechanism of perturbation waves on
gyroidal roads.

With  the  advance  of  communication  technology,  the
connected  vehicle  environment  is  expected  to  become
commercially available in future transportation. Under such an
environment,  the  information  of  multiple  vehicles  ahead  can
be  readily  collected  in  real-time,  such  as  the  velocity  or  head-
way,  which  provides  more  opportunities  for  information

exchange and cooperative control.  On review of the literature,
no  study  has  focused  on  the  stability  characteristics  of
connected  vehicle  flow  on  gradient  roads  from  the  macro-
scopic perspective.

To effectively control the system, it is, therefore, significant to
explore  the  evolution  mechanism  of  traffic  flow  on  gyroidal
roads under a connected vehicle environment. This paper aims
to fill  these gaps and contributes to developing a new contin-
uum  model  accounting  for  the  average  velocity  of  multiple
vehicles  ahead  on  gyroidal  roads.  The  linear  and  nonlinear
stability  analysis  of  the  proposed  continuum  model  is  carried
out,  and the corresponding stability  area and the propagation
mechanism of traffic density wave are obtained.

The structural  organization of this paper is  as follows:  In the
next section, a modified continuous model taking into account
the  average  velocity  effect  of  multiple  vehicles  ahead  on
gyroidal  roads  is  proposed.  Next,  the  stability  criterion  and
correspondingly KdV-Burgers equation is deduced via the small
perturbation method,  respectively.  In  the penultimate section,
a numerical example is carried out to verify theoretical analysis
conclusions. Finally, the key conclusions are presented.

 Model

In this section, we revisit the traditional model and introduce
the  rationale  behind  our  proposed  model.  The  primary  nota-
tions  used  in  this  paper  are  listed  in Table  2.  In  1995,  an  opti-
mal  speed  (OV)  model  was  proposed  by  Bando  et  al.[55] to
explore the interaction between vehicles  on a single lane.  The
kinetic equation is described as follows:

dvn

dt
= a

[
Vop(∆xn)− vn

]
(1)

The optimal velocity function in the above equation is set as
follows:

Vop(∆xn) =
vmax

2
[
tanh(∆xn− ys)+ tanh(ys)

]
(2)

Later, Helbing & Tilch[56] found that there were unreasonable
acceleration  and  deceleration  behaviors  in  the  above  OV
model.  To  solve  the  problem,  they  argued  that  the  velocity
difference between the preceding vehicle and the current vehi-
cle should be considered when the velocity of the current vehi-
cle  is  less  than  following  vehicles,  thereby  giving  the  general-
ized force (GF) model as follows:

dvn

dt
= a

[
Vop(∆xn)− vn

]
+λH (−∆vn)∆vn (3)

Jiang  et  al.[57] used  the  GF  model  to  simulate  the  starting
process  of  the  stationary  vehicle  and noticed that  the  starting
wave speed of  the model was too small.  They argued that the
velocity difference term also should be considered whether the
current  vehicle  velocity  is  greater  than  the  velocity  of  the
preceding  vehicle,  yielding  a  full  velocity  difference  (FVD)
model, which is described as follows:

dvn

dt
= a

[
Vop(∆xn)− vn

]
+λ∆vn (4)

In the aforementioned works, vehicles are assumed to run on
a  regular  road  scene,  that  is,  the  road  slope  information  is
neglected. In many developing countries or rural mountainous
areas, gyroidal road scenes are prevalent. The force of a vehicle
running on gyroidal roads is much more complicated, which is
not  only  affected by  the  gravity  and driving force,  but  also  by
the  centripetal  force. Figure  2 portrays  the  force  decomposi-

Table 1.    Representative literature on continuum models.

Authors Characteristics References

Mohan R, Chen R Heterogeneous traffic flow [25−27]
Lu S Higher-order [28,29]
Liu H, Cheng R Traffic jerk effect [30,31]
Hao L, Yu L. Delay effect [32,33]
Liu Z, Zhai C Taillight effect [34,35]
Jiao Y, Zhai C Backward looking effect [36,37]
Cheng R, Zhai Q Memory effect [38−40]
Cheng R, Wang Z Driver's characteristics [41,42]
Zhai C, Chen J Slope road / Gradient highways [43,44]
Xue Y, Liu Z Curved road [45,46]
Guan X, Peng G Anticipation effect [47,48]
Ngoduy D, Bouadi M Stochastic continuum models [49,50]
Wang Z, Tang T Driver’s bounded rationality [51,52]

a

b

 
Fig.  1    Common  gyroidal  roads  in  China.  (a)  Longmen  ancient
road  at  the  junction  of  Henan  and  Shanxi;  (b)  East  line  mountain
road project in Fugu County, Yulin City, Shaanxi Province.
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tion  diagram  of  the  vehicles  running  on  the  gyroidal  road.  To
analyze  the  interaction  between  successive  vehicles  on  this
special road scene, Zhu & Yu[53] improved on the OV model and
proposed a new traffic flow model as follows:

d2sn

dt2 = a
[
V(∆sn)− dsn

dt

]
(5)

V(·)The function  is expressed as:

V(r∆φn) =
rωmax− vg,max

2
[
tanh(r∆φn− ys (θ))+ tanh(ys (θ))

]
(6)

ωmaxIn  order  to  determine ,  from  the  centripetal  force
formula, we can obtain the following equation:

mω2
maxr = µmgcosθ (7)

Furthermore:

ωmax =

√
µgcosθ

r
(8)

Substituting Eq (8) into Eq (6), we have:

V(r∆φn) =
k
√
µgr cosθ∓ sinθ

2
V0(r∆φn) (9)

V0(r∆φn) = tanh(r∆φn− ys (θ))+ tanh(ys (θ))where .

ωn

Incorporating Eq (9) into Eq (5), and introducing the interme-
diate variable , then we have:

dωn

dt
= a

[
k
√
µgr cosθ∓ sinθ

2r
V0(r∆φn)−ωn

]
(10)

ωn =
dφn

dt
dωn

dt
=

d2sn

dt2
where , .

With  the  advancements  in  communication  technology,  the
information of multiple vehicles ahead can be readily collected
in  real-time,  such  as  the  velocity  or  headway,  which  provides
more opportunities for  information exchange and cooperative
control[58,59]. Based on this, we introduce the effect of the aver-
age  velocity  of  multiple  vehicles  ahead,  and  a  new  macro-
scopic traffic flow model is given:

dωn

dt
= a

[
k
√
µgr cosθ∓ sinθ

2r
V0(r∆φn)−ωn

]
+λ

1
l

l∑
m=1

ωn+l−ωn


(11)

1
l

l∑
m=1
ωn+l(t)−ωn(t)where  represents the comprehensive velocity

difference  information  between  the  average  speed  of multiple
vehicles ahead and the current vehicle.

λ = 0

Remark  1: When l =  1,  only  the  velocity  difference  term
between  the  preceding  vehicle  and  the  current  vehicle  is
considered in the proposed model, which is similar to the tradi-
tional  FVD  model.  When ,  the  model  collapses  to  Zhu  &
Yu's model[53]. Therefore, previous models can be regarded as a
special form of the proposed model.

The  headway-density  equation  proposed  by  Berg  et  al.[60]

builds  the  linkage  between  the  microscopic  and  the  macro-
scopic traffic flow model:

r∆φn ≈
1
ρ
− ρx

2ρ3 −
ρxx

6ρ4 (12)

Similarly,  the rest of the microscopic variables in Eq (11) can
be converted into the following forms:

ωn(t)→ ω(φ, t),ωn+l(t)→ ω(φ+ l∆, t),

V0

(
1
ρ

)
→ Ve (ρ) ,V ′0

(
1
ρ

)
→−ρ2V ′e (ρ)

(13)

The left side term of Eq (11) can be transformed into:

dω(φ, t)
dt

=
∂ω(φ, t)
∂φ

ω+
∂ω(φ, t)
∂t

. (14)

ω(φ+ l∆, t)
Similarly,  Taylor  expansion  is  carried  out  on  the  variable

, the following approximation can be obtained:

ω(φ+ l∆, t) = ω(φ, t)+ω′l∆+
1
2
ω′′l2∆2 (15)

Incorporating  Eqs  (12)−(15)  into  Eq  (11)  and  sorting  it,  the
following new continuous model can be obtained:

∂ρ

∂t
+ω
∂ρ

∂φ
+ρ
∂ω

∂φ
= 0

∂ω

∂t
+

(
ω− l+1

2
λ∆

)
∂ω

∂φ
= a

(
k
√
µgr cosθ∓ sinθ

2r
Ve (ρ)−ω

)
+

(l+1)(2l+1)
12

λω′′∆2+a
k
√
µgr cosθ∓ sinθ

2r
V ′e (ρ)

(
ρφ

2ρ
+
ρφφ

6ρ2

)
(16)

Table 2.    Primary notations used in the proposed model.

Symbols Definition

n The subscript of vehicles
a Driver's sensitivity
vn The instantaneous velocity of vehicle n
∆xn The instantaneous headway of vehicle n
Vop(·) Optimal velocity function

vmax
The maximum allowable driving velocity under regular road
scenes

ys Safety distance without collisions under regular road scenes
λ Sensitivity coefficient of the velocity difference
H(·) Heaviside function

sn sn = r×φn

Instantaneous position information of vehicle n on the
gyroidal road, and 

∆sn ∆sn = r×∆φn

Instantaneous headway information of vehicle n on the
gyroidal road, and 

r r = γ/cosθThe radius of curvature, where 
γ The radius of the circle

θ θ < 0 θ > 0Slope angle,  and  corresponding to downhill
and uphill scenes respectively

V(·) Optimal speed function on the gyroidal road
ωmax The maximum allowable angular velocity on gyroidal roads

ys (θ) ys (θ) = ys (1−αsinθ)
The minimum allowable safety distance on gyroidal roads,
where 

α α = 1Is a constant. Here, we set it as 

vg,max vg,max = sinθ
Maximum reduced or enhanced speed on the gyroidal
road, to simplify the calculation, we set 

m The mass of vehicles

g Gravitational acceleration information, where we set g = 9.8
m·s−1

µ Lateral friction coefficient
k The adjustment coefficient; here k = 0.1
l The number of vehicles ahead considered

f

mg

a b

r

B

A

f

mg mg cos θmg sin θ

θ

 
Fig.  2    Illustration  of  vehicle  forces  on  different  road  scenes,  (a)
horizontal or regular road, (b) gyroidal road.
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 Linear stability analysis

For  ease  of  the  subsequent  discussion,  we  convert  Eq  (16)
into the following matrix form:

∂U⃗
∂t

+ A⃗
∂U⃗
∂φ

= E⃗ (17)

U⃗ =
(
ρ
ω

)
A⃗ =

[
ω ρ

0 ω− l+1
2 λl∆

]

E⃗ =


0

a
(

k
√
µgr cosθ∓ sinθ

2r
Ve (ρ)−ω

)
+

(l+1)(2l+1)
12

λω′′∆2

+a
k
√
µgr cosθ∓ sinθ

2r
V ′e (ρ)

(
ρx

2ρ
+
ρxx

6ρ2

)


where  ,  ,

.

In  order  to  obtain  the  eigenvalues  of  the  above  equations,
matrix A must satisfy the following eigenvalues:

|κI−A| = 0 (18)

By solving Eq (18),  we can obtain  the characteristic  solution
of the above determinant:

κ1 = ω, κ2 = ω−
r+1

2
λ∆ (19)

λ,∆ > 0
ω κi(i = 1,2)

Since ,  then  the  macroscopic  velocity  of  the  traffic
flow  exceeds  the  characteristic  velocity ,  which
means that  the new traffic  flow model  has  anisotropic  charac-
teristics.

In what follows, we carried out the linear stability analysis on
the  proposed  continuum  model via the  small  perturbation
method to obtain the corresponding stability conditions. For a
start,  a small disturbance is injected into the initial equilibrium
state, and then:( ρ

ω

)
=

( ρ0
ω0

)
+

∑(
ρ̂k
ω̂k

)
exp(ikφ+δkt) (20)

(ρ0,ω0) (ρ̂k, ω̂k)
δk

where  is  the  steady-state  solution  for  Eq  (16),  is
the small perturbation, and k and represents the wave number
and frequency of the waves, respectively.

Combining Eq (20) with Eq (16) and linearizing, and neglect-
ing the higher-order nonlinear terms, then we have:

(δk + ω0ik) ρ̂k + ρ0ikω̂k = 01+ ik
2ρ0
+

(ik)2

6ρ2
0

 k
√
µgr cosθ∓ sinθ

2r
aV ′e (ρ0) ρ̂k−[

a+δk +
(
ω0−

l+1
2
λ∆

)
ik− (l+1)(2l+1)

12
λ∆2(ik)2

]
ω̂k = 0

(21)

ρ̂k ω̂kIn  order  to  obtain  the  non-zero  solutions  of  and ,  the
determinant  of  the  coefficient  matrix  of  the  above  formula
must  be  equal  to  zero,  then  we  have  the  following  quadratic
equation:

(δk + ω0ik)2+ (δk + ω0ik)
(
a− l+1

2
λ∆ik− (l+1)(2l+1)

12
λ∆2(ik)2

)
+

1+ ik
2ρ0
+

(ik)2

6ρ2
0

 k
√
µgr cosθ∓ sinθ

2r
aρ0V ′e (ρ0) ik = 0

(22)
δk

δk = δ1ik+δ2(ik)2+ ...

Furthermore, to determine the value of , it is expanded into
a  power  series,  i.e.  .  To  ensure  the  equa-
tion holds after bringing the power series into Eq (22), then the
first  and  second  order  coefficients  terms  of ik in  the  above
formula must always be zero, then we have:


δ1 + ω0+

k
√
µgr cosθ∓ sinθ

2r
ρ0V ′e (ρ0) = 0

(δ1 + ω0)2 + aδ2−
l+1

2
(δ1+ω0)λ∆+

k
√
µgr cosθ∓ sinθ

4r
aV ′e (ρ0) = 0

(23)
δ1 δ2Solving  the  above  formula,  we  can  see  that  and  are

respectively:

δ1 = −ω0−
k
√
µgr cosθ∓ sinθ

2r
ρ0V ′e (ρ0)

δ2 = −
1
a

(
k
√
µgr cosθ∓ sinθ

2r
ρ0V ′e (ρ0)

)2

− k
√
µgr cosθ∓ sinθ

4r
V ′e (ρ0)

− k
√
µgr cosθ∓ sinθ

4ar
(l+1)λ∆ρ0V ′e (ρ0)

(24)

δ2 > 0
According  to  the  stability  theory,  we  can  see  that  the  new

continuum model is stable when , then we can obtain the
following stability conditions, specifically:

a > − (l+1)λ∆ρ0−
1
r

(
k
√
µgr cosθ∓ sinθ

)
ρ2

0V ′e (ρ0) (25)

δ1 δ2
δk

Based on the obtained  and , we can determine that the
real and imaginary parts of  are respectively:

Re (δk) ≈



1
a

(
k
√
µgr cosθ∓ sinθ

2r
ρ0V ′e (ρ0)

)2

+
k
√
µgr cosθ∓ sinθ

4r
V ′e (ρ0)

+
k
√
µgr cosθ∓ sinθ

4ar
(l+1)λ∆ρ0V ′e (ρ0)


k2−O

(
k4

)

Im (σk) ≈ −
(
ω0r+

k
√
µgr cosθ∓ sinθ

2
ρ0V ′e (ρ0)

)
k+O

(
k3

)
(26)

c (ρ0) = ω0r+
k
√
µgr cosθ∓ sinθ

2
ρ0V ′e (ρ0)

The critical propagation velocity 

.

 KdV-Burgers equation

In order to understand the formation and propagation char-
acteristics of density waves near the neutral stability curve, we
perform  the  nonlinear  stability  analysis  on  the  proposed
continuum model when the above stability condition Eq (25) is
not satisfied. For a start,  we introduce the following new coor-
dinate transformation to the new model:

z = φ− ct (27)

φ

φ = z+ ct

t =
φ− z

c

where c is  the  critical  propagation velocity  given above,  and t
are  corresponding  position  variables  and  time  variables.  By
rearranging  the  above  transformation,  we  have  and

, respectively.

Incorporating Eq (27) into Eq (16), we get:

−cρz+qz = 0

−cωz+ωωz = a
(

k
√
µgr cosθ∓ sinθ

2r
Ve (ρ)−ω

)
+

(l+1)(2l+1)
12

λωzz∆
2

+
l+1

2
λ∆ωz+a

k
√
µgr cosθ∓ sinθ

2r
V ′e (ρ)

(
ρz

2ρ
+
ρzz

6ρ2

)
(28)

q = ρ×ωr ωwhere  ,  and the first- and second- derivative of  to z
are:

ωz =
1
r

(
cρz

ρ
− qρz

ρ2

)
(29)
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ωzz =
1
r

(
cρzz

ρ
−

2cρ2
z

ρ2 −
qρzz

ρ2 +
2qρ2

z

ρ3

)
(30)

After performing Taylor expansion of q at  steady state,  then
we have:

q = ρ
k
√
µgr cosθ∓ sinθ

2
Ve (ρ)+b1ρz+b2ρzz (31)

Substituting Eq (29)−(31) into Eq (28), then we have:

−c
r

(
cρz

ρ
− qρz

ρ2

)
+
ω

r

(
cρz

ρ
− qρz

ρ2

)
= a

(
k
√
µgr cosθ∓ sinθ

2r
Ve (ρ)−ω

)
+

(l+1)(2l+1)
12r

λ∆2
(

cρzz

ρ
−

2cρ2
z

ρ2 −
qρzz

ρ2 +
2qρ2

z

ρ3

)
+

l+1
2r
λ∆

(
cρz

ρ
− qρz

ρ2

)
+a

k
√
µgr cosθ∓ sinθ

2r
V ′e (ρ)

(
ρz

2ρ
+
ρzz

6ρ2

)
(32)

ρz ρzz

ρz ρzz

Given that  and  are  not  always  zero,  to  guarantee that
the  above  formula  is  established,  the  corresponding  coeffi-
cients of  and  in the above formula must always. be zero.
After sorting, we have:

b1 =

(
l+1
2a
λ∆+

c
a
− k
√
µgr cosθ∓ sinθ

2ar
Ve (ρ)

)
(
c− k

√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
+

k
√
µgr cosθ∓ sinθ

4
V ′e (ρ)

b2 =
(l+1)(2l+1)

12a
λ∆2

(
c− k

√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
+

k
√
µgr cosθ∓ sinθ

12ρ
V ′e (ρ)

(33)
ρ

ρ0 ρ̂ (x, t)

ρ = ρ0+ ρ̂ (x, t) ρ
k
√
µgr cosθ∓ sinθ

2
Ve (ρ)

Given  that  density  equals  the  sum  of  steady-state  density
 and  the  corresponding  disturbance  term ,  i.e.,

,  the  item  can  be

approximated as follows using Taylor expansion:

ρ
k
√
µgr cosθ∓ sinθ

2
Ve (ρ) ≈ ρ0

k
√
µgr cosθ∓ sinθ

2
Ve (ρ0)(

ρ
k
√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
ρ

∣∣∣∣∣∣
ρ=ρ0

ρ̂

+
1
2

(
ρ

k
√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
ρρ

∣∣∣∣∣∣
ρ=ρ0

ρ̂2

(34)

Combining Eq (34) with Eq (31), and bringing it into Eq (28),
then we have:

− cρz+

(
ρ

k
√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
ρ

ρz+(
ρ

k
√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
ρρ

ρρz+b1ρzz+b2ρzzz = 0
(35)

To obtain the standard KdV-Burgers equation corresponding
to  Eq  (35),  the  following  coordinate  transformation  is  intro-
duced:

U =−
(ρk

√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
ρ

+

(
ρ

k
√
µgr cosθ∓ sinθ

2
Ve (ρ)

)
ρρ

ρ

 ,
X = mx, T = −mt (36)

Applying Eq (36) to Eq (35), then the following standard KdV-
Burgers equation is derived:

UT +UUX −mb1UXX −m2b2UXXX = 0 (37)
Based  on  the  conclusions  of  the  literature[61,62],  we  can

obtain one of the solutions as:

U = − 3(−mb1)2

25
(−m2b2

)

1+2tanh

(
±−mb1

10m2

)
×

(
X+

6(−mb1)2

25
(−m2b2

)T + ζ0

)
+tanh2

(
±−mb1

10m2

)
×

(
X+

6(−mb1)2

25
(−m2b2

)T + ζ0

)

(38)

ζ0where  is an arbitrary constant.

 Numerical example

In this part, we will carry out a numerical simulation to verify
the  above  theoretical  analysis  conclusions.  Since  the  contin-
uum  model  is  a  partial  differential  form  and  difficult  to  simu-
late,  to  facilitate  follow-up  analysis,  we  first  discretized  the
proposed continuum model  Eq (16)  based on the  finite  differ-
ence method, and the discretization form of continuous equa-
tion corresponding to Eq (16) is:

ρ
j+1
i = ρ

j
i +
∆t
∆φ
ω

j
i

(
ρ

j
i−1−ρ

j
i

)
+
∆t
∆φ
ρ

j
i

(
ω

j
i −ω

j
i+1

)
(39)

ω
j
i < c j

i1)  if ,  we  adopt  the  forward  difference  format  to  the
evolution equation of Eq (16), which is:

ω
j+1
i = ω

j
i +
∆t
∆φ

(
ω

j
i − c j

i

) (
ω

j
i+1−ω

j
i

)
+a∆t

(
k
√
µgr cosθ∓ sinθ

2r
Ve

(
ρ

j
i

)
−ω j

i

)

+
(l+1)(2l+1)

12
(
ρ

j
i

)2 λ∆t

(
ω

j
i+1−2ω j

i +ω
j
i−1

)
(∆φ)2

+a∆t
k
√
µgr cosθ∓ sinθ

2r
V ′e

(
ρ

j
i

) ρ
j
i −ρ

j
i−1

2(∆φ)ρ j
i

+
ρ

j
i+1−2ρ j

i +ρ
j
i−1

6
(
ρ

j
i

)2
(∆φ)2


(40)

ω
j
i ⩾ c j

i2) if , we adopt the backward difference format to the
evolution equation of Eq (16), i.e.,

ω
j+1
i = ω

j
i +
∆t
∆φ

(
ω

j
i − c j

i

) (
ω

j
i −ω

j
i−1

)
+

a∆t
(

k
√
µgr cosθ∓ sinθ

2r
Ve

(
ρ

j
i

)
−ω j

i

)

+
(l+1)(2l+1)

12
(
ρ

j
i

)2 λ∆t

(
ω

j
i+1−2ω j

i +ω
j
i−1

)
(∆φ)2

+a∆t
k
√
µgr cosθ∓ sinθ

2r
V ′e

(
ρ

j
i

) ρ
j
i −ρ

j
i−1

2(∆φ)ρ j
i

+
ρ

j
i+1−2ρ j

i +ρ
j
i−1

6
(
ρ

j
i

)2
(∆φ)2



(41)

c j
i =

l+1

2ρ j
i

λ ρ
j
i ω

j
i

∆t
∆φ

where ,  and  represent the instantaneous density

and  velocity  information  of  position i at  time j,  respectively; 
and  are time and space steps, respectively.

 Shock waves and rarefaction waves
Shock  waves  and  rarefaction  waves  are  not  uncommon  in

the real traffic environment. When vehicles merge from the on-
ramp  into  the  main  road,  the  density  of  the  main  road  will
increase significantly,  where the fluctuation is called the shock
wave. Alternately, if  vehicles leave the main road from the exit
ramp, the density of the main road steepness will  drop, where
the fluctuation is called the rarefaction wave. To verify whether
the new model can simulate common traffic conditions well, as
a start, we apply Riemann initial conditions[63] to the proposed
continuum  model  to  simulate  shock  waves  and  rarefaction
wave  phenomena  in  real  traffic  scenarios.  The  two  Riemann
initial conditions are:
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(i) ρ1
u = 0.04, ρ1

d = 0.18 (42)

(ii) ρ2
u = 0.18, ρ2

d = 0.04 (43)

ρu ρdwhere  and  represent  the  density  information  of  upstream
and  downstream  roads,  respectively,  conditions  (i)  and  (ii)  are
often  used  to  simulate  shock  waves  and  rarefaction  waves,
respectively;  and  the  initial  velocities  corresponding  to  different
conditions are given by:

ρ1,2
u = Ve

(
ρ1,2

u

)
,ρ1,2

d = Ve

(
ρ1,2

d

)
(44)

Similar  to the literature[64],  the following speed-density  rela-
tionship is adopted:

Ve (ρ) = v f

[
1− exp

(
1− exp

(
cm

v f

(
ρm

ρ
−1

)))]
(45)

v f ρm

cm

where  represents  the  free  flow  velocity;  represents  the
maximum  density;  and  represents  the  kinetic  velocity  under
the blocking density. The specific values of default parameters are
listed in Table 3.

As shown in Figs 3 & 4, the proposed continuum model can
replicate shock waves and rarefaction waves for both uphill and
downhill  scenes.  Compared  to  the  uphill  scenario,  the  density
waves  are  smoother  for  the  downhill  scenario.  This  result  is
consistent with the subsequent conclusions.

 Local cluster effect
Next, we will analyze the local cluster effect of the proposed

continuum  model  to  explore  the  evolution  of  initial  distur-
bances.  In  doing  so,  we  adopt  the  boundary  conditions  given
by Herrmann & Kerner[65] to initialize the model density:

ρ (φ,0) = ρ0+∆ρ0

{
cosh−2

[
160
L

(
φ− 5L

16

)]
−

1
4

cosh−2
[
40
L

(
φ− 11L

32

)]} (46)

ρ0

∆ρ0

where L represents the length of the road;  represents the initial
density,  and  is  the initial  disturbance of  density.  To simulate
the  iterative  process  of  density  waves,  we  adopt  the  following
periodic boundary conditions:

ρ (L, t) = ρ (0, t) , v (L, t) = v (0, t) (47)
The  relationship  of  the  average  speed  and  density  can  be

found  in  the  literature[66].  The  values  of  default  parameters
have been specified in Table 4.

Ve (ρ) = v f

(1+ exp
ρ/ρm−0.25

0.06

)−1

−3.72×10−6

 . (48)

Table 3.    Parameter settings corresponding to Case I.

Parameter Value Unit

vf 30 m/s
L 20 km

cm 11 −
ρm 0.2 veh/m

a 0.3 s−1

λ 0.3 −
k 0.1 −
g 9.8 m/s2

r 60 m
l 3 −
∆t 1 s
∆x 100 m

a b

c d

 
ρ(φ, t) ωr

ρ(φ, t) ωr θ =
Fig. 3    Shock waves under the Riemann initial condition (i), where: (a) density ; (b) velocity ; the rarefaction waves under the Riemann
initial condition (ii), where: (c) density ; (d) velocity . (Under downhill scenes) (  = −6).
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ρ0 ρ0

ρ0

ρ0

ρ0

ρ0

Figure 5 describes the spatiotemporal diagram of the density
wave  affected  by  the  initial  disturbance  under  different  initial
densities . When  = 0.042 veh/m, the density waves remain
stable.  When  increases  from  0.042  to  0.051  veh/m,  the
density  fluctuation  appears  as  shown  in Fig.  5b.  When  =
0.065 veh/m, the stop-and-go waves appear in Fig. 5c, and the
characteristics  can be described by the density  waves by solv-
ing the KdV-Burgers equation in the nonlinear stability analysis.
Finally,  when  =  0.079  veh/m,  the  initial  disturbance  dis-
appears  in Fig.  5d and  eventually  the  density  wave  returns  to
the  steady  state.  Typically,  when  exceeds  0.079  veh/m,  the
density fluctuations phenomenon will never appear. Therefore,
the  traffic  flow  is  unstable  once  the  initial  density  belongs  to
the interval [0.042 veh/m, 0.079 veh/m].

θ θ θ

Figure  6 describes  the  spatiotemporal  diagram  of  density
waves affected by the initial  disturbance under different slope
angles .  > 0 and  < 0 correspond to the uphill scenario and

θ θ

θ

θ

downhill  scenario,  respectively.  For  the  downhill  scenario,  the
fluctuation amplitude of the density wave is the smallest when

=  −10.  As  the  absolute  value  of  the  parameter  gradually
decreases, the density fluctuation gradually aggravates. For the
uphill scenario, the effect of parameter  is the opposite. Specif-
ically,  the  fluctuation  amplitude  increases  with  the  increase  of
the parameter . The instantaneous density distribution of road
traffic  flow  as  shown  in Fig.  7 at t =  3,000  s  reinforces  the
conclusion of Fig. 6.

ρ0 θ

To  analyze  the  influence  of  the  radius  of  curvature r in  the
gyroidal  road  on  the  stability  of  traffic  flow,  we  compare  the
evolution of the initial disturbance over time corresponding to
different curvature radius r under a downhill  scenario,  and the
results are shown in Fig. 8. The parameters are set as ,  = −6,
l = 2. As the parameter r increases, the fluctuation amplitude of
the  initial  disturbance  decreases.  This  indicates  that  a  larger
radius  of  curvature r on  gyroidal  roads  will  worsen  traffic  flow
stability. Figure 9 shows the instantaneous density distribution
corresponding to Fig. 8 at t = 3,000 s. The evolution of the initial
disturbance over time in Fig. 9a is gradually diluted, and finally,
the traffic  returns to the equilibrium state without any density
fluctuation amplitude. As the parameter r increases, the density
fluctuation  amplitude  gradually  expands,  of  which  results  are
consistent with that of Fig. 8. Moreover, Figs 10 & 11 show the
evolution  of  initial  disturbance  over  time  corresponding  to
different  curvature  radius r under  an  uphill  scenario.  As  the
curvature r increases,  the fluctuation amplitude and frequency
of  road  density  waves  become  more  severe,  which  is  equiva-
lent to the uphill scenario (Figs 8 & 9).

a b

c d

 
ρ(φ, t) ωr

ρ(φ, t) ωr θ

Fig. 4    Shock waves under the Riemann initial condition (i), where: (a) density ; (b) velocity ; the rarefaction waves under the Riemann
initial condition (ii), where: (c) density ; (d) velocity . (Under uphill scenes) (  = 6).

Table 4.    Parameter settings.

Parameter Value Unit

vf 30 m/s
L 32.2 km
ρm 0.2 veh/m

a 0.34 s−1

λ 0.3 −
k 0.1 −
g 9.8 m/s2

∆t 1 s
∆x 100 m
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a b

c d

 
Fig. 5    Spatiotemporal diagram of density waves affected by the initial  disturbance under different initial  densities ρ0,  where: (a) ρ0 = 0.042
veh/m; (b) ρ0 = 0.051 veh/m; (c) ρ0 = 0.065 veh/m; (d) ρ0 = 0.079 veh/m. (l = 2, θ = 0, r = 75).

a b

c d

 
Fig. 6    Spatiotemporal diagram of density waves affected by the initial disturbance under different slope angles θ, where: (a) θ = −10; (b) θ =
−5; (c) θ = 5; (d) θ = 10. (l = 2, ρ0 = 0.06, r = 75).
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Fig. 7    Instantaneous density distribution of traffic flow corresponding to Fig. 6 at t = 3,000 s.

a b

c d

 

ρ0 θ l
Fig. 8    Spatiotemporal diagram of density waves affected by the initial disturbance corresponding to different curvature radiuses r under the
downhill scenario, where: (a) r = 50; (b) r = 70; (c) r = 90; (d) r = 120. (  = 0.06,  = −6,  = 2).
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Fig. 9    Instantaneous density distribution of road traffic flow corresponding to Fig. 8 at t = 3,000 s.

a b

c d

 

ρ0 θ l
Fig. 10    Spatiotemporal diagram of density waves affected by the initial disturbance corresponding to different curvature radiuses r under the
uphill scenario, where: (a) r = 50; (b) r = 70; (c) r = 90; (d) r = 120. (  = 0.06,  = 6,  = 2).
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Fig. 11    Instantaneous density distribution of road traffic flow corresponding to Fig. 10 at t = 3,000 s.

a b

c d

 

ρ0 θ r
Fig. 12    Spatiotemporal diagram of density waves affected by the initial disturbance corresponding to different values of parameter l under a
downhill scenario, where: (a) l = 0; (b) l = 1; (c) l = 2; (d) l = 3. (  = 0.06,  = −8,  = 75).
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Fig. 13    Instantaneous density distribution of traffic flow corresponding to Fig. 12 at t = 3,000 s.

a b

c d

 

ρ0 θ r
Fig. 14    Spatiotemporal diagram of density waves affected by the initial disturbance corresponding to different values of parameter l under
the uphill scenario, where: (a) l = 0; (b) l = 1; (c) l = 2; (d) l = 3. (  = 0.06,  = 8,  = 75).
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Figures  12−15 describe  the  spatiotemporal  diagram  of
density  waves  affected  by  the  initial  disturbance  under  differ-
ent values of the parameter l, where Figs 12 & 13 and Figs 14 &
15 correspond  to  the  downhill  and  uphill  scenarios,  respec-
tively.  When l = 0, the model does not have new items. As the
parameter l increases, the density wave is gradually smoothed,
which implies that the new items are beneficial to improve the
robustness of traffic flow when l > 0. Specifically, the larger the
parameter l, the more conducive to suppressing traffic conges-
tion,  which  verifies  the  benefits  of  a  connected  vehicle
environment.

 Concluding remarks

To  pave  the  way  for  effectively  controlling  the  system  in  a
future  connected  vehicle  environment,  we  propose  a  new
continuous  model  taking  into  account  the  effect  of  the  aver-
age  velocity  of  multiple  vehicles  ahead  on  gyroidal  roads.  In
linear and nonlinear stability analysis, the neutral stability curve
and  KdV-Burger  equation  corresponding  to  the  model  are
obtained via the perturbation method. Solving the above KdV-
Burger  equation  yields  the  density  wave  solution  that  can
depict  the  propagation  and  evolution  characteristics  of  traffic
jams near the critical point. Finally, we carried out some nume-
rical  simulations  to  verify  the  theoretical  analysis  conclusions.
Key findings and their implications are summarized as follows:

(I)  The  proposed  model  can  well  reproduce  the  shock  wave
and rarefaction wave under the Riemann initial conditions;

(II) The local cluster effect of the proposed continuum model

l
r θ

l

r θ

is  analyzed  to  explore  the  evolution  of  initial  disturbances.
Results  show  that  the  number  of  vehicles  ahead  considered ,
radius of curvature , slope angle  will directly affect the stabi-
lity  of  traffic  flow.  Specifically,  a  higher  value  of  parameter 
contributes to suppressing the disturbance, which also explains
the  benefit  of  connected  vehicles.  As  the  parameter  or 
increases, traffic jams are more likely to take place.

In future research, more realistic factors can be embedded in
the  model  framework,  such  as  lane-changing,  vehicle  over-
taking  behavior,  and  heterogeneous  vehicles.  In  addition,  the
simulation  environment  of  this  research  is  period  bounded,
that is,  the merge of external  vehicles and the leaving of vehi-
cles  in  the platoon are not  considered.  Therefore,  another  line
of  future  research  may  concern  the  open-ended  simulation
environment.
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