
 

Open Access https://doi.org/10.48130/DTS-2023-0014

Digital Transportation and Safety 2023, 2(3):176−189

Taxi origin and destination demand prediction based on deep
learning: a review
Dan Peng, Mingxia Huang* and Zhibo Xing
Department of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
* Corresponding author, E-mail: mingxia@sjzu.edu.cn

Abstract
Taxi  demand prediction is  a  crucial  component  of  intelligent  transportation system research.  Compared to  region-based demand prediction,

origin-destination (OD) demand prediction has a wide range of potential applications, including real-time matching, idle vehicle allocation, ride-

sharing services, and dynamic pricing, among others. However, because OD demand involves complex spatiotemporal dependence, research in

this area has been limited thus far. In this paper, we first review existing research from four perspectives: topology construction, temporal and

spatial feature processing, and other relevant factors. We then elaborate on the advantages and limitations of OD prediction methods based on

deep  learning  architecture  theory.  Next,  we  discuss  ongoing  challenges  in  OD  prediction,  such  as  dynamics,  spatiotemporal  dependence,

semantic differentiation, time window selection, and data sparsity problems, and summarize and compare potential solutions to each challenge.

These findings offer valuable insights for model selection in OD demand prediction. Finally, we provide public datasets and open-source code,

along with suggestions for future research directions.
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 Introduction

As urban populations grow and motorization rates increase,
the  daily  transportation  needs  of  city  residents  have  become
more  significant.  However,  the  widespread  use  of  private  cars
exacerbates  traffic  congestion,  and  large-scale  public  trans-
portation systems are often limited in their ability to meet indi-
vidualized travel needs due to issues such as coverage, operat-
ing  hours,  and  route  limitations.  As  a  result,  demand-respon-
sive  public  transportation  services  such  as  taxis  and  ride-
hailing  have  emerged  as  preferred  modes  of  travel  for  city
dwellers  due  to  their  high  accessibility,  all-day  operation,  and
comfortable, quick services.

Since the issuance of the National Informatization Plan's '13th

Five-Year  Plan'  by  the  State  Council  in  2016,  intelligent  trans-
portation  construction  has  become  a  significant  focus  in
China's  smart  city  development.  Shared  travel,  with  taxis  and
ride-hailing  services  playing  a  crucial  role,  has  emerged  as  an
important  direction  for  this  effort.  Governments  at  provincial
and  municipal  levels  have  released  relevant  planning  docu-
ments to guide and support the development of various oper-
ating  models,  including  new  energy,  ride-hailing,  and  cruise
taxis,  among  others,  with  a  focus  on  deep  integration  and
intelligent services.

In  recent  years,  problems  associated  with  taxi  services  such
as difficulties in accessing a taxi, long wait times, traffic conges-
tion,  and  wastage  of  resources  have  become  increasingly
prominent.  Accurate  prediction  of  taxi  demand  can  aid  in  re-
balancing  the  spatial  and  temporal  distribution  of  vehicle
resources  and alleviate  the spatial  and temporal  discrepancies
between the supply and demand of taxis.

The issues of taxi demand prediction include both node and
edge forecasts. Node forecasts aim to predict the total number
of trips for each region, while edge forecasts focus on predict-
ing travel demand relationships between two regions

Currently,  most  research on taxi  demand prediction focuses
on  forecasting  the  total  passenger  demand  in  a  particular
target area for a specific time frame. Deep learning techniques
such as Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and Graph Convolutional Networks (GCN), and
their  variations  have  been  widely  employed  to  extract  tem-
poral  and spatial  features for  accurate predictions.  In addition,
several  studies  explore  the  incorporation  of  external  factors,
such as  weather  and points  of  interest  (POI)  in  urban areas,  to
enhance  prediction  accuracy.  Furthermore,  researchers  have
utilized  attention  mechanisms,  multi-task  learning,  residual
networks,  and  other  methods  to  further  improve  forecast
accuracy.

Accurately  predicting  origin-destination  demand  is  crucial
for  taxi  platforms  to  make  optimal  real-time  decisions  regard-
ing  vehicle  matching,  idle  vehicle  reallocation,  ride-sharing
services,  dynamic  pricing,  and  other  operational  strategies.
Origin-destination  prediction  involves  forecasting  the  travel
demand or origin-destination patterns of a particular region for
a  given  period.  OD  demand  prediction  is  more  complex  than
regional-level  demand  forecasting  due  to  its  intricate  spatial
and temporal  dependencies.  However,  given the current need
to  serve  as  many  passengers  as  possible  with  limited  taxi
resources, OD demand prediction has a wide range of practical
applications. Despite this, the existing research on OD demand
prediction  is  limited.  To  address  this  gap,  this  paper  aims  to
make the following contributions:
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This  paper  provides  a  systematic  summary  of  existing
research  on  taxi  OD  demand  prediction,  including  methods
used, challenges faced, and future research directions. The find-
ings presented in this  paper are intended to assist  researchers
in identifying areas for further investigation, as well as expand-
ing  existing  research.  Moreover,  the  practical  applications  of
this  research,  which  employs  deep  learning  methods  to
enhance  OD  demand  prediction,  make  this  study  highly  rele-
vant and timely. In conclusion, this paper aims to promote the
application and development of OD demand prediction based
on deep learning methods.

This  paper  provides  a  comprehensive  review of  the existing
research on OD demand prediction that  utilizes  deep learning
methods  to  process  temporal  and  spatial  features.  The  review
delves into not only the theoretical aspects but also the advan-
tages  and  limitations  of  these  methods,  aiming  to  inspire
subsequent researchers to develop more novel models.

Furthermore,  this  paper  discusses  some  of  the  key  chal-
lenges  that  are  faced by most  OD demand prediction models.
For  each challenge,  several  existing  solutions  are  summarized
and compared, providing useful insights for selecting appropri-
ate  models  in  different  contexts.  Finally,  based  on  the  review
and  analysis  conducted,  this  paper  proposes  future  research
directions for OD demand prediction.

This paper aims to facilitate baseline experiments in the field
of transportation by collecting open-source datasets and codes
from relevant literature. Additionally, this study proposes future
research directions in the field.

 Mathematical statistical methods

Statistical  prediction  methods  are  based  on  historical  data
and  time  series  and  belong  to  parameter  methods.  The
commonly  used  models  include  the  history  average  model,
Auto-regressive  Moving  Average  (ARMA)  model,  moving  aver-
age  (MA)  model,  auto-regressive  integrated  moving  average
(ARIMA) model, and Kalman filtering model.

Tebaldi & West[1] used a Bayesian model to analyze the flow
intensity  between  directed  origin-destination  (OD)  pairs.
Carvalho[2] used  a  hierarchical  Bayesian  statistical  model  to
address  the  problem  of  reconstructing  static  OD  matrices.
Spiess[3] estimated  the  mean  using  a  maximum  likelihood
model  to  estimate  the  OD  matrix.  Chang  &  Tao[4] proposed  a
two-stage  method  for  parallel  computation  that  decomposed
multiple  subnets  in  the  first  stage  and  designed  updated
parameters for dynamic OD estimation in large-scale networks.
They further developed a dynamic traffic assignment model for
estimating time-varying network OD distributions. Chen et al.[5]

divided  the  uncertainty  of  estimating  the  OD  matrix  into  two
types: statistical uncertainty and the existence of multiple feasi-
ble  OD  demands  on  the  same  link.  This  was  done  to  improve
the prediction accuracy by determining the confidence interval.
Hazelton[6] proposed  a  Gaussian  model  based  on  the  lower-
level  over-dispersed  process  and  developed  a  Markov  chain
Monte Carlo algorithm for OD matrix prediction. Djukic et al.[7]

applied  PCA  to  transform  high-dimensional  OD  matrices  into
low-dimensional  space  and  estimated  real-time  OD  demand.
Shao  et  al.[8] proposed  a  heuristic  iterative  estimation  alloca-
tion algorithm to  optimize  the  path  selection behavior  for  OD
demand changes based on weighted least squares predictions
of  the  mean  and  covariance  matrix  of  OD  demand.  Lu  et  al.[9]

proposed  a  dual-fluid  curve  analysis  method  and  iterative
matrix  for  dynamic  OD  route  guidance.  They  calculated  the
dwell  time  based  on  iterative  matrix  calculations  and  con-
ducted dynamic OD route guidance. Zhu & Guo[10] proposed a
LOESS method for urban event detection based on time series
decomposition and anomaly detection at specific locations for
OD  big  data  urban  event  prediction.  In  the  same  year,  Ren  &
Xie[11] proposed a four-order tensor modeling method consist-
ing of origin, destination, vehicle type, and time. By decompos-
ing the tensor and extracting time factor matrices,  it  was used
to  predict  future  OD  flow.  However,  the  issue  of  data  loss  in
high-dimensional  data  analysis  remains  unsolved.  Li  et  al.[12]

proposed  the  NMF-AR  method  for  OD  matrix  prediction
through  non-negative  matrix  decomposition  (NMF)  and  auto-
regressive (AR) modeling.

Although the statistical prediction methods based on mathe-
matical  statistics  have made some progress  by only  extracting
time-related  features,  their  dimensionality  is  too  simple.  Taxi
data  is  a  typical  spatiotemporal  data  set,  and  this  method
cannot extract spatial impacts, thus resulting in limited effect.

 Traditional machine learning methods
Machine learning-based predictive  methods  belong to  non-

parametric  methods,  which  are  data-driven  methods  that  can
capture feature relationships in complex data. Commonly used
methods  include  regression  analysis  represented  by  linear
regression,  Support  Vector  Machine  (SVM),  decision  tree  algo-
rithm, Random Forest (RF),  artificial  neural network (ANN),  and
so on.

Support  Vector  Machine  (SVM)  is  a  non-linear  regression
method  based  on  the  minimization  of  risk  structure  criteria.
When  samples  are  linearly  inseparable  in  the  original  space,
SVM can use kernel functions to map samples from the original
space to a high-dimensional space, making the samples linearly
separable in the high-dimensional space. SVM can extract deci-
sive features from small samples and is less prone to overfitting
than  other  machine  learning  algorithms.  However,  when  the
sample  size  or  number  of  dimensions  is  large,  the  model  may
run slowly and take longer.

Random Forest (RF) is composed of decision trees, which are
common  classification  and  regression  algorithms.  Decision
trees  consist  of  nodes  and  directed  edges.  At  each  internal
node  of  each  tree,  the  optimal  feature  for  splitting  is  chosen
according  to  a  certain  criterion,  and  the  dataset  is  recursively
divided  into  subsets.  To  avoid  overly  complex  decision  trees,
pruning  operations  are  performed.  Random  Forest  uses  two
forms  of  randomness,  sample  Bagging  and  feature  random
subspaces, to learn from multiple decision trees and combines
their  results  to  make predictions for  regression problems such
as  taxi  demand  prediction  by  taking  the  average  of  the  deci-
sion tree results.  Random Forest does not require pruning and
is  less  likely  to  overfit,  with  good  computational  efficiency,
robustness, and noise resistance.

Li  et  al.[13] used  the  Quantum  Particle  Swarm  Optimization
(QPSO)  algorithm  to  optimize  the  Radial  Basis  Function  (RBF)
neural network and established the QPSO_RBF neural network
model to predict the demand for ride-hailing services in urban
mixed  areas,  using  passenger  boarding  demand,  weather
conditions, and road congestion ratio as input feature variables.
Lu & Li[14] compared historical averages, the ARIMA model, the
KNN  method,  and  the  ANN  model  using  Singapore  taxi  GPS
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data and verified the superiority of ANN in long-term forecast-
ing. Hong[15] used a Support Vector Regression (SVR) model to
predict  future  traffic  flow  and  employed  the  Chaos  Simulated
Annealing  (CSA)  algorithm  and  seasonal  index  calculation
method  to  measure  the  impact  of  periodic  changes  on  future
traffic flow. Tong et al.[16] proposed the Lin-UOTD model, which
aims  to  quickly  adapt  to  changing  application  scenarios  by
using  a  simple  machine  learning  model  to  predict  future  taxi
demand.

The  selection  of  features  in  machine  learning-based  predic-
tive  methods  directly  affects  the  accuracy  of  the  prediction
model.  Compared  with  methods  based  on  time  series  predic-
tion,  machine  learning-based  methods  have  certain  improve-
ments  in  accuracy  and  generalization  ability.  However,  they
have  defects  in  processing  high-dimensional  data  and  cannot
effectively  solve  the  nonlinear  correlation  of  complex  multidi-
mensional data.

 The background of deep learning

Benefiting from the substantial usage of deep learning in the
field  of  traffic  prediction,  taxi  demand  prediction  has  pro-
gressed  from  traditional  time-series  and  machine  learning
models  to  utilizing  deep  learning  frameworks  such  as  CNN,
RNN,  GCN,  and  their  variants  to  extract  features  from  both
temporal  and  spatial  dimensions.  Some  studies  have  incorpo-
rated  external  data,  such  as  weather  and  POI  data  in  urban
centers,  to  increase  prediction  accuracy.  Additionally,  some
studies  have  applied  attention  mechanisms,  multi-task  learn-
ing,  residual  networks,  and  other  methods  to  improve  predic-
tion accuracy.

To  develop  either  node-level  regional  taxi  demand  predic-
tion  or  origin-destination-based  forecasting,  historical  order
data  with  both  temporal  and  spatial  information  need  to  be
preprocessed.  After  considering  the  spatiotemporal  characte-
ristics  and  external  factors,  modeling  and  prediction  can  be
conducted  based  on  both  temporal  and  spatial  dimensions.
Based on this analysis, we will elaborate on related work in four
areas: spatial topology construction, spatial-dependent model-
ing, time-dependent modeling, and other factors.

 Spatial topology construction
Various  deep  learning  methods  require  different  spatial

topology  construction  and  data  mining  tasks.  For  instance,
traditional prediction methods based on statistical learning do
not  require  spatial  topology  construction,  while  CNNs  are
designed  to  process  raster  data,  and  GCNs  are  usually  utilized
for processing graph data.

 Raster
Convolutional  neural  network-based  prediction  typically

involves  using  the  raster  method,  in  which  the  research  area
map is partitioned into grids of H × W and other sizes. To obtain
the  grid-to-grid  OD  matrix,  the  taxi  flows  within  each  divided
grid are aggregated. However, transportation networks possess
both  spatiotemporal  attributes  and  non-Euclidean  structural
characteristics,  rendering  the  grid-based  topology  construc-
tion  method  inadequate  for  handling  the  non-Euclidean  rela-
tionship of traffic data. In addition, the effectiveness of predic-
tion  is  contingent  on  the  rationality  of  the  grid  division.  If  the
raster is too small, the same functional area may be split, result-
ing  in  a  higher  data  volume  that  increases  the  difficulty  of

prediction.  Conversely,  larger  rasters  make  it  challenging  to
extract demand features and reduce prediction accuracy.

 Graph
The graph convolutional neural network is utilized for predic-

tion,  wherein  travel  demand  data  is  transformed  into  images,
i.e.,  non-Euclidean  spatial  data,  to  extract  intricate  spatial
dependencies.  Two  graph  construction  methods  exist:  static
and dynamic graphs. The first step is to construct a graph with
the  OD  pairs  serving  as  the  nodes,  and  the  features  of  the
nodes and edges are included in the predictive network model.
 Static graph

Static  graph  means  that  the  modeling  and  representation
learning  of  the  graph  by  the  model  assumes  that  the  graph
structure  is  constant,  and  the  construction  method  can  be  a
distance  measure  and  a  Gaussian  kernel  function  threshold  to
calculate  the  similarity  between  pairs  of  nodes  to  obtain  an
adjacency matrix, or directly use connectivity as different nodes
to  derive  a  binary  adjacency  matrix,  in  addition,  some  studies
considering  whether  to  add  external  features  will  also  choose
to  build  external  information  maps  such  as  distance  maps,
traffic connectivity maps, semantic function maps, weather.
 Dynamic graph

A dynamic  graph can be categorized into  two types:  one in
which  nodes  and  edges  continually  change  over  time,  and
another where node and edge properties vary over time. Tradi-
tional  graph  representation  learning  frameworks  generate
static  representations and overlook the dynamic nature of  the
content.  As  taxi  demand  exhibits  a  temporal-spatial  dynamic
dependency,  it  is  essential  to  fully  consider  dynamic  graph
properties.  The  construction  methods  are  classified  into  two
categories:  discrete-time  dynamic  graphs  (DTDG)  and  conti-
nuous time dynamic graphs (CTDG)[17,18].

(1) DTDG
The  DTDG  method  defines  a  length, τ,  and  updates  the

embedding  at  each τ time  unit.  It  constructs  a  dynamic  adja-
cency  matrix  or  a  sequence  of  multiple  graphs.  Each  graph
represents  a  snapshot  at  one  time  step,  which  can  be  under-
stood  as  a  series  of  'snapshots'  of  the  changing  graph.  How-
ever, the DTDG method relies heavily on how to divide the time
granularity.  A  coarse  time  granularity  renders  it  difficult  to
perceive useful information such as trends, whereas a fine time
granularity  leads  to  excessive  noise.  Concerning  OD  demand
prediction, the OD stream serves as a directed dynamic connec-
tion  graph.  Therefore,  the  DTDG  method  results  in  a  loss  of
information  due  to  the  discrete  segmentation  of  OD  stream
information.

(2) CTDG
The  continuous  time  dynamic  graph  (CTDG)  updates  the

node  representation  based  on  event  data.  The  event  typically
includes the type of event, the location, and time of the event.
Events  such  as  crime,  traffic  accidents,  and  OD  demand  are
updated  by  embedding  this  way.  For  instance,  an  OD  request
can be described using a tuple (e, l, t), where e denotes the type
of  OD  request,  l  represents  the  location,  and  t  represents  the
timestamp.  As  the  events  appear  sequentially  rather  than  as
snapshots, this method is more natural and practical for updat-
ing embeddings, such as DyRep[19] and JODIE[20].  However, the
CTDG method can only capture the time dependence of  finite
time  steps.  Concerning  OD  demand  prediction,  due  to  the
spatiotemporal  demand  imbalance,  many  OD  pairs  have  no

 
Review on taxi origin and destination prediction

Page 178 of 189   Peng et al. Digital Transportation and Safety 2023, 2(3):176−189



demand at a specific time. This results in a large number of zero
values in some regions during certain periods, i.e., data sparsity.

 Spatial dependency
Deep  learning  algorithms  process  spatial  features  through

two  main  categories  of  convolutional  neural  networks  (CNNs)
and  graph  convolutional  networks  (GCNs).  Transportation
networks  have  both  spatiotemporal  attributes  and  belong  to
non-Euclidean  structure  networks.  Traditional  CNNs  can  only
process  Euclidean  spatial  data,  whereas  GCNs  can  process
travel  demand  data  into  images  and  perform  complex  spatial
dependence  mining  on  non-Euclidean  spatial  data.  Currently,
most  research  is  based  on  improving  the  performance  of  the
model  and  enhancing  the  prediction  level  by  changing  its
internal  structure  and  adding  external  factors.  This  work
focuses on the fundamental implementation principles of CNNs
and GCNs, as well as their respective advantages and disadvan-
tages.

 Convolutional neural networks
Convolutional  Neural  Networks  (CNNs)  are  deep  feedfor-

ward neural networks based on convolution operations (Fig. 1).
They  take  in  two-dimensional  matrices  and  extract  local
features from the convolutional kernels and matrices processed
at  the  convolutional  layer.  The  advantages  of  CNNs  include
feature  selection,  weight  sharing,  and  pooling  mechanisms.
Firstly,  the  convolutional  layer  and  pooling  layer  of  CNNs  can
automatically extract spatiotemporal features of transportation net-
works,  avoiding  the  difficulty  of  manually  selecting  features.
Secondly, CNNs reduce the number of parameters that need to
be  trained  through  weight  sharing,  thereby  reducing  model
complexity, the risk of overfitting, and improving model gener-
alization  ability.  Finally,  the  pooling  mechanism  of  CNNs
reduces  the  number  of  neurons  and  improves  the  model's
robustness to the invariance of input space translation, making

it  suitable  for  large  transportation  networks  and  taxi  demand
prediction research[21−32].

 Graph convolutional neural networks
Although  methods  based  on  convolutional  neural  networks

(CNN) can capture spatial  correlations,  they are best  suited for
processing spatial relationships in Euclidean space represented
by two-dimensional matrices or raster images (Fig. 2). They lack
the  ability  to  handle  data  mining  of  non-Euclidean  structures.
In  contrast,  the  graph  neural  network  (GNN)  contains  a  state
variable  that  can  represent  any  deep  neighborhood  infor-
mation  and  captures  the  correlation  of  the  graph  structure
through messaging between nodes.  Therefore,  GNN can meet
the demand for taxi OD forecast on non-Euclidean space. Since
its  proposal  in  2005,  GNN  has  gradually  been  applied  to  taxi
demand prediction models. GNN is divided into Spatial Convo-
lution and Spectral  Convolution based on different implemen-
tation  methods.  Spatial  Convolution  realizes  the  convolution
operation through Graph Fourier Transform, and the processed
graph  structure  must  be  an  undirected  graph.  On  the  other
hand,  Spectral  Convolution  defines  convolution  as  the  aggre-
gation  of  neighbor  node  features,  which  is  more  suitable  for
traffic road networks[33−44].

 Temporal dependency
Among the deep learning methods,  there are three primary

techniques  for  capturing  time  dependence:  RNN  and  its  va-
riants,  Transformer,  and  TCN.  The  cyclic  operation  of  RNNs
enhances model structure flexibility but at the cost of increased
time  and  memory  consumption.  The  introduction  of  GRU  and
LSTM  has  further  improved  the  modeling  ability  of  RNNs  to
depend  on  long-range  sequences  and  avoid  gradient  disap-
pearance.  Transformer  and  its  variations  address  the  problem
of  long  dependency  by  retaining  the  RNN's  core  functionality
and  adding  an  attention  mechanism.  However,  this  method
can  lead  to  quadratic  computational  complexity  in  long  se-
quences.  TCN  utilizes  parallelized  causal  and  extended  convo-
lution  to  extract  historical  data  features  at  distant  moments
while retaining long-term effective memory. Nevertheless, due
to the small receptive field of TCN, it is not highly adaptable for
transfer learning and is unsuitable for two-way learning.

 Recurrent neural network
A recurrent neural network (RNN) is a neural network with a

memory  function  capable  of  processing  sequence  data  and
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Fig. 2    Structure of graph convolutional neural network.
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capturing  relationships  between  sequences.  During  RNN's
sequence data processing, the current time step input includes
the  input  state  at  the  current  moment  and  the  previous
moment's  output  to  extract  temporal  features.  However,
when  training  the  RNN  network  using  backpropagation,  it  is
vulnerable  to  the  problems  of  gradient  explosion  and  vanish-
ing  gradients.  These  issues  become  more  noticeable  with  an
increase in the number of cycles[45−51] (Fig. 3).

The Long Short-Time Model (LSTM) improves upon the RNN
model  by  introducing  a  gating  mechanism  that  adds  memory
cell blocks in the hidden layer to resolve the problems of gradi-
ent explosion and vanishing. With its flexibility to adapt to the
timing characteristics of various learning tasks, this method can
capture  deeper  temporal  characteristics.  However,  the  high
structural  complexity  of  LSTM  limits  parallel  computing,
thereby  prolonging  model  training  time.  Furthermore,  tradi-
tional  LSTM  does  not  utilize  spatial  information  encoded  in
input,  which  results  in  inadequate  feature  learning.  Gated
Recurrent  Neural  Network  (GRU)  simplifies  the  gating  unit  of
the hidden layer and reduces computational cost while improv-
ing  network  computing  power.  Additionally,  researchers  have
explored  different  LSTM  architectures  such  as  bidirectional
LSTM  and  convolutional  LSTM  (Conv-LSTM).  Conv-LSTM  is  a
variant  of  LSTM  that  uses  convolution  operations  instead  of
fully  connected  operations  in  input-state  and  state-state  con-
version, resolving the inadequacies of traditional LSTM[52−54].

To simplify the gating unit of the hidden layer while improv-
ing  network  computing  power  and  reducing  time  costs,  the
Gated  Recurrent  Neural  Network  (GRU)  was  developed  based
on LSTM. In addition, researchers have explored different archi-
tectures  based  on  LSTM,  such  as  bidirectional  LSTM  and  con-
volutional  LSTM  (Conv-LSTM).  Conv-LSTM  is  a  variant  of  LSTM
that  uses  convolution  operations  instead  of  fully  connected
operations  in  input-state  and  state-state  conversion,  resolving
the  inadequacies  of  traditional  LSTM  in  utilizing  spatial
information encoded in the input[55,56] (Fig. 4).

 Transformer
The  Transformer  is  the  first  transduction  model  relying

entirely  on  self-attention  to  compute  representations  of  its

input and output without using sequence aligned RNNs (Fig. 5).
By using multi-head attention,  the transformer solves  the pro-
blem of long dependence, and also adopts parallel computing,
residual  connection,  layer  normalization,  position  coding,
multi-head  attention,  and  other  technologies,  so  that  the  mo-
del has strong expression ability and computational efficiency,
but  the  problem  of  quadratic  computational  complexity  will
occur in long sequences[57,58].

 Time convolutional networks
Time Convolutional  Network (TCN) employs causal  convolu-

tion  and  Dilated  Convolution  to  permit  parallelization  (Fig.  6).
Causal  convolution is  a  one-way process  that  adheres  to  strict
time  constraints,  with  larger  convolution  kernels  extracting
increased  historical  information.  Dilated  Convolution  intro-
duces  an  input  sequence  expansion  rate  for  controlling  sam-
pling  intervals  and  extracting  features  from  distant  historical
data  for  effective  long-term  memory  retention  and  enhanced
training  outcomes.  Despite  these  advantages,  TCN's  limited
receptive field results in weak transfer learning adaptability and
unsuitability for bidirectional learning[59,60].

 Other factors

 External characteristics
Taxi demand is a time-evolving process influenced by exter-

nal  factors  to  a  certain  degree.  Numerous  studies  have  incor-
porated  external  factors  such  as  weather[61,62] and  points  of
interest  (POI)[63,64] in  data  collection  and  preprocessing  to  aid
prediction.

 Model helper methods
Besides  explicit  external  features,  certain  studies  improve

model performance by incorporating additional modules, such
as  the  attention  mechanism,  multi-task  learning,  and  ResNet
network.
 Attention mechanism

The  attention  mechanism  was  initially  proposed  in  the
seq2seq task to extract crucial information by filtering accepted
data  and  appropriately  allocating  limited  resources  (Fig.  7).
However,  excessive  application  of  the  attention  mechanism
leads to increased computation time and memory demands. It
slows down processing and is impractical for GPU training due
to  parallelization  difficulties  arising  from  the  incorporation  of
the attention mechanism[65,66].
 ResNet network

Traditional  convolutional  neural  network  (CNN)  structures
face  the  issue  of  gradient  disappearance  and  explosion  when
the  depth  of  the  network  is  increased.  The  ResNet  network
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Fig. 3    Structure of recurrent neural network.
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avoids this problem by normalized initialization and intermedi-
ate  normalization  layers,  to  an  extent  that  solves  the  deep
network  degradation  problem.  Not  only  does  the  ResNet
network maintain the depth of the network, but it also prevents
the degradation issue (Fig. 8). However, stacking ResNet blocks
results in the problem of gradient disappearance or explosion,
which affects model training speed and effectiveness[67,68].
 Multi-task learning

Multi-task  learning is  a  joint  learning method that  identifies
and  appropriately  measures  relationships  among  tasks.  This
enables  different  tasks  to  provide  each  other  with  additional
useful information for training models that perform better and
are  more  robust.  Multi-task  learning  relies  on  the  common
parameter  among  various  tasks  and  the  discovery  of  hidden
common  latent  features  between  different  tasks  (Fig.  9).
Conflicts  or  competition  among  different  tasks  may  occur,
resulting  in  reduced  performance.  Therefore,  weighing  task
importance and considering the optimization goals of different
tasks is necessary[69,70].
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 Challenges

 Challenge 1: Representation of dynamic correlations in
OD flow

The  paired  attraction  relationship  between  two  regions  is
subject  to  dynamic  changes  over  time,  typically  exhibiting
stronger  intensity  during  peak  periods  and  weaker  intensity
during  non-peak  periods.  Static  graphs  cannot  represent  the
dynamic trend of OD flow. Therefore, capturing these relation-
ships dynamically is crucial for node representation (Table 1).

In  early  taxi  OD  demand  prediction  studies,  most  research
was  based  on  static  networks.  Liu  et  al.[72] constructed  local
spatial  context  (LSC)  and  global  correlation  context  (GCC)
modules  based  on  Euclidean  spatial  grid  data.  The  former
learned the local spatial dependence of order demand from the
starting  point  and  destination  perspectives,  while  the  latter
modeled  the  correlation  between  different  regions.  Wang  et
al.[75] used  grid  embedding  based  on  grid  data  to  construct
geographic  and  semantic  neighbors  to  model  passenger
spatial  flow  patterns  and  adjacent  relationships  of  different
regions.  The  former  measured  the  intrinsic  closeness  between
grids and their neighbors, while the latter modeled the seman-
tic intensity of traffic flow between starting points and destina-
tions  in  the  grid  network.  Chen  et  al.[79] constructed  the  OD
demands  between  each  region  in  a  single  period  based  on
regional  grids.  Then,  they  reduced  the  three-dimensional

tensor  to  a  two-dimensional  matrix  through  matrix  cascading,
considering  the  spatiotemporal  properties  in  chronological
order.  Ke  et  al.[80] encoded  the  context-aware  spatial  depen-
dence of OD pairs by designing a residual multi-graph convolu-
tional (RMGC) network through multiple OD graphs. Each node
in  the  graph  corresponded  to  an  OD  pair,  and  the  adjacent
matrix of the node was established to represent the neighbor-
hood,  distance,  functional  similarity,  and  historical  demand
correlation of OD pairs. The above studies represent the depen-
dency  relationship  between  regions  based  on  static  networks,
ignoring  the  dynamic  dependency  relationships  that  may
change over time.

Shi  et  al.[78] constructed  both  static  and  dynamic  graphs
simultaneously  to  capture  complex  dynamic  spatial  depen-
dency  relationships  and  used  the  average  strategy  to  obtain
the final  OD flow prediction.  Zhang et  al.[81] proposed a  dyna-
mic node topology representation method to jointly represent
the  static  and  dynamic  structural  information  of  OD  graphs.
They  introduced  the  k-TNEAT  layer  to  adaptively  adjust  the
relationship between each OD pair at different time intervals to
learn  the  representation  of  nodes  and  edges,  thus  capturing
the  dynamic  demand  patterns  of  the  time-varying  OD  graph.
This  method  applies  to  both  Euclidean  and  non-Euclidean
datasets.  Han et  al.[83] constructed a  continuous  time dynamic
graph  representation  learning  framework  based  on  event
updates,  maintaining  a  dynamic  state  vector  for  each  trans-
portation  node  and  representing  multi-level  spatiotemporal
dependency  relationships  by  sharing  information  among
virtual  cluster-level  and  regional-level  nodes.  Zhang  et  al.[84]

constructed dynamic graphs by treating the starting point and
endpoint  as  two  different  semantic  entities  based  on  time
updates,  proposing  an  embedding  module  for  the  departure-
destination  pair  and  aggregating  neighbor  information
through random walks. The above studies advance from predic-
ting  the  starting  point  and  destination  on  a  static  network  to
capturing  spatiotemporal  dynamic  correlations  by  construct-
ing dynamic graphs. Huang et al.[91] developed a TMGCN layer
to  capture  spatiotemporal  correlations  in  dynamic  OD  graphs,
which  includes  a  static  neighborhood  relationship  graph,
Origin-Destination  mutual  attraction  dynamic  graph,  and
passengers’  mobility  association  mode  dynamic  graph.  This
layer can learn relationships across different time intervals in all
types of OD graphs.

 Challenge 2: Spatial-temporal correlation
Spatial-temporal  data  possess  both  correlation  and  hetero-

geneity.  Spatial-temporal  correlation  is  manifested  in  the  fact
that  each node can influence adjacent  nodes  at  the next  time
step. Spatial-temporal heterogeneity is manifested in the differ-
ent distributions of OD flow under conditions such as morning
peak, evening peak, city center, and city edge. Currently, using
two  independent  components  to  capture  the  temporal  and
spatial  dependencies  in  a  chained  prediction  often  fails  to
capture  the  impact  of  spatial-temporal  correlation  and
heterogeneity.

Zhang et al.[84] and Han et al.[83] applied node embedding on
dynamic graphs, extending time into the spatial domain as the
second dimension, which can simultaneously capture the struc-
tural  relationship  between  nodes  and  their  evolutionary  rela-
tionship  over  time.  Huang  et  al.[87] proposed  an  OD  attention
mechanism to capture the unique spatial dependency between
OD pairs with identical origins or destinations.
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 Challenge 3: Differentiation of different semantics of
origin and destination

In  a  complex  and  irregular  transportation  network,  the
passenger demand of different OD pairs can be geographically
and semantically correlated and has both directed and bidirec-
tional correlations.  However,  modeling the demand separately
for  the  origin  and  destination  to  learn  local  features  around
each grid discards the flow relationship between OD pairs and
has no practical application. If only the distance and flow infor-
mation  between  any  two  grids  are  considered  without  distin-
guishing the origin and destination, the directedness of the OD
flow is ignored, and the varying attraction relationship between
the origin and destination at different times is neglected.

Liu et al.[72] constructed an LSC module that used two convo-
lutional  neural  networks to learn local  spatial  contextual  infor-
mation  of  taxi  demand  from  origin  and  destination  views.
However,  this  model  does  not  take  into  account  the  flow
relationship  between  the  two  regions  or  different  semantic
information.  Wang  et  al.[75] considered  the  combination  of
different origin-destination pairs and the number of passenger
demands  for  each  origin  to  predict  the  number  of  taxi  orders
from  one  area  to  another  in  a  given  time  period,  but  only
considered  the  flow  relationship  between  two  regions  and
ignored  directedness  and  the  distinction  between  different
semantics and bi-directionality. Shi et al.[78] constructed a multi-
perspective  graph  convolutional  network  and  proposed  bidi-
rectional correlations for OD flows when the start points are the

Table 1.    Summary of deep learning models in taxi origin-destination prediction.

Model Spatial topology
construction Spatial dependency Temporal

dependency Data set Other factors

CSTN[71] Raster 3DCNN Conv LSTM NYC-TOD Local spatial context,
meteorological
information, globally
relevant context

MultiConvLSTM[72] Raster MultiConv ConvLSTM NYC taxi None
CLTS[73] Raster Conv2D ConvLSTM Beijing Taxi None
GEML[74] Raster (Geographic/

semantic nodes)
SGCN (Grid
embedding)

LSTM NYC-taxi /DiDi
ChengDu

Multi-task learning

FL-GCN[75] Graph Graph convolution
(nodes, edges)

Kalman filtering New Jersey Highway None

CAS-CNN[76] Raster Split CNN URT Channel-wise attention
MPGCN[77] Graph 2D-GCN LSTM DIDI Beijing /DiDi

shanghai
None

GCN-SBULSTM[78] Graph GCN Stacking
bidirectional
unidirectional
LSTMs

SZ Metro None

ST-ED-RMGC[79] Graph Multi-graph
convolutional
networks

LSTM NYC taxi Encoder decoder

DNEAT[80] Dynamic node
topology

GCN (k-TNEAT) k-hop temporal
encoder

DiDi ChengDu/ NYC
taxi

None

Spatial OD-
BiConvLSTM[81]

Raster Conv2D BiLSTM NYC taxi None

CMOD[82] Graph (Event) The graph
represents
learning

CTDG (Continuous-
time evolution
representation)

BJ Subway/NYC-Taxi Multi- Head Attention

HMOD[83] Graph (Event) Graph embedded
/Random walk

GRU/CTDG NYC-Taxi/ Beijing
Metro

None

SIZINB-GNN[84] Graph GNN TCN CDP dataset None
ODformer[86] Graph (Event) 2DGCN ODformer NYC taxi OD attention
SI-GCN[87] Graph (Event) GCN (graph

embedding)
Encoder-decoder DIDI Beijing a mapping function

STGDL[88] Graph (road) S-GCN ResNet-based block
ST-Conv CNN

NYC taxi/DIDI
Haikou

both short-term and long-
term OD predictions

CWGAN-div[89] Graph (road network) GAN ResNet NYC taxi network-wide OD demand
DMGC-GAN[90] Graph (neighbor/

mutual attraction/
passengers' mobility
association mode)

GCN TMGCN NYC taxi None

Hex D-GCN[91] Graph (hexagon-based
path)

GCN CNN Taxi Shanghai None

OD-TGAT[65] Graph (grid map) GAT GRU NYC Taxi None
TFF[92] Graph GCN ST-Attention block Chongqing A modified Kalman filter

(KF)
CSGCN[93] Graph GCN CNN Taxi Beijing Shifted Graph Clustering
gHMC-STA[94] Graph GCN Multi-Head

Convolution
Taxi Beijing Graph multi-head

convolution for spatio-
temporal aggregation

HSTN[95] Raster Separable 2D-CNN ResNet Taxi Shanghai None
CTBGCN[96] Graph 2DGCN Conv-LSTM NYC Taxi None
CT-GCN[97] Graph GCN ST block DIDI Haikou None
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same  or  similar  and  the  endpoints  are  the  same  or  similar.
Zhang  et  al.[81] defined  a  weighted  bidirectional  graph  and
learned  dynamic  demand  patterns  from  both  the  demand
generation and attraction aspects while incorporating dynamic
and  bidirectional  structure  characteristics  of  edges.  Zhang  et
al.[84] proposed an origin-destination embedding module, treat-
ing the origin and destination as different semantic entities and
using  the  parity  of  sampling  to  obtain  semantic  entities  with
different  starting  and  ending  points  to  distinguish  different
semantic  information.  Chen  et  al.[79]proposed  a  BiConvLSTM
method that processes input data in both forward and reverse
directions  through  two  ConvLSTMs,  while  maintaining  hidden
layer states and memory unit states in both directions.

 Challenge 4: Time window selection
Currently, the predominant approach to predicting OD flows

continues  to  be  the  discrete  dynamic  graph  method  for  node
prediction,  which  aggregates  historical  transactions  into
demand  snapshots.  Each  snapshot  contains  demand  within  a
fixed  time  window,  resulting  in  disconnected  OD  flows.  More-
over,  the temporal  aspect of  OD flows is  a  continuous feature,
and  processing  it  under  a  fixed  time  window  is  intuitive  but
lacks  rigor.  The  choice  of  time  granularity  can  lead  to  biased
prediction  accuracy,  with  selecting  too  small  a  granularity
generating  a  large  amount  of  noise,  and  selecting  too  large  a
granularity  causing  decreased  perception  of  important  infor-
mation.  Additionally,  predicting  based  on  a  continuous-time
dynamic graph involves maintaining a dynamic state vector for
each traffic node, potentially resulting in a large number of OD
pairs and posing challenges in updating and maintaining repre-
sentations for the many continuous time nodes.

Earlier  approaches  for  OD  demand  forecasting  aggregated
taxi  OD  demand  into  demand  snapshots,  with  each  snapshot
containing  the  total  demand  within  a  fixed  time  window.
Zhang  et  al.[81] designed  a  spatiotemporal  attention  network
with  a  k-hop  temporal  node-edge  attention  layer  to  capture
time-evolving node topology in dynamic OD graphs and to use
different  time  granularities  to  explore  complex  time  patterns,
yet  still  falls  under  the  category  of  discrete  dynamic  graph
methods.  Zhang  et  al.[84] designed  a  layered  memory  storage
technique  that  integrates  discrete  and  continuous-time  infor-
mation  of  OD  demand,  extending  the  learning  of  traffic  node
representations to a continuous-time dynamic graph view. Han
et al.[83] constructed a framework for learning continuous-time
dynamic  graph  representations,  maintaining  a  dynamic  state
vector for each traffic node to store historical transaction infor-
mation  and  continuously  update  it,  lifting  prediction  from
discrete  time slices  to  continuous-time dynamic  graph predic-
tion.

 Challenge 5: Data sparseness problem solving
Each  OD  pair  has  a  time  sequence  that  requires  more

complex  spatial  dependencies.  Discrete  dynamic  graph-based
prediction methods inevitably suffer from information loss and
produce a large number of zero values. The use of continuous-
time  dynamic  graph-based  prediction  methods  also  encoun-
ters the problem of sparse data for some OD pairs, and exacer-
bates the data sparsity issue through the quadratic quantity of
predicted OD demand.

Wang  et  al.[75] proposed  a  pre-weighted  aggregator  that
combines  the  perception  of  data  sparsity  and  range  at  differ-
ent granularity levels based on grid embedding to mitigate the

↕reg

↕mask

π

impact  of  sparse  data.  Hu  et  al.[86] designed  three  modules,
namely,  factorization,  prediction,  and  restoration,  to  handle
data  sparsity  in  matrix  factorization  and  restoration  steps.
Zhang  et  al.[77] introduced  a  segmentation  CNN  to  transform
sparse  OD  data  into  dense  features  and  verified  the  effective-
ness of a masking loss function for tackling data dimensionality
and sparsity issues. Zhang et al.[81] designed a loss function ,
commonly  used  for  quadratic  regression  loss,  and  a  masking
loss  function  that  prioritizes  harder-to-predict  edges
based  on  the  auxiliary  loss  function  approach  to  combat  the
adverse  effects  of  high  sparsity.  Zhuang  et  al.[85] proposed  a
STZINB-GNN model to quantify the uncertainty of sparse travel
demand using the zero-inflated negative binomial (ZINB) distri-
bution to  capture  an extensive  amount  of  zeros  in  sparse  O-D
matrices  and  the  negative  binomial  (NB)  distribution  for  each
non-zero  entry.  The  model  also  introduced  a  spatiotemporal
embedding  with  an  additional  parameter  to  learn  the  likeli-
hood of  input  zeros.  Han et  al.[83] mitigated sparse  data  issues
by  proposing  a  layered  message  passing  module,  allowing
virtual  cluster-level  nodes  and  region-level  nodes  to  share
information,  and  designing  a  loss  function  that  focuses  more
on non-zero demand.  Yao et  al.[88] applied two gating mecha-
nisms to the vanilla convolution operation to alleviate the error
accumulation issue of typical recurrent forecasting in long-term
OD prediction. Zou et al.[89] proposed using residual blocks and
refined  loss  functions  to  enhance  model  training  stability.
Huang et al.[91] used a GAN structure to address the problem of
zero-valued elements dominating the OD demand matrix. Yang
et  al.[65] used  a  method  based  on  filling  the  lower  triangular
matrix,  only  considering  OD  pairs  with  travel  volumes  greater
than zero, and for the remaining OD pairs, used a method simi-
lar to interpolation. Li et al.[93] Proposed a hybrid framework to
predict  short-term  OD,  in  which  the  two-step  design  predicts
trip  generation/attraction  in  the  first  stage,  and  estimates  trip
distribution in the second stage. This framework not only takes
advantage of robust spatio-temporal predictors but also avoids
under-  or  over-estimations  of  short-term  OD  matrices  due  to
high  sparsity.  These  5  challenges  are  reviewed  and  summa-
rized in Table 2.

 Public datasets and open-source codes

Details shown in Tables 3 and 4.

 Summary and outlook

This review comprehensively examines the departure-arrival
prediction  problem  using  deep  learning  algorithms.  Specifi-
cally,  we  summarize  deep  learning  methods  for  taxi  demand
prediction  from  four  aspects:  topology  construction,  spatial
dependency,  temporal  dependency,  and  other  factors.  In
addition,  based on the decomposition of  the studied architec-
ture,  we  summarize  common  challenges  in  departure-arrival
prediction  such  as  dynamics,  spatiotemporal  dependencies,
semantic  differentiation,  time  window  selection,  and  data
sparsity. Importantly, we provide multiple existing solutions for
each  challenge.  Finally,  we  provide  hyperlinks  to  public  data-
sets  and  codes  of  related  work  to  facilitate  future  research.
We  also  propose  future  directions  for  those  interested  in  this
field.
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 Apply the relevant direction

 Spatiotemporal dynamic correlation
In a dynamic road network, the spatiotemporal dependency

of an individual node is affected by the overall interaction and

randomness  of  the  network.  At  present,  research  mainly
addresses  the  spatiotemporal  dynamics  issue  in  traffic  flow
prediction  by  introducing  attention  mechanisms.  Therefore,
further  investigation  into  the  application  of  attention

Table 2.    Summary of problem solving in taxi origin-destination prediction.

Model Dynamic/Static Directed/Undirected Time window Sparse data Spatial-temporal
correlation

GEML[74] Static Fluid relationship
but undirected

Discrete-time snapshots
with the same time
granularity

Multi-granularity level
mesh embedding/pre-
weighted aggregator

None

MultiConvLSTM[72] Dynamic and Static Undirected Discrete-time snapshots
with the same time
granularity

Self-attention None

CLTS[73] Dynamic Undirected Discrete-time snapshots
with the same time
granularity

None None

CSTN[71] Static Undirected Discrete-time snapshots
with the same time
granularity

None None

CAS-CNN[76] Static Undirected Discrete-time snapshots
with the same time
granularity

Split the CNN/masking loss
function

None

MPGCN[77] Two static
adjacency matrices
and one dynamic
adjacency

Undirected Discrete-time snapshots
with the same time
granularity

None Spatiotemporal
dynamic adjacency
matrix

GCN-SBULSTM[78] Static Undirected Discrete-time snapshots
with the same time
granularity

None None

ST-ED-RMGC[79] Static Undirected Discrete-time snapshots
with the same time
granularity

None Parallel prediction

DNEAT[80] Dynamic and Static Directed Discrete-time snapshots of
different time granularities

↕
↕reg

↕mask

The loss function  jointly
minimizes the  and

 masks

None

Spatial OD-
BiConvLSTM[81]

Dynamic Undirected Discrete-time snapshots
(sliding window)

↕The loss function None

CMOD[82] Dynamic Undirected Continuous dynamic time The loss function focuses
on non-zero demand

Node embedding

HMOD[83] Dynamic and Static Directed and
semantically
differentiated

Continuous dynamic time None Node embedding

SIZINB-GNN[84] Static Undirected Discrete-time snapshots
with the same time
granularity

π

Zero expansion negative
binomial
distribution/probability of
learning input being zero
additive parameter 

None

ODformer[86] Static Directed Long sequence time
window

Transformer Spatial-Temporal
Transformers

SI-GCN[87] Dynamic Directed Continuous dynamic time Negative sampling data imputation,
STGDL[88] Static Directed Discrete-time snapshots

(sliding window)
Two gate mechanisms ST-GDL model

CWGAN-div[89] Dynamic and Static Undirected Discrete-time snapshots
(moving average)

Residual blocks Interpretable
conditional
information

DMGC-GAN[90] Dynamic and Static Directed Discrete-time snapshots
(sliding window)

GAN TMGCN

Hex D-GCN[91] Dynamic Undirected Discrete-time snapshots
(moving average)

Filling the lower triangle
matrix

None

OD-TGAT[65] Static Directed Discrete-time snapshots
(sliding window)

GAT None

TFF[92] Dynamic Directed Discrete-time snapshots
(moving average)

Two-step design performs None

CSGCN[93] Static Directed Discrete-time snapshots
(sliding window)

None None

gHMC-STA[94] Static Directed Discrete-time snapshots
(sliding window)

None None

HSTN[95] Static Directed Discrete-time snapshots
(moving average)

None None

CTBGCN[96] Static Directed Discrete-time snapshots
(sliding window)

None None

CT-GCN[97] Static Directed Discrete-time snapshots
(sliding window)

None None
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mechanisms  in  predicting  taxi  OD  demand  models  that
combine  spatiotemporal  features  could  be  explored  more
deeply.

 External information addition
External factors, such as holidays, weather, points of interest

(POI), large events, and traffic accidents, also have a significant
impact on taxi demand prediction. However, many existing OD
demand  prediction  models  rarely  consider  external  factors,
which are diverse and difficult  to collect,  and suffer from spar-
sity issues. Therefore, how to effectively handle external factors
and  maximize  their  contribution  to  the  prediction  remains  a
challenge in the research community.

 Regional division
So far, both grid-based and graph-based OD demand predic-

tion methods rely on manually selected spatial data, whether it
is  dividing the area into grids or traffic zones.  This approach is
intuitive and convenient but lacks rigor, and it is impossible to
list all potential relationships by human design, which limits the
generalization  ability  of  the  model.  Therefore,  there  is  still  a
need  for  extensive  research  on  how  to  partition  regions  in  a
reasonable  and  non-manual  way  when  facing  a  completely
new area.

 OD data sparseness and data overload
Compared to regional demand prediction, the abundance of

zero  values  and  sparsity  are  still  significant  challenges  in  OD
data prediction. Additionally, continuous-time dynamic predic-
tion also leads to second-order stations,  highlighting the need
for  further  exploration  on  how  to  handle  them  during  model
computation and allow available data to be maximally utilized.

 Technical related issues
Most  existing  approaches  to  prediction  tasks  utilize  recur-

rent neural networks (RNNs) and graph convolutional networks
(GCNs),  with  only  a  few  studies  employing  graph  attention
networks  (GATs)  or  graph  autoencoders  (GAEs).  Therefore,
further  research  is  needed  to  investigate  how  other  advanced

graph  neural  network  models  can  be  applied  to  OD  demand
prediction  problems  and  expanded  upon  to  better  suit  traffic
prediction.
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