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Abstract
Connected vehicle (CV) is regarded as a typical feature of the future road transportation system. One core benefit of promoting CV is to improve

traffic safety, and to achieve that, accurate driving risk assessment under Vehicle-to-Vehicle (V2V) communications is critical. There are two main

differences concluded by comparing driving risk assessment under the CV environment with traditional ones: (1) the CV environment provides

high-resolution and multi-dimensional data, e.g., vehicle trajectory data, (2) Rare existing studies can comprehensively address the heterogeneity

of the vehicle operating environment, e.g., the multiple interacting objects and the time-series variability. Hence, this study proposes a driving

risk  assessment  framework  under  the  CV  environment.  Specifically,  first,  a  set  of  time-series  top  views  was  proposed  to  describe  the  CV

environment data,  expressing the detailed information on the vehicles surrounding the subject vehicle.  Then, a hybrid CNN-LSTM model was

established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the

time-series variability of the driving environment. It is proved that this model can reach an AUC of 0.997, outperforming the existing machine

learning algorithms. This study contributes to the improvement of driving risk assessment under the CV environment.
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 Introduction

Connected vehicle (CV) is regarded as one of the most signifi-
cant features of the future road transportation system. Various
countries  and  regions,  including  the  United  States,  European
Union, Japan, Australia, Korea, etc., are supporting the develop-
ment  of  CV  technologies  through  policies,  rules  and  regula-
tions, and key projects. And Original Equipment Manufacturers
(OEMs),  including  Ford,  General  Motors,  etc.,  are  investing
heavily  in  supporting  CV  technology  research  to  promote  CV
commercialization. The reason that CV has gained great atten-
tion  is  that  it  helps  to  address  critical  traffic  issues,  including
safety,  mobility,  and  environmental  sustainability.  Among
these,  improving  traffic  safety  is  the  highest  priority.  For
instance,  within the pilot  deployment program in the US,  80%
Vehicle-to-Vehicle  (V2V)  and  Vehicle-to-Infrastructure  (V2I)
applications  are  safety-related[1].  The  EU  claims  that  invest-
ments in connected vehicles are focused on V2V and V2I solu-
tions and infrastructure, with a focus on reducing road risk and
crashes[2].  Under  the  CV  environment,  a  combination  of
advanced  devices,  enabling  V2V  and  V2I  communications,
collects  the  data  necessary  to  perform  evaluations  of  safety
applications[3].  These  applications  include  Forward  Collision
Warning (FCW), Emergency Electronic Brake Lights (EEBL), Work
Zone Warnings (WZW), etc. To conduct driving risk assessment
applied  to  CV  environment,  the  corresponding  algorithms
require  better  accuracy  and  robustness  to  cope  with  complex

and  variable  driving  scenarios,  especially  the  spatio-temporal
interactions with neighboring vehicles.

The  current  studies  mainly  provide  driving  risk  assessment
from three approaches: (1) Surrogate Safety Measures (SSMs)[4],
(2)  models  based  on  physical  field  theory[5,6],  and  (3)  machine
learning  methods.  To  be  specific,  firstly,  the  SSMs  including
Time-to-Collision  (TTC),  Deceleration  Rate  to  Avoid  the  Crash
(DRAC),  DeltaV,  etc.,  are  utilized  to  measure  traffic  safety  and
then compared with pre-determined thresholds to identify traf-
fic  conflicts.  However,  the  SSMs  face  the  problems  that  only  a
single  interactive  object  is  considered,  some scenarios  are  not
applicable  (e.g.,  TTC  in  a  high-speed  car-following  scenario),
and  theoretically,  the  validation  of  SSMs  requires  a  large
amount  of  crash  data.  Secondly,  as  for  the  models  based  on
physical  field  theory,  elements  of  the  entire  traffic  system,
including the driver,  vehicle,  and environment,  are  considered
in  a  general  model.  For  example,  based  on  artificial  potential
field  theory,  driver-vehicle-road  interactions  were  utilized  to
calculate  virtual  mass,  as  well  as  the  field  strength  and  field
force,  and  hence  a  driving  safety  field  model  was  proposed[5].
However,  these  models  only  utilized  cross-sectional  data  to
describe  the  situation  at  each  moment  but  ignored  that  the
traffic  data  belong  to  time  series  data,  raising  the  time  series
classification  problem[7].  Thirdly,  the  machine  learning  meth-
ods, including Classification and Regression Tree (CART)[8], deep
learning[9],  Bayesian  Network[10],  etc.,  are  adopted  to  evaluate
and predict driving risks in a more reliable and robust manner.
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And some of these methods can overcome the time series clas-
sification problem, e.g., Recurrent Neural Network (RNN). There-
fore,  this  kind  of  machine  learning  method  can  comprehen-
sively solve the problems in driving risk assessment research.

Besides,  existing  driving  risk  assessment  studies  mainly  em-
ployed  three  kinds  of  data:  (1)  driver  behavior  information[11],
(2)  kinematic  data[12,13],  e.g.,  velocity,  acceleration,  tire  forces,
(3) contextual features of the neighboring environment[10], e.g.,
road  conditions,  dynamic  traffic  flow  information.  These  data
include  influencing  elements  from  all  aspects  of  the  entire
transportation  system.  However,  these  data  cannot  provide  a
timely  and  comprehensive  picture  of  how  the  subject  vehicle
interacts  with other  traffic  participants  (e.g.,  neighboring vehi-
cles),  which  contributes  significantly  to  driving  safety.  Fortu-
nately,  the  CV  environment  data  provide  a  promising  way  to
address this issue. Under the CV environment, detailed informa-
tion  of  each vehicle's  driving environment,  like  the  kinematics
and  spatial  information  of  the  neighboring  vehicles,  is  avail-
able via V2V  communication  technologies[14,15].  However,  the
detailed  information,  which  was  always  not  accessible  and
hence  left  out  in  the  previous  studies,  can  be  high-resolution
and multi-dimensional[16]. To describe the detailed information
in  a  driving  scenario,  constructing  structured  data  (e.g.,  text
independent  variables),  which  is  commonly  used  in  traffic
safety  assessment  analysis[17−19],  can  be  clumsy  and  unattain-
able.  More  specifically,  some  important  characteristics  (e.g.,
time series feature) can be obscured due to the data aggregat-
ing  process  from  the  spatial  and  temporal  dimensions.  Mean-
while,  it  is  difficult  to  describe the neighboring environmental
information  based  on  structured  data  using  the  exhaustion
method.  Therefore,  it  is  necessary  to  explore  an  effective  and
comprehensive description of the CV environment data.

In this study, a driving risk assessment framework under the
CV  environment  is  proposed,  and  two  advances  are  high-
lighted  as  follows:  (1)  A  novel  form  of  describing  the  detailed
information of the vehicles neighboring the subject vehicle, i.e.,
time series top view set, was proposed to describe the CV envi-
ronment  data;  (2)  Developed  a  hybrid  Convolutional  Neural
Network  and  Long  Short-term  Memory  (CNN-LSTM)  model  to
analyze  both  the  spatial  and  temporal  features,  respectively,
i.e., the CNN component considers various elements of the driv-
ing  environment  and  the  LSTM  component  solves  the  time
series  classification  problem.  The  performance  outperformed
the existing machine learning algorithms with an AUC of 0.997.

The  rest  of  this  paper  is  structured  as  follows.  In  the  back-
ground  section,  the  driving  risk  assessment  data  and
approaches  are  reviewed  briefly.  In  the  data  preparation
section,  the  identification  process  of  high-risk  and  non-high-
risk  events  is  described  in  detail.  In  the  methodology  section,
the  CNN-LSTM  model  structure  is  introduced,  as  well  as  the
evaluation metrics.  In the modeling results section, the experi-
ment design and the modeling results are clarified. Finally, the
summary and discussions section presents the summary of this
study  and  the  discussions  on  the  application  scenarios  of  the
proposed model.

 Background

 Traffic safety studies related to CV
In recent years, there has been an increasing amount of traf-

fic  safety  studies  related  to  CV.  According  to  the  objectives  of

these  studies,  four  main  categories  can  be  summarized  as
follows.

(1) First, to evaluate the human aspects that affect the safety
of  CVs,  such  as  driver  compliance[20,21].  Sharma  et  al.[21] thor-
oughly investigated the the effect of driver compliance on the
mixed  traffic  environment  of  CVs  and  traditional  vehicles
including both high-compliance and low-compliance drivers.

(2)  To  calculate  the  safety  implications  of  CVs  in  a  mixed
traffic  environment  while  taking  into  account  various  CV
Market  Penetration  Rates  (MPRs)[22−24].  By  using  a  meta-analy-
sis methodology, Xiao et al.[24] estimated the safety impacts of
CVs  using  MPR  and  discovered  that  safety  is  increased  by  4%
with 10% MPR, and by 43% with 90% MPR.

(3)  To  develop  traffic  flow  models  for  the  CV  environment,
such as platoon-based cooperative driving models[25],  merging
advisory  models[26],  alarm  algorithms[22],  etc.  Jia  &  Ngoduy[25]

introduced  a  platoon-based  car-following  model  for  CVs  and
used numerical simulations to validate the proposed model.

(4)  In  addition,  to  implement  traffic  safety  strategies  and
management  improvements  for  the  CV  environment,  such  as
managed  lanes[27,28],  improved  intersections[29,30],  etc.  Rahman
&  Abdel-Aty[27] suggested  an  algorithm  for  controlling  CVs  to
form platoons in managed lanes, and the longitudinal safety of
these platoons was evaluated. Regarding studies on estimating
CV-related  risk,  there  are  several  that  concentrate  on  road
segment  crash  potential  prediction[31],  crash-prone  intersec-
tion identification[30,32], and risky driving pattern detection[33].

There are, however, few studies on the real-time driving risk
assessment  for  the  CV  environment,  particularly  for  the  CV
environmental characterization data.

 Time series classification
As for  the time series  classification problem, there are some

basic  deep learning approaches[7],  e.g.,  Multi-Layer  Perceptron
(MLP),  CNN,  RNN,  their  variants,  e.g.,  LSTM,  Echo  State  Net-
works, which is a type of RNN. The practices of adopting these
approaches  to  solve  time  series  classification  problems  in  the
traffic field are summarized below.

(1)  First,  traffic  flow  prediction  is  one  of  the  most  crucial
applications[34,35].  In  order  to  extract  the  spatial  and  temporal
characteristics,  Wang  et  al.[35] developed  a  traffic  flow  predic-
tion  model  based  on  the  1DCNN-LSTM  network.  This  model
was  demonstrated  to  display  a  faster  convergence  speed  and
higher  prediction  accuracy  when  compared  to  typical  neural
network  models.  With  the  help  of  Graph  Convolutional
Network (GCN) and the Gated Recurrent Unit (GRU)'s sequence-
to-sequence  structure,  Boukerche  &  Wang[36] created  a  hybrid
deep  learning  model  that  increased  the  predictability  and
effectiveness of traffic flow.

(2)  Second,  the  time  series  classification  methods  are  also
widely  employed  in  the  field  of  predicting  driver  behaviors,
such  as  lane  change  intention  recognition.  To  recognize  the
desire to change lanes, Guo et al.[37] developed a bi-directional
long  and  short-term  memory  network  based  on  the  attention
mechanism  (AT-BiLSTM).  The  suggested  approach  surpassed
the  current  machine  learning  techniques  with  an  accuracy  of
93.33% at 3 s prior to lane change.

(3) Third, increasing research are treating the classification of
time series  as  a  challenge in  driving risk  assessment.  To gene-
rate  driving  risk  scores,  Hu  et  al.[9] integrated  a  convolutional
neural  network  and  a  long  short-term  memory  encoder/
decoder  network  into  a  semi-supervised  framework.  These
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scores  represented  the  best  comprehensive  performance
among the available machine learning techniques.

However,  to  the  best  of  our  knowledge,  there  is  no  driving
risk  assessment  study  that  considers  time  series  classification
problem for the CV environment.

 Data preparation

The  modeling  data  used  in  this  study  are  derived  from  the
highD  dataset[38],  which  records  the  realistic  vehicle  trajecto-
ries  on  German  highways.  This  massive  dataset  consists  of  six
separate  routes,  110,500  vehicles,  44,500  kilometers  travelled,
and  147  driving  hours.  HighD  dataset  contains  nearly  twelve
times as many vehicles as the well-known NGSIM dataset. And
its  detecting  algorithm  could  detect  about  99%  of  vehicles
while  keeping  the  false  positive  rate  at  2%  and  position  error
less than 10 cm[38]. The overhead viewpoint without blind spots
is  used  to  gather  traffic  data  when  a  drone  is  used,  as  illus-
trated  in Fig.  1.  The  data  have  a  high  level  of  precision  with  a
collection frequency of 25 Hz, and the positioning error is often
less  than  10  cm.  Vehicle  type,  size,  and  maneuvers  are  all
included  in  each  vehicle's  trajectory.  These  benefits  allow  the
highD  dataset  to  be  utilized  to  represent  the  CV  environment
data  since  it  provides  real-time  access  to  precise  information
about the neighboring environment for each vehicle.

 High-risk and non-high-risk events identification
The Modified Time to Collision (MTTC) was employed in this

study  to  identify  high-risk  events,  and  2  s  was  chosen  as  the
threshold based on earlier research[39]. When the MTTC value of
vehicles reaches 2 s, it was set as the zero time to further extract
data to characterize the event. When the MTTC value of a vehi-
cle  is  lower than 2 s,  it  may be inferred that  the vehicle  is  in  a
high-risk  event.  The  case-control  data  structure  was  used  to
identify  non-high-risk  events,  and  a  1:4  ratio  between  the
number of high-risk and non-high-risk events was chosen. You
may  refer  to  the  earlier  work[40] for  further  information  on
exactly how high-risk and low-risk events are identified.

The  driving  risk  prediction  requires  the  extraction  of  crash
precursor features based on the traffic data in a specific spatial
and  temporal  range  before  the  high-risk  and  non-high-risk
events.  For  each  high-risk  or  non-high-risk  event,  the  spatial
range and temporal range are defined as follows.

As for the spatial range, the lateral range is set as the driving
lane  of  the  subject  vehicle  and  the  two  adjacent  lanes  in  the
same direction,  which have a  greater  contribution to  the  driv-
ing risk than other lanes. For the side lane vehicles next to the
median  barrier  or  roadside  shoulder,  the  lateral  range  is
adjusted to contain one adjacent lane only. If the subject vehi-
cle  is  in  lane  change  activities,  the  lateral  range  will  undergo
corresponding  dynamic  changes.  In  addition,  the  longitudinal
range  is  set  to  be  100  m  in  both  the  front  and  rear  of  the
subject vehicle along the driving direction, and this is an empir-
ical  value  based  on  data  analysis,  for  this  range  relatively
comprehensively  includes  the  vehicles  that  affect  the  driving
risk of the subject vehicle, but not too large. In the top view of
Fig. 2, for the red vehicle in the center, the spatial range can be
illustrated by the red rectangle.

As for the temporal range, for real-time prediction, the start-
ing  time  of  the  temporal  range  should  not  be  too  early,  and
hence 5 s before the zero time is determined. Besides, consider-
ing the response time lag of human drivers, approximately 1 to
2 s[41],  the end time of  the temporal  range is  chosen to  be 2  s
before the zero time.

 Time series top view set
In previous studies, the extraction of crash precursor features

is  based  on  text  data  to  aggregate  variables  (such  as  average
velocity,  average  flow,  velocity  variance,  etc.),  and  then  use
variable  selection  techniques  (such  as  backward  method,
random  forest,  etc.)  to  obtain  key  variables.  And  finally,  the
input  of  the  crash  risk  prediction  model  can  be  acquired.
However,  this  process  is  prone  to  cause  information  redun-
dancy  and  key  information  missing,  which  will  seriously  affect
the  accuracy  of  prediction.  Furthermore,  the  information
redundancy  can  be  reflected  by  the  multicollinearity  and
coupling  relationship  of  variables.  While  the  missing  of  key
information  is  mainly  due  to  data  collection  incompleteness
and variable  screening process.  And it  can be reflected by the
fact  that  the  above-mentioned  variables  cannot  describe  the
spatial relationship between the subject vehicle and the neigh-
boring vehicles,  and cannot  reflect  the  temporal  change char-
acteristics of traffic flow due to the aggregation process.

Therefore,  in  this  study,  the  feature  extraction  process  is
omitted, or replaced by a simpler but more effective way,  that
is, to construct a time series image (top view) set, which is used
as  the  input  of  the  deep  learning  model  to  predict  the  crash
risk. And the time series top view set construction process can
be described as follows.

For each moment of the event, there is a corresponding top
view as shown in Fig. 3, where (a) is an illustration of the spatial
range, (b) is a zoomed-in version of the study area, and (c) is a
simplified  version  as  input  to  the  model.  More  specifically,  in
Fig. 3b, the dashed lines represent lane lines, and the center of

 
Fig.  1    A  drone  recording  the  motion  of  vehicles  along  a  420-
meter stretch of highway from an overhead perspective[38].

 
Fig. 2    The illustration of spatial range from a top view.
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the image is where the subject vehicle is located, which is true
for  every  image.  The  other  grayscale  rectangles  represent  the
vehicles  around the subject  vehicle.  Among them,  the relative
position  of  the  rectangle  is  consistent  with  that  of  the  actual
vehicle,  the  size  of  the  rectangle  is  proportional  to  the  actual
vehicle, and the color is scaled to the velocity of the actual vehi-
cle,  that  is,  the  higher  the  velocity,  the  darker  the  rectangle.
While in Fig. 3c, only the rectangles representing the neighbor-
ing vehicles in Fig. 3b are left, because they are worth research-
ing.  This  image  includes  almost  all  neighboring  traffic  flow
information, such as the number of neighboring vehicles, their
spatial location, and their velocity, etc.

For  each  event,  whatever  high-risk  or  non-high-risk,  a  time
series  image  (top  view)  set  can  be  built.  Each  image  set  is
composed of  75 above-mentioned top views,  as  shown in Fig.
4,  respectively  representing  75  moments  at  equal  intervals
from  5  s  (frame000001)  to  2  s  (frame000075)  before  the  zero

time, which is consistent with the above-mentioned time range
and the data collection frequency (25 Hz).

 Methodology

In  this  study,  a  hybrid  CNN-LSTM  model  structure  was
adopted,  where  the  CNN  model  was  utilized  to  capture  the
spatial  characteristics  of  each  top  view,  and  the  LSTM  model
was  used  to  learn  the  time  series  features  of  each  driving
scenario and further predict the driving risk.

 Convolutional Neural Network
The  CNN  is  a  kind  of  feedforward  neural  network.  In  this

experiment,  the  original  top  views  were  taken  as  inputs,  and
after  processed  by  the  convolutional  layer,  pooling  layer,  and
fully  connected  layer,  they  are  finally  input  into  the  LSTM
network.  The  employed  CNN  structure  is  shown  in Fig.  5,  and
the detailed parameters with values are listed in Table 1.

a

b

c

 
Fig. 3    The detailed and simplified top views for each moment with the subject vehicle in the center. (a) is an illustration of the spatial range,
(b) is a zoomed-in version of the study area, and (c) is a simplified version as input to the model.

 
Fig. 4    The time series top view set describing an event.

 
Fig. 5    The structure of CNN model.
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Specifically,  the  convolutional  layer,  designed  with  the
conv2D layer in this study, consists of several different kernels,
and  each  kernel  is  defined  by  a  set  of  shared  weights  and
biases.  The  result  of  the  convolutional  layer  is  that  the  same
number  of  features  as  the  kernels  are  detected,  with  each
feature  being  detectable  across  the  entire  image.  The  pooling
layers is utilized to simplify the information in the output from
the  convolutional  layer.  The  fully  connected  layer  is  used  to
classify by connecting every neuron from the last layer to every
one neuron of the next layer.

Besides,  the  activation  function  employed  in  this  study  is
ReLU, which follows the Eqn. (1) below.

f (x) =
{ x, i f x ≥ 0

0, i f x < 0 (1)

xwhere  is the input value.
The  Adam  optimizer[42] is  chosen  and  cross  entropy  error

function is  employed,  the calculation formula of  cross entropy
is shown in Eqn. (2).

L = − 1
N

∑
i

[
yi× log (pi)+ (1− yi)× log (1− pi)

]
(2)

yi i
pi i

where  is the label of sample , high-risk class is 1 and non-high-
risk class is 0,  indicate the positive possibility of sample .

 Long Short-term Memory
LSTM,  introduced  by  Hochreiter  &  Schmidhuber[43],  is  a

special  kind  of  RNN.  LSTM  is  capable  of  learning  long-term
dependencies, and hence it can be used to extract information
from  a  sequence.  In  this  study,  the  feature  data  identified  by
CNN model is the input of the LSTM model, and the output is a
binary  value,  which  indicates  whether  an  event  is  high-risk  or
non-high-risk. The LSTM model structure is mainly composed of
forget gate, input gate, and output gate, as shown in Fig. 6.

Ct−1

The forget gate is to decide what information to throw away
from the old cell state , which is made by a sigmoid layer:

ft = σ
(
W f × [ht−1,zt]+b f

)
(3)

zt

ht−1

Ct−1 ft
Ct−1 ht−1 zt

where  is the input of the LSTM model, which is the feature data
identified by CNN model in this study.  is the hidden state of
the old cell state .  outputs a number between 0 and 1 in the
old cell  state  based on  and ,  and 0 means 'completely
forget the old cell state' while 1 means 'completely keep it'.

Ct

Ct−1 Ct

The input gate is to decide what new information to store in
the  new  cell  state .  Firstly,  a  sigmoid  layer  decides  which
values  to  update.  Secondly,  a  tanh  layer  creating  a  vector  of
new  candidate  values  to  be  added  to  the  cell  state.  Third,
update the old cell state  into the new cell state .

it = σ (Wi× [ht−1,zt]+bi) (4)

C̃t = tanh (WC × [ht−1,zt]+bC) (5)

Ct = ft ×Ct−1+ it × C̃t (6)
ft ×Ct−1

it × C̃t

where  means forgetting the information of old cell state,
and  means  adding  the  new  candidate  values,  scaled  by
how much we decided to update each state.

Ct+1

Ct Ct

The output gate is to decide what part to output to the next
cell state . Firstly, a sigmoid layer decides what parts of the
cell state  to output. And then the cell state  is put through
a  tanh  function  and  multiplied  by  the  output  of  the  sigmoid
layer.

ot = σ (Wo× [ht−1,zt]+bo) (7)

ht = ot × tanh (Ct) (8)

ht Ct

Ct+1

where the tanh function is to push the values to be between −1
and 1.  is the hidden state of the cell state , which is to output
to the next cell state .

 CNN-LSTM model structure
The final CNN-LSTM model structure is shown in Fig. 7, where

the input of the CNN model is the time series top views, and the
output  of  the  CNN  model,  which  is  also  the  input  of  LSTM
model, is the time series spatial features. And finally, the output
of  the  LSTM  model  is  the  predicting  result  indicating  whether
an  event  is  high-risk  or  non-high-risk.  More  specifically,  the
CNN  model  is  with  four  convolution  layers,  one  pooling  layer,
and  two  fully  connected  layers,  and  the  LSTM  model  is  with
three  layers  and  one  fully  connected  layer.  The  detailed  para-
meters with values of the CNN-LSTM model are listed in Table 1.
The  training  and  evaluation  process  of  the  CNN-LSTM  model
was implemented on a workstation equipped with NVIDIA GTX
2080Ti GPU and Intel Core i7 processors.

Table 1.    Parameters with values in the CNN-LSTM modeling process.

Modeling process Parameters with values

Input of CNN 75 top views with both the front and rear of
the subject vehicle: 360 × 30
(or 75 top views with only the front of the
subject vehicle: 360 × 60)

Convolution layer No. of layers: 4
No. of kernels: 32, 64,128, and 256
Kernel size: (5 × 5), (3 × 3), (3 × 3), and (3 × 3)
Stride: (2,2), (2,2), (2,2), and (2,2)
Padding: (0,0), (0,0), (0,0), and (0,0)
Activating function: ReLU

Pooling layer No. of layers: 1
Kernel size: (2 × 2)
Stride: (2,2)
Padding: (0,0)

Fully connected layer No. of layers: 2
Hidden neurons: 512 and 256
Activating function: ReLU

Output of CNN model/
Input of LSTM model

No. of features: 64 (for each top view)
75 top views for each event

LSTM No. of layers: 3
Hidden neurons: 512, 512, 512

Fully connected layer No. of layers: 1
Hidden neurons: 256
Activating function: ReLU

Output of LSTM model Binary classification result: high-risk or non-
high-risk

Training process Backpropagation
Learning rate: StepLR (lr = 1e-3, γ = 0.3)
Loss function: Cross-entropy
Mini-batch size: 128
Epochs: 50

 
Fig. 6    The basic unit of LSTM model[43].
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 Evaluation metrics
In  this  study,  accuracy is  employed as  the evaluation metric

in  the  training  process.  The  receiver  operating  characteristic
(ROC) and area under the ROC curve (AUC) statistic is utilized to
evaluate  the  performance  of  the  proposed  CNN-LSTM  model.
Specifically  speaking,  the  ROC  curve  illustrates  the  perfor-
mance  of  the  binary  classification  model  as  its  discrimination
threshold is varied. The Y-axis of the ROC curve is the true posi-
tive  rate  (TPR),  also  known  as  sensitivity,  and  the  X-axis  is  the
false  positive  rate  (FPR),  also  known  as  False  Alarm  Rate,  as
shown in the Eqn. (9) and (10), respectively. The AUC is utilized
for  model  evaluation  and  comparison,  and  its  value  varies
between 0 and 1, with 0.5 representing an uninformative classi-
fier and 1 representing perfect performance. Besides, the accu-
racy  is  employed  as  an  overall  evaluation  metric,  as  shown  in
Eqn. (11).

T PR = S ensitivity =
T P

T P+FN
(9)

FPR = False Alarm Rate =
FP

FP+T N
(10)

Accuracy =
T P+T N

T P+FP+T N +FN
(11)

where TP is the True Positive from the confusion matrix, as shown
in Table 2, FN is the False Negative, FP is the False Positive, and TN
is the True Negative, respectively.

 Modeling results

In  this  study,  the  modeling  dataset,  consisting  of  255  high-
risk  events  and  1,025  non-high-risk  events,  was  randomly
divided  into  two  parts,  where  75%  was  used  for  training  and
25% for validation. To clarify which spatial range and temporal
range  contribute  more  to  the  modeling  result,  a  total  of  six
experiment designs were proposed, considering two variables,
i.e., the spatial range and the temporal range. The spatial range
is  designed  into  two  conditions,  the  front  and  rear  of  the
subject  vehicle  and  only  the  front  of  the  subject  vehicle.
Besides,  as  for  the  temporal  range,  there  are  three  conditions,
namely 5 s to 2 s before the zero time, 5 s to 3 s before the zero

time,  and  4  s  to  2  s  before  the  zero  time.  And  hence,  the
descriptions of the six experiment designs are shown in Table 3.

As  for  each  experiment,  the  parameters  of  the  CNN-LSTM
model  are  moderately  tuned  to  obtain  more  optimal  predic-
tion performance. The final results of the six optimal models are
shown  in Table  4,  and  the  loss,  accuracy  and,  ROC  curves  of
these models are shown in Table 5.

Some conclusions can be drawn as follows.
(1)  The  model  in  Experiment  4,  where  the  spatial  range  is

only 100 m in the front of the subject vehicle, and the temporal
range  is  from  5  s  to  2  s  before  the  zero  time,  has  the  best
prediction  performance  with  a  sensitivity  of  0.996,  a  False
Alarm Rate of 0.065, and an AUC of 0.997.

(2)  Given  the  same  temporal  range  value,  the  models  with
spatial  range  only  in  the  front  of  the  subject  vehicle  generally
perform better than the models with a spatial range in both the
front and rear of the subject vehicle.

(3)  Given  the  same  spatial  range  value,  the  models  with  a
temporal  range  from  5  s  to  2  s  before  the  zero  time  have  the
best overall performance. And the models with 5 s as the time
starting point work better than the models with 4 s as the time
starting point, especially in terms of False Alarm Rate.

 Summary and discussions

This study is intended to improve the accuracy of the driving
risk  assessment  model  under  the  CV  environment.  Firstly,  a

 
Fig. 7    The proposed CNN-LSTM model.

Table 2.    The confusion matrix.

Actual condition
Predicted condition

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 3.    Descriptions of the six experiment designs.

Spatial range Temporal range

1 100 m in both the front and rear
of the subject vehicle

5 s to 2 s before the zero time
2 5 s to 3 s before the zero time
3 4 s to 2 s before the zero time
4 Only 100 m in the front of the

subject vehicle
5 s to 2 s before the zero time

5 5 s to 3 s before the zero time
6 4 s to 2 s before the zero time

Table 4.    The prediction performances of the six experiment designs.

Sensitivity False Alarm Rate AUC

1 0.988 0.177 0.992
2 0.977 0.119 0.988
3 0.988 0.274 0.989
4 0.996 0.065 0.997
5 0.992 0.032 0.996
6 0.988 0.387 0.988
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novel data form, i.e.,  time series top view set, was proposed to
describe  the  CV  environment  data.  Then,  a  hybrid  CNN-LSTM
model was established to analyze both the spatial and tempo-
ral features. More specifically, the CNN component was used to
comprehensively consider various elements of the driving envi-
ronment, and the LSTM component was used to solve the time

series classification problem, which the driving risk assessment
can be treated as.  Besides,  to  identify  which spatial  range and
temporal  range  contribute  more  to  the  modeling  result,  six
experiment  designs  were  conducted  considering  both  spatial
and  temporal  variables.  Finally,  it  is  proved  that  the  proposed
model performed best when the spatial range includes only the

Table 5.    The loss, accuracy, and ROC curve of the six experimental designs.

Loss and accuracy ROC curve

1

2

3

4

5

6
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front part of the subject vehicle and the temporal range is from
5 s to 2 s before the zero time, with a sensitivity of 0.996, a False
Alarm Rate of 0.065, and an AUC of 0.997.

The  advantages  of  the  proposed  model  come  to  the  fore
when compared with other studies, where the same dataset is
utilized, as shown in Table 6. In terms of the form of data orga-
nization,  independent  variable  extraction  in  a  single  vehicle
dimension,  e.g.,  the  time  series  top  view  set  in  this  study,  the
temporal and spatial traffic flow characteristic variables[40], etc.,
is superior to aggregation of data in the cross-sectional dimen-
sion,  e.g.,  the  cross-sectional  traffic  data[44].  Besides,  consider-
ing  time-series  variability  can  improve  the  modeling  perfor-
mance. In this study, the time-series variability is considered in
the  LSTM  component,  and  in  the  study  by  Yu  et  al.[40],  it  is
considered in the variable construction process.

This study is a beneficial exploration, particularly in terms of
the form of data description for the CV environment and model
construction.  In  terms  of  driving  safety,  this  proposed  model
can  be  used  for  real-time  driving  risk  prediction  under  the  CV
environment,  where  information  about  the  neighboring  envi-
ronment  can  be  obtained  in  real-time via an  onboard  unit.
From  a  more  macro  perspective,  this  proposed  model  can  be
applied  to  road  segment  safety  assessment  by  comprehen-
sively  considering  the  driving  risk  of  vehicles  within  the  road
segment,  as  the  operational  status  of  all  vehicles  is  accessible
under the CV environment.

However,  there  are  still  some  limitations  in  this  study,  e.g.,
due to  data  limitations,  the spatial  range defined in  this  study
was  fixed  in  shape  and  size  with  the  subject  vehicle  in  the
center.  However,  the  spatial  range  can  be  irregularly  shaped
and  the  size  can  vary  dynamically  with  the  velocity  of  the
subject vehicle. And the temporal range can also take on more
continuous  values.  Besides,  highD  trajectory  dataset  was
utilized  to  represent  the  CV  environment  data.  In  future
research, the model performance on the real CV dataset should
be  verified.  Moreover,  in  future  studies,  multi-dimensional
safety  surrogate indicators  could be used to extract  the multi-
vehicle collision and other types of high-risk scenarios. Last but
not least, it is essential to consider the influence of CV penetra-
tion rate and its impacts of the model performance.
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