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Abstract
The  exhaust  emissions  and  frequent  traffic  incidents  caused  by  traffic  congestion  have  affected  the  operation  and  development  of  urban

transport  systems.  Monitoring and accurately forecasting urban traffic  operation is  a  critical  task to formulate pertinent strategies to alleviate

traffic  congestion.  Compared  with  traditional  short-time  traffic  prediction,  this  study  proposes  a  machine  learning  algorithm-based  traffic

forecasting model  for  daily-level  peak  hour  traffic  operation status  prediction by  using abundant  historical  data  of  urban traffic  performance

index (TPI). The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors

on the quality  of  road network  operation,  including day of  week,  time period,  public  holiday,  car  usage restriction policy,  special  events,  etc.

Based  on  long-term  historical  TPI  data,  this  research  proposed  a  daily  dimensional  road  network  TPI  prediction  model  by  using  an  extreme

gradient  boosting  algorithm  (XGBoost).  The  model  validation  results  show  that  the  model  prediction  accuracy  can  reach  higher  than  90%.

Compared  with  other  prediction  models,  including  Bayesian  Ridge,  Linear  Regression,  ElatsicNet,  SVR,  the  XGBoost  model  has  a  better

performance, and proves its superiority in large high-dimensional data sets. The daily dimensional prediction model proposed in this paper has

an important application value for predicting traffic status and improving the operation quality of urban road networks.
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 Introduction

High-precision  traffic  prediction  can  help  transportation
agencies  to  understand  the  road  network  traffic  operation
status,  and provide quantitative data support  for  traffic  mana-
gement  strategy  formulation.  It  can  also  enable  the  public  to
receive  the operation status  of  the  road network  in  future  pe-
riods  in  time,  so  they  can  choose  a  more  reasonable  travel
mode[1−3].

Traffic  state  prediction  contributes  to  the  foreknowledge  of
the  variation  of  traffic  states  on  different  future  time  scales,
from minutes  to  hours  or  even days.  At  present,  many studies
have  been  carried  out  on  short-term  traffic  prediction.  Short-
term traffic state prediction is an important real-time decision-
making  tool  of  intelligent  transportation  systems  for  traffic
managers  and  travelers  who  must  make  decisions  in  minutes.
Kumar et al.[4] used the ARIMA model to conduct a single-point
short-term traffic flow prediction model. Luis et al.[5] forecasted
traffic  flow  in  a  multi-step  way  based  on  the  adaptive  Kalman
filtering  theory.  Cai  et  al.[6] used  a  local  search  strategy  to
search  for  optimal  nearest  neighbors'  outputs  and  used  opti-
mal nearest neighbors' outputs weighted by local similarities to
forecast  short-term  traffic  flow,  to  improve  the  prediction
mechanism of the K-NN model. Lin et al.[7] built an online short-
term traffic volume prediction model based on support vector
regression and considering the influence of space-time factors,
and completed the short-term traffic  volume prediction of  the

expressway. Ma et al.[8] proposed a novel architecture of neural
networks,  with  the  use  of  Long-Term  and  Short-Term  Neural
Network (LSTMNN), to capture nonlinear traffic dynamics effec-
tively,  and  to  forecast  the  travel  speed  data  from  traffic
microwave  detectors.  Yu  et  al.[9] proposed  a  Spatial-temporal
recursive  convolutional  network  (SRCNs)  algorithm  to  predict
the traffic flow of 278 arterial roads in Beijing. In addition, most
of  the  traditional  short-sighted  traffic  flow  forecasting  models
only  pay  attention  to  the  prediction  of  a  single  period.
Although it has scientific significance, it cannot meet the practi-
cal  application  of  multi-time  period  or  long-term  traffic  flow
forecasting.

Accurate  medium  and  long-term  traffic  flow  prediction  is
important  for  intelligent  transportation.  The  systematic  traffic
management  system  and  congestion  analysis  and  early  warn-
ing  system  have  important  practical  significance[10].  There  are
relatively few existing studies on the prediction of medium and
long-term  traffic  operation  status,  Umut  et  al.[11] employed
feed-forward neural networks which combined time series fore-
casting  techniques  to  forecast  the  traffic  volume  of  two
sections of Istanbul in half a month. Zhang et al.[12] established
a  polynomial  Fourier  combination  forecasting  model  of  road
traffic  flow  and  tested  the  validity  and  robustness  of  the
method for traffic flow data of the Wapenyao section in Harbin.
Hou  et  al.[13] used  the  statistical  average  of  the  basic  series  of
traffic flow and the deviation series to define the similarity and
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repeatability of traffic flow patterns and proposed a long-term
traffic flow prediction algorithm.

XGBoost (eXtreme Gradient Boosting) is a gradient boosting
tree  algorithm  that  combines  the  advantages  of  the  gradient
boosting  framework  and  decision  tree  models.  It  has  demon-
strated  excellent  performance  in  various  machine  learning
problems, particularly well-suited for handling large-scale data
and  complex  feature  relationships.  It  has  been  widely  applied
to  forecasting  tasks  in  the  latest  research.  Dong  et  al.[14]

proposed a traffic flow prediction model that combined wave-
let decomposition reconstruction with Extreme Gradient Boost-
ing (XGBoost) algorithm. The model utilized wavelet denoising
algorithm to preserve the traffic flow trends for each sampling
period and reduced the influence of short-term high-frequency
noise. Lartey et al.[15] employed the Extreme Gradient Boosting
(XGBoost)  algorithm  to  efficiently  predict  hourly  traffic  flow
under extreme weather conditions and further investigated the
impact  of  ridge and LASSO regularization on the performance
of  XGBoost.  A  new  approach  was  proposed  to  set  the  LASSO
regularization parameter based on the number of observations
and  predictors.  Zhang  et  al.[16] proposed  a  short-term  traffic
flow  prediction  method  for  urban  roads  based  on  the  LSTM-
XGBoost model, aiming to analyze and address issues related to
the periodicity, stationary, and abnormality of time series data.
By validating the model using speed data samples from multi-
ple road segments in Shenzhen, it was found that the proposed
model  can  improve  the  accuracy  of  traffic  flow  predictions,
enabling  efficient  traffic  guidance  and  control.  Chen  et  al.[17]

employed  the  XGBoost  model  to  predict  highway  travel  time
using probe vehicle data and discussed the impact of different
parameters on the model's  performance.  By comparing it  with
the  gradient  boosting  model,  the  study  demonstrated  signifi-
cant advantages of the proposed model in terms of prediction
accuracy and efficiency.

The  latest  research  utilizes  statistical  analysis  and  machine
learning methods for predicting traffic index, aiming to capture
the  changing  trends  of  road  network  operating  conditions.
Cheng et  al.[18] proposed a  method to enhance the expressive
power  of  limited  features  by  using  Light  Gradient  Boosting
Machine  (LightGBM)  and  Gated  Recurrent  Unit  (GRU).  Resear-
chers  conducted  experimental  analysis  using  ridesharing  data
from  Chengdu  city  and  constructed  a  SARIMA-GRU  model  for
traffic performance index forecasting. Quang et al.[19] proposed
a  hybrid  deep  convolutional  neural  network  (CNN)  approach
that utilized gradient descent optimization algorithm and pool-
ing operations to predict short-term traffic congestion index in
urban  networks  based  on  probe  vehicle  data.  The  results
demonstrate  that  the  proposed  method  effectively  visualizes
the  temporal  variations  in  traffic  congestion  across  the  entire
urban  network.  Zhang  et  al.[20] researched  a  traffic  state  index
prediction  model  based  on  the  fusion  of  convolutional  and
recurrent  neural  networks.  The  convolutional  network  in  the
model  automatically  extracted  important  influencing  factors,
while  the  recurrent  network  captured  temporal  feature
changes from past to future. The results demonstrated that the
predictive accuracy of this fusion model reached 90.2%.

The former studies consider several  factors  when predicting
the  operation  state  of  road  network.  Bao  et  al.[21] learned  key
features  of  traffic  data  in  an  unsupervised  manner  and  im-
proves  the  deep  belief  network  (DBNs)  based  on  traffic  data
and  monitored  weather  data  to  predict  traffic  flow  in  poor

weather.  Wan  et  al.[22] proposed  an  improved  linear  growth
model for predicting ship traffic flow, taking all periodic fluctua-
tion  factors  (e.g.,  seasonal  changes,  climate  impact,  etc.)  into
consideration  for  Bayesian  estimation  and  prediction.  Chen  et
al.[23] utilized  web-based  map  service  data  to  construct  long-
short  term  memory  model  for  predicting  traffic  condition
patterns.  The proposed model  had superior  performance over
multilayer perceptron model, decision tree model and support
vector machine model. Srinivas et al.[24] adopt a systemic evalu-
ation  method  to  assess  the  difference  in  travel  time  perfor-
mance  measures  during  the  day  of  the  planned  special  event
compared to the normal day to quantify the impact of planned
special  events  on  travel  time  performance  measures.  When
constructing  the  influencing  factor  set,  most  existing  studies
concentrate  on  temporal  characteristics  or  mostly  focus  on
single-factor  influences,  such  as  weather,  seasons,  and  traffic
management  measures,  lacking  a  comprehensive  considera-
tion of external dynamic factors.

In  general,  the  previous  research  mostly  focused  on  short-
term  traffic  index  prediction  at  minute  and  hour  levels,  while
they  are  constrained  by  model  performance  and  can  only  be
used  for  predicting  short  periods.  In  constructing  the  predic-
tion  model,  they  solely  took  into  account  the  influence  of
temporal  features  on  the  traffic  index,  while  neglecting  the
impact of  external  environmental  conditions.  Therefore,  under
the  condition  of  multiple  influencing  factors  coupling,  traffic
index  prediction  at  a  daily  level  or  longer  periods  becomes
particularly important. The XGBoost algorithm has the ability to
automatically  capture  the  nonlinear  relationships  between
input features and flexible handling both continuous and cate-
gorical  variables.  We  construct  a  daily  traffic  index  prediction
model  by consideration the impact  of  time,  weather,  holidays,
vehicle  restriction,  special  events  on  traffic  operation  state
based on the Beijing traffic index data and relevant influencing
factors  data.  Finally,  the  model  is  compared  with  the  existing
medium-term  prediction  methods  to  verify  the  prediction
accuracy.

 Data and influencing factors set

 Traffic Performance Index (TPI) data
The Urban Road Traffic Performance Index (TPI)[25] is an indi-

cator  that  comprehensively  reflects  the  operational  status  of
road networks, by counting the proportion of road congestion
mileage in  the urban area of  city,  the standard divides  the TPI
with the range of 0.0−10.0, with 0.0−2.0 representing free flow
conditions,  2.0−4.0  representing  basic  free  flow  conditions,
4.0−6.0  representing  mild  congestion,  6.0−8.0  representing
moderate  congestion,  and  8.0−10.0  representing  severe
congestion.  The  computation  formula  for  TPI  is  the  ratio
between  the  travel  time  during  congested  periods  and  the
travel time during free-flowing conditions.

T PI =

∑N
i=1

Li

Vi
ki∑N

i=1
Li

V f ree_i
ki

(1)

Where Li represents the length of section i, Vi represents the
speed  of  section i, ki represents  the  weight  of  section i, Vfree_i
represents  the  free-flow  speed  of  section i, N represents  the
number of road sections.
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This  study  uses  TPI  data  as  a  dependent  variable,  and  the
period  is  from  January  1,  2018,  to  June  30,  2019,  with  a  time
interval  of  15  min  from  5:00  AM  to  11:00  PM  daily,  the  total
sample size is more than 40460 samples in 18 months.

 Influencing factors set
The analysis  of  influencing factors  is  the basis  for  extracting

road  network  operation  characteristics  and  carrying  out  TPI
prediction.  This  study  focuses  on  the  prediction  of  TPI  at  the
daily  level.  Existing  research  has  mainly  constructed  a  set  of
factors  influencing  road  network  operating  conditions  from  a
temporal  perspective,  considering factors  such as  time period,
month,  week,  workday,  summer  or  winter  vacation,  and
weather  type.  In  addition to considering temporal  factors,  this
study incorporates a specific day of holiday, special holiday, car
usage restriction policy, and special event into the set of influ-
encing  factors,  aiming  to  fully  consider  the  impact  of  external
disturbances on the fluctuations in road network operations.

 Time period
The  TPI  shows  regular  fluctuation  in  different  periods,  and

has obvious temporal characteristics, the indices are the lowest
in  February  and  relatively  high  in  September  and  October[26].
The TPI during peak hours on a working day is shown in Fig. 1.
During the weekly  change,  the traffic  pressure is  higher  in  the
Monday  morning  peak  and  Friday  evening  peak.  During  the
daily  change,  the traffic  pressure is  also divided into peak and
off-peak  hours.  Travelers  in  different  weeks,  days,  and  hours
have different travel behaviors, which affects the regular fluctu-
ation  of  the  TPI.  Therefore,  it  is  necessary  to  include  the  three
indicators of the month, week, and hours into the factors set.

 Holidays
The traffic conditions during holidays are quite different from

those during working days, and the impact of different types of
holidays on traffic conditions is also significantly different. Holi-
days  can  be  divided  into  three  types,  including  summer  and
winter  vacations,  public  holidays  (e.g.  national  holidays),  and
special holidays. In China, some special holidays such as Valen-
tine's Day and Christmas are not public holidays but the travel
demand  during  these  holidays  tends  to  be  high.  These  three
types  of  holidays  are  represented  as  categorical  variables,
respectively.

 Car usage restriction policy
In  order  to  reduce  the  frequency  of  car  usage  and  alleviate

traffic  congestion,  the  government  of  different  cities  usually
formulate  some  traffic  demand  management  policies  on  car
usage.  During  weekdays,  Beijing  implements  a  traffic  restric-
tion policy based on the last digit of license plate numbers. As
the  proportion  of  vehicles  with  different  last  digit  is  greatly
different,  the  impact  of  different  restriction  dates  based  on
license  plate  numbers  on  the  operational  status  of  road  net-
work is clearly different.

 Weather condition
Weather  conditions  also  have  a  significant  impact  on  the

traffic  operation  states.  Adverse  weather  includes  rain,  snow,
and haze etc. When adverse weather occurs, the decreased visi-
bility, wet road surface, and reduced vehicle speed often result
in a higher TPI. Therefore, these weather conditions which have
a negative impact are included in the factors set.

 Special events
Special  events  are  divided  into  short-term  events  (e.g.  con-

certs, sports competitions) and all-day events (e.g. exhibitions).

The  phenomenon  of  people  gathering  and  dispersing  before
and  after  major  events  is  obvious,  which  will  lead  to  regional
TPI increase.

The following influencing factors are represented as categor-
ical  variables,  respectively.  The descriptive statistics  are shown
in Table 1.

 The importance of influencing factors

J−1

Feature  importance  is  used  to  observe  the  contribution  of
different features and to demonstrate the interpretability of the
model.  The  XGBoost  model  can  identify  the  relative  impor-
tance, or contribution, of each weather condition and temporal
characteristics  variable  in  predicting  the  daily  TPI.  The  relative
importance  of  one  variable  depends  on  the  number  of  times
selected  as  splitting  points  and  the  improvement  of  the
squared error in the iteration. For a single base decision tree T,
the relative importance of a variable on the TPI is defined as the
summation  of  the  improvement  of  the  squared  error  over  the

 internal nodes:

R2
l (T ) =

∑J−1

j=1
E2

j (vt = l) (2)

vt t E2
j

{Tk}K1

where  denotes the splitting variable associated with node ; 

denotes  the  corresponding  improvement  of  the  squared  error
after  splitting.  In  an  ensemble  of  trees ,  the  relative
importance can be evaluated by taking the average overall  base
trees:

R2
l =

1
k

∑K

k=1
R2

l (Tk) (3)

Figure  2 shows  the  results  of  the  relative  importance  of  all
factors. It indicates that temporal variables such as time period,
week, and month have the greatest influence on the change of

Table 1.    Descriptive statistics of influencing factors.

Name Symbol Count

Month 0: January; 1: February; ...; 11: December 18 months
Week 0: Sunday; 1: Monday; ...; 6: Saturday 72 weeks

Time period 21:0500-0515; 22:0515-0530; ...;
92:2245-2300

39,312
periods

Day type 0: Weekday; 1: Weekend 546 d
Public holiday 1: First day of holiday 12 d

2: Middle day(s) during holiday 25 d
3: Last day of holiday 12 d

Summer or
winter vacation

0: Normal days 426 d
1: Summer and winter vacation 120 d

Special holiday 0: Normal day 421 d
1: Special holiday 5 d

Car usage
restriction policy

0: The last digit of license plate number
is 0 or 5. 73 d

1: The last digit of license plate number
is 1 or 6. 74 d

2: The last digit of license plate number
is 2 or 7. 73 d

3: The last digit of license plate number
is 3 or 8. 71 d

4: The last digit of license plate number
is 4 or 9. 70 d

5: No limit 185 d
Weather 0: Sunny, or cloudy

1: Rain
490 d
63 d

2: Snow 6 d
3: Haze 31 d

Special events 1: Short-term events 252 times
2: Large events lasting the whole day 314 times
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The highest in 2019
Week35, 7.5

 
Fig. 1    Fluctuation characteristics of TPI over different periods.

Traffic prediction
 

Weng et al. Digital Transportation and Safety 2023, 2(3):220−228   Page 223 of 228



TPI, which is followed by a holiday (public holiday and vacation)
and travel restrictions, weather, etc. The special holiday feature
is deleted because it has almost no contribution to the change
of the TPI.

 Construction of forecasting model

 XGBoost concept
Extreme  Gradient  Boosting  (XGBoost)  is  an  improved  algo-

rithm of gradient boosted decision trees (GBDT)[27,28],  a power-
ful  sequential  integration  technique  with  a  parallel  learning
modular  structure  to  achieve  fast  computation.  For  this  study,
XGBoost demonstrates good robustness to missing and abnor-
mal  values,  effectively  handling datasets  containing influential
factors with missing or abnormal values, thus avoiding impacts
on  predictive  performance  due  to  data  quality  issues.  It
provides  feature  importance  rankings  that  can  help  better
understand the factors behind the predicted results, with good
interpretability.  XGBoost  optimizes  the  model  by  iteratively
selecting and combining features automatically, and can adjust
various hyperparameters, resulting in good predictive accuracy.
These characteristics make XGBoost a suitable means to predict
and explain the spatial heterogeneity of the TPI. The prediction
model for XGBoost can be expressed as:

ŷi =
∑t

k=1
fk(xi) = ŷ(t−1)

i + ft(xi) (4)

ft(xi) ŷi

xi

Where  represents  the  t-th  tree,  and  represents  the
predicted result of the sample .

XGBoost implements a balancing algorithm between model
performance and computation speed. To learn the set of func-
tions used in the model, we minimize the following regularized
objective.

ob j =
∑n

i=1
l(yi, ŷi)+

∑t

k=1
Ω( fk) (5)

l
ŷi

yi Ω n
n

Where  represents a differentiable convex loss function that
measures  the  difference  between  the  prediction  and  the
target , represents  the  complexity  of  the  model,  and 
represents the total amount of data imported by  into the i-th
tree.

ΩThe  second  term  penalizes  the  complexity  of  the  model
(i.e.,  the  regression  tree  functions).  The  additional  regulariza-
tion  term  helps  to  smooth  the  final  learned  weights  to  avoid
over-fitting.  Intuitively,  the  regularized  objective  will  tend  to
select a model employing simple and predictive functions.

Ω( fk) = γT +
1
2
λ
∑T

j=1
ω2 (6)

γ λ

ω
1
2
λ
∑T

j=1
ω2

Where  and  represent  artificially  set  parameters, T
represents the total number of leaves,  represents score on j-

th leaves,  represents the L2 modulus square of ω.

When  the  regularization  parameter  is  zero,  XGBoost  degen-
erates  into  a  traditional  boosting  model.  The  model  iterates
using additive  training to  further  minimize the objective  func-
tion and update the objective function at each iteration.

As  XGBoost  is  an  algorithm  in  the  boosting  family,  it  obeys
forward  step-wise  addition,  and  the  model  objective  function
at step t can be expressed as:

ob j(t) =
∑n

i=1
l(yi, ŷ

(t−1)
i + ft(xi))+Ω( ft) (7)

In  order  to  find  the  function ft that  minimizes  the  objective
function,  XGBoost  utilizes  a  second-order  Taylor  expansion
approximation  at ft =  0  to  approximate  it.  This  extends  the
Taylor series of the loss function to the second order. Thus, the
objective function is approximated as:

ob j(t) ≃
∑n

i=1
[l(yi, ŷ

(t−1)
i + ft(xi))+

1
2

hi f 2
t (xi)]+Ω( ft) (8)

Equation  (8)  aggregates  the  loss  function  values  for  each
data point, as demonstrated in the following process:

ob j ≃
∑n

i=1
[gi ft(xi)+

1
2

hi f 2
t (xi)]+Ω( ft)

=
∑T

j=1
[(
∑

i∈I j
gi)w j+

1
2

(
∑

i∈I j
hi+λ)w2

j ]+λT
(9)

gi = ∂ŷt−1l(yi, ŷt−1)
hi = ∂

2ŷt−1l(yi, ŷt−1)

Where obj represents  the  objective  function,
 represents  the  first  derivative,
 represents the second derivative.

ω

ω

Equation  (9)  rewrites  the  objective  function  as  a  univariate
quadratic function in terms of the leaf node score .  The opti-
mal  and  corresponding  value  of  the  objective  function  are
obtained as follows:

ω∗j = −
G j

H j+λ
(10)

ob j = −1
2

∑T

j=1

G j

H j+λ
+λT (11)

G j =
∑

i∈I j
gi H j =

∑
i∈I j

hiWhere , .

The pseudo-code of XGBoost algorithm is shown in Table 2.
In  each  iteration,  the  XGBoost  algorithm  calculates  the

prediction residuals of the current model and uses these residu-
als to train a new regression tree model. The prediction results
of this model are then weighted and cumulatively added to the
previous  model's  prediction  results,  updating  the  overall
model's predictions. This process is repeated until the specified
number of iterations is reached. The learning rate parameter is
used to control the contribution of each model in updating the
overall model.

 Model parameter
This  study  constructs  an  initial  decision  tree  through  a

machine  learning  algorithm,  then  carries  out  feature  selection
and searches for  parameters  with stronger generalization abil-
ity  and  higher  scores.  The  model  optimization  can  greatly
improve the accuracy of  the learners,  reduce the training time
of  the  model,  and  prevent  the  phenomenon  of  under-fitting
and over-fitting.

Smaller  learning  rates  need  more  iterations  for  the  same
training set. The combination of the learning rate and its corre-
sponding  optimal  the  number  of  trees  is  applied  together  for

Mean (score) 
Fig. 2    Relative importance of different influencing factors.
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determining  the  fitting  effect  of  the  model.  Considering  the
different combinations of the learning rate and the number of
trees in the meanwhile,  the optimal depth of the tree for each
combination  can  also  be  found.  Model  performance  scores  of
different  combinations  are  shown  in Table  3,  and  the  number
of  trees is  the optimal  number under the learning rate among
them.

In this model, the combination of {max_depth = 4, learning_
rate = 0.1,  n_estimators = 600} and {max_depth = 5,  learning_
rate = 0.1, n_estimators = 160} have better performance. Given
that it takes a long time for the learner to iterate 600 times, the
combination  {max_depth  =  5,  learning_rate  =  0.1,  n_estima-
tors = 160} is selected as the preferred combination.

For  the  'min_samples_split'  and  the  'min_samples_leaf',  the
default values are 2. It is recommended to increase this value as
the  sample  size  increases.  By  the  method  of  parameters
comparison, {min_samples_leaf = 40, and min_samples_split =
2}  as  the  preferred  combination  is  selected,  which  means  the

node will  be  pruned together  with  the sibling node when the
sample size of each leaf node is less than 40.

 Application of forecasting model

This  study  collected  the  TPI  data  and  various  influencing
factors data of Beijing from January 1, 2018, to June 30, 2019, to
build the data set. To improve the generalization of the model
and prevent over-fitting, 70% of the data is used as the training
set,  and  30%  is  as  the  test  set.  Python  is  used  to  build  the
prediction model,  as well  as to carry out parameter calibration
and accuracy verification of the model.

 Model evaluation indicator
Accurate  and  reasonable  evaluation  indicators  play  an

important  role  in  optimizing  model  parameters,  selecting
reasonable  evaluation  models,  and  checking  the  accuracy  of
prediction  results.  The  regression  model  predicts  and  selects
the corresponding evaluation indicators as follows:

a. Mean_Absolute_Error，MAE

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

|yi− ŷ| (12)

b. Mean_Squared_Error，MSE

MS E(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi− ŷ)2 (13)

c. r2_score

R2(y, ŷ) = 1−

∑nsamples−1

i=0
(yi− ŷ)2∑nsamples−1

i=0
(yi− y)2

(14)

 Model accuracy evaluation
The  XGBoost  model  is  used  to  predict  the  TPI  of  Beijing

during  four  weeks  from  August  26th to  September  29th,  2019,
and  the  real  TPI  data  are  used  for  the  precision  test.  Traffic
restriction is implemented during the forecasting period, which
includes 24 large-scale events with more than 5,000 persons, 4
days of rain, and the Mid-Autumn Festival holiday. It can reflect
the  prediction  performance  of  the  model  under  different
factors.

Taking one week (September 16th to  September 22nd,  2019)
as an example, the prediction accuracy of the peak time TPI in
the  morning  and  evening  are  calculated  respectively.  The
prediction results are shown in Fig. 3. The results show that the
average  accuracy  of  the  whole  week  is  90.1%,  and  it  is  94.8%
during the workday peak hours, the overall prediction accuracy
is  good.  The  prediction  accuracy  of  working  days  and  non-
working days are 91.5% and 89.2%, respectively.  The reason is
that residents' travel demand is more flexible during non-work-
ing  days,  and  it  is  more  susceptible  to  weather,  temperature,
and other factors.

This study selects four weeks from April to May in 2019 as an
example  to  verify  the  accuracy  of  daily  dimension  TPI  predic-
tion  results.  The  average  prediction  accuracy  of  four  consecu-
tive weeks TPI is shown in Table 4. Examples demonstrate that
the average prediction accuracy of  this  model  can reach more
than 90%. Among them, the accuracy of prediction in week 2 is
relatively  low,  which  may  be  attributed  to  the  elastic  demand
for residents' travel during Labor Day, thereby causing the road
network  TPI  to  exhibit  markedly  different  characteristics  from
the norm.

Table 2.    The pseudo-code of XGBoost algorithm.

  XGBoost Pseudo-code:

  Input: Training set D = {(xi, yi)}, where xi represents the i-th input
vector and yi is the corresponding label.
  Output: Prediction model f(x).
  // Step 1: Initialize the ensemble
  Initialize the base prediction model as a constant value: f0(x) =
initialization_constant
  // Step 2: Iterate over the boosting rounds
  for m = 1 to M: // M is the number of boosting rounds
      // Step 3: Compute the pseudo-residuals
      Compute the negative gradient of the loss function with respect to
the current model's predicted values:
      rmi = - ∂L(yi, fm−1(xi)) / ∂fm−1(xi)
      // Step 4: Fit a base learner to the pseudo-residuals
      Fit a base learner (e.g., decision tree) to the pseudo-residuals: hm(x).
      // Step 5: Update the prediction model
      Update the prediction model by adding the new base learner:
      fm(x) = fm−1(x) + η * hm(x), where η is the learning rate.
  // Step 6: Output the final prediction model
    Output the final prediction model: f(x) = fm(x)

Table  3.    Performance  of  extreme  gradient  boosting  (XGBoost)  models
for daily TPI prediction.

Learning rate The number of trees R2 MAE MSE

Maxmium depth of the tree = 3
0.05 1,400 0.8800 0.4934 0.4911
0.1 1,300 0.8779 0.4978 0.4998
0.5 160 0.8666 0.5274 0.5461
1 140 0.8117 0.6442 0.7708

Maxmium depth of the tree = 4
0.05 700 0.8797 0.4923 0.4927
0.1 600 0.8978 0.4640 0.4430
0.5 120 0.8872 0.4763 0.4620
1 110 0.8889 0.4791 0.4550

Maxmium depth of the tree = 5*
0.05 350 0.8865 0.4734 0.4646
0.1* 160* 0.8950 0.4474 0.4309
0.5 50 0.8886 0.4730 0.4560
1 30 0.8756 0.5103 0.5095

Maxmium depth of the tree = 6
0.05 195 0.8896 0.4655 0.4520
0.1 70 0.8791 0.4902 0.4950
0.5 30 0.8945 0.4572 0.4321
1 20 0.8860 0.4838 0.4666
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To  validate  the  stability  of  the  prediction  model  under
extreme weather conditions, this study selects six days each of
rain,  snow,  and  hazy  weather  from  the  predicted  results  and
calculates  the  prediction  accuracy  of  the  peak  time  TPI  in  the
morning  and  evening  for  these  three  weather  conditions
respectively. The predicted period for rainy weather range from
July  5th 2018  to  July  10th 2018,  with  a  prediction  accuracy  of
85.3%.  The  predicted  period  for  snowy  weather  range  from
December 13th 2019 to December 18th 2019, with a prediction
accuracy of 86.1%. The predicted period for hazy weather range
from January 11th 2019 to January 16th 2019, with a prediction
accuracy of 85.6%. The prediction results are shown in Fig. 4.

 Comparison of models
To verify the forecasting performance of the XGBoost model,

Bayesian  Ridge[29],  Linear  Regression[30],  ElatsicNet[31],  and
SVR[32] are selected for the model performance comparison.

The accuracy  of  the  above models  is  verified by  the evalua-
tion  indicators,  and  the  calculated  values  for  model  validation
are  shown  in Table  5.  Compared  with  other  models,  the
XGBOOST  model  has  the  lowest  MAE  and  MSE  values,  which
are 0.396 and 0.989, respectively, while the R2 value is the high-
est  at  0.786.  Model  comparison  results  further  confirmed  and
indicated  the  advantages  of  the  XGBoost  in  modeling  the
complex  relationship  between  road  network  TPI  and  different
influencing factors of road network operation quality.

 Conclusions

A  forecasting  method  of  daily  road  network  TPI  based  on
XGBoost is proposed in this study. The study is of great signifi-
cance  in  alleviating  urban  traffic  congestion  and  scientific
management  of  urban  road  networks.  Based  on  the  historical
road network TPI data of Beijing during 18 consecutive months
from 2018 to 2019,  influencing factors  of  road network opera-
tion quality  are  proposed,  including day  of  week,  time period,

public  holiday,  car  usage  restriction  policy,  special  event,  etc.
The  importance  of  factors  is  quantitatively  calculated  to  iden-
tify the important factors. The results indicate that time period,
week,  and month are the top three factors in terms of  relative
importance,  with  weights  of  0.355,  0.181,  and  0.121,  respec-
tively. This suggests that temporal factors have the most signifi-
cant  impact  on  the  changes  in  the  operational  status  of  the

 
Fig. 3    Comparison of TPI prediction results for one week.

 
Fig. 4    Comparison of TPI prediction results for rainy, snowy, and
hazy weather.

Table 4.    Forecast accuracy of TPI for each week.

Forecast data Prediction accuracy

Week 1 (April 22 to April 28, 2019) 94.3%
Week 2 (April 29 to May 5 2019) 85.3%
Week 3 (May 6 to May 12, 2019) 91.1%
Week 4 (May 13 to May 19, 2019) 89.1%
Average value 90.0%

Table 5.    Accuracy verification result of different models.

TPI
prediction

Performance of different models
(Measured by MAE, MSE and R2)

SVR ElatsicNet Bayesian
Ridge

Linear
Regression XGBoost

MAE 0.611 1.668 1.581 2.189 0.396*
MSE 1.693 3.111 4.121 3.553 0.989*

R2 0.784 0.034 0.113 0.391 0.786*

MAE, Mean Absolute Error; MSE, Mean Squared Error
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road  network.  The  XGBoost  is  introduced  to  predict  the  daily
TPI.  It  is  found  that  the  accuracy  of  the  XGBoost  model  can
reach more than 90%, which is significantly higher than that of
other traditional regression models include and SVR models.  It
shows  that  the  factors  set  and  a  model  constructed  in  this
study can accurately predict road traffic operation status. Based
on the prediction results of the road network TPI, it can be used
for  road  network  operation  monitoring  and  early  warning,
assisting  traffic  management  departments  in  identifying
congested  periods,  issuing  traffic  guidance  information  in
advance,  making  the  spatial-temporal  distribution  of  traffic
flow  in  the  road  network  more  balanced,  improving  the  effi-
ciency of road network operation. It can also assist traffic indus-
try managers in formulating traffic management strategies and
addressing traffic congestion problems from a policy level.

The  forecasting  model  proposed  in  this  study  is  an  estima-
tion of the future traffic operation condition, which is based on
the accurate acquisition of the influencing factors in the future.
Therefore, the accuracy of the factors and conditions judgment
such  as  weather  conditions  is  an  important  prerequisite  to
ensure  the  accuracy  of  the  TPI  forecasting  model.  In  future
work,  the  factors  set  should  be  further  improved  to  enhance
the applicability of the model for short-term factors.
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