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Abstract
This  paper  provides  a  review  of  predictive  analytics  for  roads,  identifying  gaps  and  limitations  in  current  methodologies.  It  explores  the

implications  of  these  limitations  on  accuracy  and  application,  while  also  discussing  how  advanced  predictive  analytics  can  address  these

challenges.  The  article  acknowledges  the  transformative  shift  brought  about  by  technological  advancements  and  increased  computational

capabilities.  The  degradation  of  pavement  surfaces  due  to  increased  road  users  has  resulted  in  safety  and  comfort  issues.  Researchers  have

conducted studies to assess pavement condition and predict future changes in pavement structure. Pavement Management Systems are crucial

in  developing  prediction  performance  models  that  estimate  pavement  condition  and  degradation  severity  over  time.  Machine  learning

algorithms, artificial  neural networks,  and regression models have been used, with strengths and weaknesses.  Researchers generally agree on

their accuracy in estimating pavement condition considering factors like traffic, pavement age, and weather conditions. However, it is important

to carefully select an appropriate prediction model to achieve a high-quality prediction performance system. Understanding the strengths and

weaknesses  of  each  model  enables  informed  decisions  for  implementing  prediction  models  that  suit  specific  needs.  The  advancement  of

prediction models, coupled with innovative technologies, will contribute to improved pavement management and the overall safety and comfort

of road users.
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 Introduction

The level of development in a country is very much reflected
by  the  quality  and  extent  of  its  transportation  systems[1].  In
addition,  the condition of  roads within a country holds signifi-
cant  importance  for  its  overall  development.  It  serves  as  a
significant  indicator  of  the  country's  economic  level  and  has
been recognized by the World Bank as a criterion for assessing
ratings[2].  Considered  as  a  lifeline  for  a  nation,  considerable
portions  of  the  annual  national  budget  are  allocated  towards
the  development  and  maintenance  of  road  networks[3].  Pave-
ments,  as  integral  components  of  road  networks,  require
continuous  conservation.  Over  time,  the  condition  of  pave-
ments undergoes changes as a result of various factors, includ-
ing  structural  strength,  traffic  loading  characteristics,  environ-
mental conditions, and maintenance efforts.  There are gradual
accumulations of damage over the years which are referred to
as  deterioration  ultimately  leading  to  the  pavement  reaching
its serviceability limit. At this stage, the visible signs of internal
damage such as cracking, rutting, and potholes, also known as
distress,  are  the  indicators  of  the  pavement  condition[4].
Research  has  shown  that  deteriorating  pavement  conditions
significantly contribute to increased travel time and decreased
road safety, leading to a higher number of accidents[5].

The Pavement Management System (PMS) is a valuable plan-
ning tool that aids in making decisions regarding the effective
and economical  maintenance of  the  road network.  Its  primary

objective  is  to  ensure  the  comfort  and  safety  of  road  users
while  optimizing  the  allocation  of  resources  in  a  timely
manner[6,7]. By comprehending the process of pavement deteri-
oration,  it  is  possible  to  predict  the  necessary  resources  and
operations  for  mitigating  pavement  deterioration.  The  alloca-
tion of adequate funding for pavement maintenance poses an
ongoing  challenge  for  decision-makers[8].  There  is  always  an
ideal time for maintenance and rehabilitation operations. Dete-
rioration  rate  and  maintenance  costs  will  decrease  if  timely
operations  are  carried  out.  Pavement  performance  prediction
models are the best tools for the ideal time determination[9].

AASHTO,  2011  categorized  pavement  maintenance  into:  (i)
reactive  and  (ii)  proactive[10].  Reactive  maintenance  means
conducting activities  in  response  to  a  system failure[11].  Proac-
tive  maintenance  is  a  strategic  approach  implemented  to
prevent  or  delay  the  occurrence  of  failures[12].  There  are  two
proactive maintenance approaches:  preventive and predictive.
Preventive  techniques  involve  scheduled  activities  aimed  at
extending the lifespan of an infrastructure. On the other hand,
predictive  methods  rely  on  inspection  analysis  to  anticipate
system  failures  and  schedule  necessary  maintenance  actions
accordingly.  This  type  of  maintenance  aims  to  prevent  those
failures  from  occurring[13].  In  recent  years,  predictive  approa-
ches  have  emerged  as  highly  significant  among  maintenance
strategies.  This  is  primarily  attributed  to  their  potential  in
improving  various  aspects  of  maintenance  objectives.  These
approaches  help  reduce  costs  over  the  lifespan  of  highways,
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enhance  highway  performance,  enable  optimal  long-term
planning, and incorporate risk management[10,14].

The  traditional  reactive  approach  involves  replacing  roads
only  after  significant  structural  damage  has  already  occurred.
This reactive approach often leads to more extensive and costly
rehabilitation  measures,  posing  potential  safety  hazards  for
road users before any interventions are made[6,15,16]. The proac-
tive  approach  prioritizes  preservation  by  implementing  minor
and  less  invasive  repairs  on  roads  before  significant  structural
degradation  takes  place.  The  objective  is  to  minimize  the
necessity for extensive road reconstruction. In comparison to a
reactive approach, a proactive strategy results in long-term cost
savings,  reduced  traffic  congestion,  and  prevents  a  significant
decline in safety conditions[6,17].  The data collection and analy-
sis  phases  play  a  critical  role  in  implementing  a  proactive
approach  and  are  fundamental  to  the  success  of  a  Pavement
Management  System  (PMS)  implementation[18,19].  Early-stage
pavement  maintenance  has  been  proven  to  result  in  signifi-
cant  cost  savings  by  preventing  further  deterioration  of  the
pavement. To ensure efficient decision-making by engineering
pavement  managers,  funding  is  allocated  in  a  manner  that
prioritizes  efficiency  and  economic  viability.  An  essential
component  of  a  robust  pavement  management  system  is  the
collection of extensive road condition data over time. This data
is  utilized  in  the  development  of  pavement  deterioration
models, enabling accurate predictions. Continuous monitoring
of pavement degradation forms the foundation of a pavement
management  system,  facilitating  the  determination  of  asset
degradation rates at  both individual  and network levels.  Addi-
tionally,  it  assists  in  evaluating  the  remaining  lifespan  of  the
pavement and facilitates the scheduling of future maintenance
activities[20,21].

This study reviewed predictive techniques from existing liter-
ature  to  improve  the  effectiveness  and  efficiency  of  mainte-
nance planning.  The limitations  of  these  models  and their  po-
tential impact on accuracy and applicability were also explored.
Moreover,  an  investigation  was  conducted  into  the  various
factors that influence the accuracy of predictive analytics.

 Materials and methods

The  methodology  for  the  review  consisted  of  several  steps,
including the selection of relevant papers, categorization of the
utilized prediction methods, and evaluation of their limitations
and drawbacks. The papers were further analysed based on the
algorithms  employed  to  develop  prediction  models,  which
were classified into  three sub-categories:  deterministic,  proba-
bilistic, and machine learning. The framework of the methodo-
logy is illustrated in Fig. 1. The primary focus was on reviewing
papers  published  within  the  last  20  years.  In  this  work,  a  ma-
jority  of  the  significant  studies  that  have  applied  predictive
analytics  have  been  covered. Figure  2 provides  a  visual  repre-
sentation of the total number of papers investigated per year of
publication.

 Discussion

Deterioration  models  are  utilized  to  forecast  the  future
condition,  performance,  or  level  of  service  of  an  asset  item.
Deterministic  models  are  represented  by  mathematical
functions,  whereas  probabilistic  models  employ  probability

distributions  to  predict  a  range  of  potential  conditions  or  the
likelihood  of  a  specific  condition  occurring  in  the  future[22−24].
Figure  3 illustrates  the  classification  of  reviewed  prediction
models.

 Deterministic models
The condition of a pavement is impacted by multiple factors.

One  such  factor  is  pavement  roughness,  which  serves  as  an
indicator  for  assessing  pavement  quality.  Various  elements
influence  pavement  roughness,  including  initial  roughness,
pavement  age,  climatic  variables,  structural  characteristics  of
the  pavement,  traffic  load,  subgrade  specifications,  drainage
type, drainage condition, as well as past treatment and mainte-
nance  activities[25−31].  Deterministic  models  are  extensively
employed by transportation agencies to establish a connection
between  pavement  condition  and  contributing  deterioration
factors.  These models are preferred due to their  simplicity and
user-friendliness.  Pavement  deterministic  models  are  typically
classified  into  three  groups:  mechanistic,  empirical,  and
mechanistic-empirical.

Condition prediction using a mechanistic approach is  based
on  the  mechanical  and  structural  characteristics  of
pavements[24].  Mechanistic  models  assess  the  condition  of
assets  by  analysing  mechanistic  responses,  such  as  stresses,
strains, and deflections. For example, the load exerted by vehi-
cle wheels is used to estimate the stresses and strains within a
pavement  layer.  These  estimations  are  then  incorporated  into
mechanistic  functions  to  quantify  condition  values[32,33].  Me-
chanistic  models  provide  in-depth  understanding  of  the  rela-
tionship  between  mechanical  responses  and  the  condition  of
an asset. However, ensuring the accuracy of results from these
models  is  challenging  because  it  requires  accounting  for
numerous  parameters  that  can  potentially  impact  the  asset's
condition[23].

Empirical  methods  utilize  statistical  analysis  and  take  into
account  significant  factors  that  contribute  to  deterioration,
such  as  pavement  age  and  traffic  load[24].  Empirical  methods
often  employ  linear  and  non-linear  regression.  The  regression
analysis  performed  with  a  single  variable  is  referred  to  as
univariable regression, while using multiple variables is known
as multivariable regression. Since multiple factors can affect the
degradation  of  assets,  univariable  regression  techniques  often
fail to produce accurate results.

Mechanistic-empirical  procedures  combine  mechanistic
functions  with  historical  observations  to  create  prediction
models. By using mechanistic methods, these models establish
the  functional  forms  and  descriptive  variables  required  for
accurate  predictions[23,24].  These  models  are  typically

 
Fig. 1    Methodology framework.
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implemented at  the project  level  and are less  commonly used
at  the  network  level.  Nevertheless,  they  can  be  applied  in  a
wider  range  of  situations  compared  to  empirical  methods[34].
However, it is important to note that calibration is a crucial step
in  ensuring  the  validity  of  these  models  across  different
scenarios[24].  The  primary  challenge  associated  with  mecha-
nistic-empirical  models  is  the  lack  of  adequate  structural  data
necessary for their application.

Table  1 illustrates  the  summary  of  reviewed  papers  that
utilized  deterministic  models  for  prediction  of  the  pavement
condition.

The  review  found  that  people  often  use  empirical  methods
to  predict  pavement  conditions  in  the  future.  However,  these
methods  can  be  limited  because  there  isn't  always  enough
data. Also, they often only look at a few important factors in the
road's  deterioration  because  of  data  issues  or  limitations  in
their  analysis.  Another  problem  is  that  the  equations  used  to

describe  how  these  factors  affect  the  road  condition  can  be
really complicated[58].

Mechanistic  and mechanistic-empirical  performance models
can  predict  pavement  performance.  Although  these  models
require  more  data  for  calibration,  they  offer  useful  simplifica-
tions  compared  to  other  prediction  models  such  as  empirical
models[59].  However,  the  process  of  selecting  suitable  predic-
tion  equations  holds  great  importance  in  the  development  of
an  optimal  performance  model[60].  Creating  empirical  models
requires  a  sizable  dataset  with  pavement  conditions  and clear
mathematical  and  physical  boundaries  identification.  These
steps  are  vital  for  precise  modelling  and  to  avoid  substantial
errors[61].

Regression  models  provide  a  straightforward  approach  for
analysis, allowing the utilization of various equations. The effec-
tiveness of the assumed functions or equations in constructing
regression  models  can  be  assessed  using  statistical  metrics,
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Fig. 2    Number of papers investigated vs year of publication.

 
Fig.  3    Classification  of  reviewed  prediction  models.  ANN:  Artificial  Neural  Network,  BPNN:  Back  Propagation  Neural  Network,  DNN:  Deep
Neural Network, GBDT: Gradient Boostine Decision Tree, GONN: Genetically Optimized Neural Network, GP: Genetic Programming, LSSVR: Least
Squares Support Vector Regression, ML-Lasso: Machine Leaming regularzed regression with Lasso, ML-LR: Machine Leaming Liear Regression,
MLPNN: Machine Leaming Propagation Neural Network, RNN: Recurrent Neural Network.
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Table 1.    Summary of deterministic prediction models in the reviewed papers.

Reference Pavement types Findings Approach

Ramadan & Beckedahl,
2017[35]

Asphalt Highlights discrepancies between lab and real-world asphalt
pavement performance. Evolving properties due to traffic and
environment pose challenges. Current methods fall short. A new
incremental approach is proposed, addressing material variations
over time.

Mechanistic

Norouzi et al, 2017[36] Asphalt Development of a Layered Viscoelastic Critical Distresses (LVECD)
model to predict fatigue performance. This study applied the LVECD
program to 18 pavements in the US and Canada. Comparing
simulations with field observations, the study found strong
agreement in fatigue damage trends, validating LVECD's accuracy in
predicting crack initiation and propagation.

Shah et al., 2013[37] Flexible pavements Overall Pavement Condition Index (OPCI) for a selected network of
urban roads in Noida city (India). Four key performance indices were
calculated, including distress, roughness, structural capacity, and
skid resistance. By combining these indices, the OPCI was created,
offering a reliable indicator of pavement condition.

Albuquerque et al., 2022[38] Flexible pavements Urban Pavement Condition Index (UPCI) was developed using
multiple regression with pavement defects and Current
Serviceability Value (CSV). The UPCI was compared with other PCIs,
showing variability and analyzed through statistical tests.

Empirical

Al-Suleiman et al., 2020[39] Flexible pavements Relationship between maintenance costs and pavement
deterioration rate studying 1.5 years' data to understand the link
between maintenance costs and pavement deterioration

Joni et al., 2020[40] Flexible pavements Strong model for predicting pavement roughness (IRI) based on
visible pavement distress data from 83 flexible pavement sections.
Factors such as polished aggregate, potholes, alligator cracking,
patching, raveling, and corrugation were considered. The model,
created through stepwise multiple linear regression in SPSS.

Harikeerthan et al., 2020[41] Flexible pavements Developed Pavement Deterioration Models and a Relative
Deterioration Index using data from Automated and Manual Field
Evaluation methods on Bangalore city roads (India). Findings
highlighted the dominant impact of roughness on road
deterioration in selected categories.

Alaswadko et al., 2019[42] Sealed granular pavements Developed robust multilevel roughness models for sealed granular
pavements using data from 40 highways (2300 km). Key predictors
included traffic loading, subgrade soil potential, climate, drainage,
and initial pavement strength. Time was the most significant
predictor, followed by initial pavement strength and traffic loading.

Mamlouk et al., 2018[43] Flexible pavements Relationship between pavement ride quality (roughness) and rut
depth and accident rate on highways. Found that the accident rate
remained stable until pavement roughness exceeded 210
inches/mile or rut depth reached 0.4 inches. Beyond these
thresholds, the crash rate increased significantly.

Hassan et al., 2017[44] Chip/spray seal, Geotextile
seal, Stone mastic asphalt,
Open graded asphalt,
Ultra-thin asphalt

Enhancing the identification and prioritization of resurfacing needs
through comparative analysis of deterioration models for five types
of bituminous surfaces. Surface condition data, transformed into
Surface Inspection Rating (SIR), was analyzed using regression,
logistic regression, and Markov chains. Results showed similar
predictions and deterioration rates across the approaches for most
surfacing types.

Sylvestre et al., 2019[45] Flexible pavements Incorporating frost heave in long-term roughness performance
prediction models. The result presented illustrate that a significant
increase in long-term IRI deterioration rate, usually caused by a more
variable subgrade soil, is likely to contribute to the rehabilitation of
the pavements up to four years before the end of the pavement
service life.

Wang et al., 2017[23] Jointed plain concrete
pavement (JPCP)

Comparative analysis of multivariate non-linear regression, artificial
neural network and Markov chain models for faulting-based
pavement performance prediction. MNLR needs recalibration, ANN
requires more data, and MC, though promising for limited data,
lacks quantitative correlation. Future research should blend model
strengths for improved accuracy.

Sultana et al., 2016[46] Flexible pavements Examined flood-affected roads' data and proposed a model showing
rapid post-flood pavement deterioration. Findings align with
observations post-Hurricanes Katrina and Rita in New Orleans (US).

Ziari et al., 2016[47] Flexible pavements Comparative analysis of group method of data handling and ANN in
terms of their capabilities. Nine input variables were studied,
focusing on traffic, environmental changes, and pavement
structures, with IRI. Results showed that ANNs accurately predicted
pavement condition in short and long terms, while Group Method of
Data Handling (GMDH) models did not achieve acceptable accuracy.

(to be continued)
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aiding in the evaluation of their capacity to accurately conform
to observed data[62]. While the coefficient of determination is a
widely employed metric for appraising predictive models, some
researchers contend that alternative statistical measures rooted
in error percentages can also be applied to gauge the quality of
fit[62−64].

 Probabilistic models
By  utilizing  the  probability  concept,  these  models  estimate

the likelihood of  an asset's  future condition or life expectancy,

either as a range of potential outcomes or a specific probability
value[32,65].  These  models  provide  a  more  comprehensive
understanding of risks and can assist asset managers in mitigat-
ing risks associated with their decision-making[22,66].

Markov chain algorithms utilize the stochastic concept of the
Markov process, which calculates the probability of each poten-
tial event in a sequence based on its likelihood. The probability
of an event is influenced solely by the preceding event's state.
By  examining  the  transition  of  an  asset  item's  condition
between  two  consecutive  inspections,  a  transition  matrix  is

Table 1.    (continued)
 

Reference Pavement types Findings Approach

Luo, 2014[48] Flexible pavements Predictive models and a composite distress index for pavement
management and preservation projects. Using MLR and ANN
models, the research recommends MLR models due to their
simplicity and robust performance. An Analytic Hierarchy Process
(AHP) was utilized to create a composite distress index, helping
Kentucky Transportation Cabinet (KYTC) prioritize projects based on
11 distress indices.

Shahini et al., 2014[49] Flexible pavements Integrating the impact of severe events like snow storms and floods
on road infrastructures achieving over 90% accuracy using LTPP and
National Oceanic and Atmospheric Administration (NOAA) data.

Sreedevi et al., 2014[4] Flexible pavements Maintenance Priority Index (MPI) for six sections of State Highway
SH-1, considering factors like pavement condition, riding quality,
traffic, and land use. Significant relationships between pavement
distress and roughness were established using MLR.

Anyala et al., 2014[24] Asphalt Predictive model considering climate, traffic, materials, and
pavement design factors to assess the impact of climate change on
road pavement rutting. Developed using Bayesian regression and
Monte Carlo simulations, the model provides probabilistic estimates
for rut depth progression and maintenance costs.

Prasad et al., 2013[50] Rural Roads
(Flexible Pavement)

Relationship between pavement roughness and surface distresses
focusing on roughness and its relation to safety and driving ease
using IRI to measure roughness. Bump Integrator, calibrated with
MERLIN, collected roughness data.

Owolabi et al., 2012[51] Flexible pavements Pavement performance models for Nigeria (Africa) and similar
developing countries to predict deterioration rates. Key parameters
affecting Pavement Condition Score (PCS) and IRI were identified
using Stepwise Regression. Depth of ruts and area of potholes
impacted PCS, while number of patches, length of cracks, and depth
of ruts affected IRI.

Chen & Zhang, 2011[52] Asphalt Exploring the suitability of four IRI-based deterministic deterioration
prediction models including the NCHRP and Dubai models, using
NMDOT PMS and LTPP data in New Mexico (US). NCHRP and Dubai
models prove effective, while Al-Omari—Darter and NMDOT models
lack statistical reliability. Additionally, a survival curve probabilistic
model for pavement service life prediction is introduced, with traffic
loading approach yielding the most accurate results.

Sidess et al., 2022[53] Flexible pavements Predictive model for IRI deterioration, calibrated using pavement
structural factors like structural number, asphalt thickness, subgrade
strength, and environmental conditions. Results, compared with
road measurements in diverse climate zones managed by Netivei
Israel (NETI), exhibit strong correlation.

Mechanistic-
Empirical

Gupta, 2019[54] Rural Hilly Roads Development of Rural Road Maintenance Priority Index (RRMPI) for
rural road networks in hilly terrain areas of India on a scale of 0-100,
which efficiently assesses pavement conditions. RRMPI was used to
select maintenance strategies for 12 rural road stretches in Himachal
Pradesh, ensuring cost-effective and targeted maintenance efforts.

Katicha et al., 2016[55] Flexible pavements Considering pavement age and Modified Structural Index (MSI) and
accurately predicts average critical condition index of pavement
sections. The model with MSI was 50,000 times more accurate.
Lowering MSI from 1 to 0.6 for a 7-year-old pavement reduced the
Critical Condition Index (CCI) from 79 to 70.

Hasan et al., 2016[56] Flexible pavements Compared empirical and mechanistic-empirical approaches in
flexible pavement design across 76 locations in 13 US states.
Findings revealed significant impacts of mean annual temperature
and precipitation on various pavement distresses, except for the IRI,
which remained unaffected.

Jung & Zollinger, 2011[57] Jointed plain concrete
pavement

Faulting model calibrated using a erosion test involving the
Hamburg wheel-tracking device and Long-Term Pavement
Performance (LTPP) data.

Pavement maintenance predictive techniques
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created.  This  matrix  is  then  used  to  predict  future  condition
values[67].

Distribution  models  serve  the  purpose  of  predicting  an
asset's future state and its associated likelihood by employing a
predefined  probability  distribution.  Nevertheless,  when  the
available data is  insufficient,  these models must make simplifi-
cations  and  select  a  probability  distribution,  which  can  intro-
duce  inaccuracies  since  the  chosen  distribution  might  not
perfectly  align  with  the  real-world  data.  Commonly  utilized
probability  distribution  models  include  Weibull,  Markov-
Weibull,  Kaplan-Meier,  and Bayesian.  The Weibull-based analy-
sis involves modelling an asset item's survival time distribution
using  the  Weibull  probability  distribution.  In  the  Markov-
Weibull  approach,  it  combines  the  Markov  transition  matrix
with  the  Weibull  survival  distribution  to  predict  future  condi-
tion possibilities. Bayesian analysis, on the other hand, incorpo-
rates  prior  knowledge  of  condition  measurements  along  with

information gathered from historical observations to construct
a probabilistic predictive model[22,23,68].

Table  2 illustrates  the  summary  of  reviewed  papers  that
utilized  probabilistic  prediction  models.  After  conducting  a
review,  it  was  found  that  the  Markov  chain  is  the  most
commonly used probabilistic method for predicting pavement
performance.

The Markov chain model is commonly used to predict condi-
tion  values,  especially  when  there  isn't  enough  data  for  all
contributing factors. This model focuses on transition probabili-
ties  and  the  reasons  behind  these  transitions,  using  historical
data from roadways'  operation and maintenance.  In the litera-
ture, Markov chain models are divided into two types: homoge-
neous  and  non-homogeneous.  Homogeneous  models  assume
that an asset's condition at a specific time only depends on its
previous  condition,  and  transition  probabilities  remain
constant  over  time.  However,  these  assumptions  can  lead  to

Table 2.    Summary of probabilistic prediction models in the reviewed papers.

Reference Pavement
types Findings Approach

Pantuso et al.,
2021[69]

Flexible
pavements

Improve prediction accuracy by combining the model's degradation estimate with real-
world observations using negative binomial regression based on pavement age. Various
road type models were compared with traditional methods, and the linear empirical. Results
showed substantial improvements, reducing mean square error by 33% (interstate), 36%
(primary), and 41% (secondary roads) compared to measured conditions without additional
modeling.

Bayesian

Issa& Abu Eisheh,
2019[70]

Flexible
pavements

Create a predictive model for pavement condition to optimize road maintenance and
rehabilitation plans. By assessing pavement sections visually and using the Pavement
Condition Index (PCI), the study suggests early prediction (within 5-10 years) enables cost-
effective preventive maintenance actions, like crack sealing and overlay, optimizing limited
budgets for road maintenance.

Markov chain

Gursoy, 2019[71] General Develop network-level pavement deterioration prediction models in the absence of key
input variables like traffic loading, freeze-thaw cycles, snow plowing, construction quality,
pavement thickness, and age.

Markov chain

Rose et al.,
2018[72]

Low volume
roads

Include uncertainties in low-volume road pavement behavior that deterministic models
overlook. Focused on distresses like raveling, potholes, and edge failures. Rare load-
associated distresses indicated drainage and construction quality issues as main
deterioration causes. The study analyzed distress progression with age and established
probabilities for distress occurrences.

Gamma,
exponential &
inverse-Gaussian

Soncim et al.,
2018[73]

Asphalt Suggest a method to predict IRI when historical pavement condition data is lacking.
Transition probability matrices, incorporating factors like traffic density and climate, were
established. The models, based on the International Roughness Index, highlighted variations
in pavement behavior tied to factors such as traffic and climate, as per expert experiences.

Markov chain

Saha et al.,
2017[74]

General Enhance Colorado DOT's deterioration prediction methods by factoring in degradation
process uncertainties alongside deterministic techniques. Longitudinal, fatigue, and rut
indices deteriorated slowly, while transverse and ride indices showed faster deterioration.
The models achieved high accuracy (R2 > 0.84).

Markov chain

Abaza, 2017[75] Rehabilitate
d pavement

Introduces two empirical Markovian models for predicting transition probabilities in
rehabilitated pavements: one for staged-homogeneous transitions and another for non-
homogeneous transitions. These models calculate deterioration probabilities based on
original pavement data and adjust for increased traffic loads and decreased pavement
strength.

Markov chain

Abaza, 2016[76] Flexible
pavements

Simplified Markov model predicted future pavement conditions efficiently by dividing the
analysis period into staged-time periods. Deterioration probabilities, influenced by
increasing traffic and pavement degradation, were estimated using C constants, determined
through a trial-and-error approach.

Markov chain

Moghaddass et
al., 2015[77]

General Predicting remaining useful life in mechanical systems, vital for cost-effective maintenance
which focuses on multistate degradation, common in real-world scenarios. Addressing
interval-censored data at fixed inspection points, the research develops accurate methods
for parameter estimation and essential reliability measures.

Markov chain

D. Chen et al.,
2014[78]

Flexible
pavements

Developed a precise data cleansing method for pavement condition data and established
the superiority of the sigmoidal model in predicting pavement performance. It introduced an
innovative approach for constructing piecewise linear distress models. Despite a reduced
dataset, the study met analytical requirements due to meticulous data merging.

Ordinal logistic

Khan et al.,
2014[79]

General Discusses various methods, including non-homogeneous transition probability matrices, for
deriving Road Deterioration (RD) models. The study presents new RD models considering
flooding effects and optimal Maintenance (M) and Rehabilitation (R) strategies.

Markov chain

Anyala et al.,
2014[24]

General Predictive model considering climate, traffic, materials, and pavement design factors to
assess the impact of climate change on road pavement rutting. Developed using Bayesian
regression and Monte Carlo simulations, the model provides probabilistic estimates for rut
depth progression and maintenance costs.

Bayesian

(to be continued)
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Table 2.    (continued)
 

Reference Pavement
types Findings Approach

Thomas
&Sobanjo,
2013[80]

Flexible
pavements

Presents a flexible semi-Markov model for pavement deterioration, utilizing Weibull
distribution for condition state durations which accommodates non-exponential durations.
Monte Carlo simulations reveal the semi-Markov model's superiority in capturing actual
flexible pavement deterioration patterns compared to the Markov model in specific cases

Markov chain

Gao et al.,
2012[81]

Flexible
pavements

Include a random term in the hazard function to enhance fatigue cracking estimates by
accounting for unobserved variations. The model's efficiency is demonstrated using the LTPP
database.

Bayesian

C. Chen & Zhang,
2011[52]

General Exploring the suitability of four IRI-based deterministic deterioration prediction models
including the NCHRP and Dubai models, using NMDOT PMS and LTPP data in New Mexico
(US). NCHRP and Dubai models prove effective, while Al-Omari—Darter and NMDOT models
lack statistical reliability. Additionally, a survival curve probabilistic model for pavement
service life prediction is introduced, with traffic loading approach yielding the most accurate
results.

Kaplan-Meier

Abaza, 2011[82] Flexible
pavements

Stochastic approach to estimate flexible pavement thickness, integrating traditional and
stochastic factors, notably initial and terminal transition probabilities. A discrete-time Markov
model used these probabilities to predict pavement distress ratings. Empirical models for
low volume roads were developed, considering relevant design factors and employing
indicators like the area under the performance curve and average distress rating.

Markov chain

Kobayashi et al.,
2010[83]

General Method for predicting road section deterioration using Markov transition probability models
and hazard models. Road states are categorized into ranks, and deterioration processes are
analyzed through exponential hazard models, considering non-uniform inspection intervals.

Markov chain &
Weibull hazard

Abaza et al.
2009[84]

General Predict pavement remaining strength by adjusting initial strength using layer capacity
factors. Initial strength is determined by indicators like gravel equivalent or structural
number.

Markov chain

Pulugurta et al.,
2009[85]

General Markov prediction model using ODOT's pavement condition database in which transition
matrices were modified through imputation techniques.

Markov chain

Abaza et al.,
2007[86]

General Predicts pavement conditions using initial and transition probabilities which creates long-
term restoration plans balancing performance and budget.

Markov chain

Ortiz-García et al.,
2006[87]

General Three methods, based on historical data, regression curves, and yearly condition
distributions. Despite minor deviations, the third method consistently produced
distributions similar to the original data.

Empirical and
Markov chain

Yang et al.,
2005[88]

General Dynamic Markov chain approach, incorporating a logistic model for explicit transition
probabilities. By capturing crack state transitions and randomness, it provides a more
suitable and efficient method for pavement deterioration modeling.

Markov chain

Shahin, 2005[89] General Practical guidance for cost-effective pavement management, covering project and network-
level strategies, cost analysis, equipment selection, and rehabilitation techniques with a
focus on the PCI procedure.

Markov chain

Abaza, 2005[90] Flexible
Pavement

Overlay design models for flexible pavements by assessing surface conditions over time.
Performance curves link surface condition to service life or load applications, allowing
compensation for performance loss.

Markov chain

Abaza et al.,
2003[91]

Flexible
Pavement

Approach to flexible pavement design has been developed, considering anticipated
performance and life-cycle cost. By optimizing the terminal serviceability index, this method
ensures cost-effective designs, challenging existing AASHTO recommendations.

Markov chain

Hong et al.,
2003[92]

General Novel probabilistic approach for predicting pavement performance, considering
uncertainties in traffic, environment, material properties, and pavement geometry whish
aligns well with established pavement deterioration models (OPAC and AASHTO).

Markov chain

Ferreira et al.,
2002[93]

General Cost-effective pavement management model using deterministic performance estimates for
cracking, rutting, disintegration, and roughness. The approach employs a modified PSI and
genetic algorithms for optimization.

Genetic
algorithm

Mishalani et al.,
2002[94]

General Alternative approach using probabilistic duration models to capture condition evolution
over time. The method estimates state transition probabilities from these duration models,
addressing the shortcomings of existing techniques.

Markov chain

Ferreira et al.,
1999[95]

General Detailed comparison of numerous pavement performance models such as regression
analysis, Bayesian methodology, Markov process, nonhomogeneous Markov process, and
semi-Markov process.

Regression,
Markov, Semi-
Markov, Bayesian

Li et al., 1996[96] General Method for accurate pavement deterioration prediction, vital for repair planning using
advanced techniques, avoiding subjective opinions or extensive data and calculates
transition probability matrices and pavement condition probabilities for various stages.

Markov chain

Madanat et al.,
1995[97]

General Robust econometric method based on ordered probit techniques to estimate infrastructure
deterioration models and transition probabilities from condition rating data which treats
facility deterioration as a latent variable, addresses the discrete nature of condition ratings,
and explicitly links deterioration to relevant variables,

Markov chain

Wang et al.,
1994[98]

General Refined Network Optimization System (NOS) by developing new matrices using current data
and employing the Chapman-Kolmogorov method to establish long-term pavement
behavior. The modified matrices, incorporating accessibility rules, enhanced prediction
accuracy.

Markov-process-
based transition

Butt et al. 1987[99] General Pavement Condition Index (PCI) and age-based model, dividing PCI into ten states over 6-
year. Transition matrices, determined through nonlinear programming, enable accurate
prediction.

Markov chain

Golabi et al.
1982[100]

General PMS to produce optimal maintenance policies. The model integrates management policy
decisions, budgetary policies, environmental factors, and engineering decisions.

Markov chain

Karan et al.
1976[101]

General Method to prioritize urban pavement improvements which outlines a management
framework and introduces a serviceability performance concept validated through street
testing. The study suggests criteria for necessary improvements, a performance prediction
method, and a network priority programming scheme for urban pavements.

Markov chain
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prediction  inaccuracies.  Non-homogeneous  models,  on  the
other hand,  consider different transition probabilities  at  differ-
ent  times,  taking  all  previous  stages  into  account  when  fore-
casting  an  asset's  future  condition.  Still,  some  studies  have
found  inaccuracies  in  the  results  of  non-homogeneous
models[102].

Deterministic and probabilistic methods are ways of figuring
out  how  things  are  connected.  But  sometimes,  to  make  it
easier,  we  simplify  things  too  much.  These  methods  rely  on
personal  guesses  and  making  things  simpler  when  trying  to
find patterns. The deterministic way has often been too narrow
because it only looks at a few things that make something get
worse. This is because we don't always have all the information,
and we don't fully understand why things get worse. So, these
methods  might  not  work  well  in  all  situations.  Also,  when
experts use deterministic methods, their personal opinions can
affect  the  results,  making  them  less  accurate.  Some  studies
have  tried  to  fix  this  by  combining  personal  opinions  with
math,  but  the  problem  of  simplifying  things  too  much  still
exists[103].

 Machine learning models
Machine learning, first proposed by Arthur Samuel in 1959, is

about  computers  learning  and  improving  their  performance
through  experience,  without  needing  detailed  programming
for  each  task.  Recently,  researchers  have  shown  increasing
interest  in  using  machine  learning  to  predict  maintenance
tasks[104].  Machine  learning  methods  delve  into  complex  data
relationships  and  patterns  with  little  human  involvement.
These methods learn from data, improving predictive accuracy
without  relying  on  subjective  assumptions.  This  has  sparked
growing interest among researchers in using machine learning
to predict maintenance tasks. Artificial Neural Networks (ANNs)
are  a  prominent  machine  learning  tool  in  highway  asset
management.  Yet,  ANN  has  drawbacks,  such  as  lengthy  train-
ing and the risk of getting stuck in local minimum points during
training.  Additionally,  selecting the right neural  network struc-
ture and training algorithms can be challenging when building
an ANN model[23].

Table  3 illustrates  the  summary  of  reviewed  papers  that
utilized  machine  learning  prediction  models.  After  reviewing
existing  literature  on  machine  learning  models  for  predicting
pavement  conditions,  it  was  discovered  that  most  studies
predominantly employed ANNs.

Neural  network  models  for  predicting  pavement  perfor-
mance  have  certain  limitations,  such  as  the  requirement  for

data related to traffic levels, climate conditions, and other pave-
ment  condition  indicators  in  the  long  term[128].  A  significant
drawback  of  utilizing  neural  network  models  for  pavement
performance  prediction  is  the  necessity  for  numerical  verifica-
tion and statistical tests to validate the accuracy of the models,
especially for artificial neural networks and neuro-fuzzy models.
Additionally,  obtaining  pavement  condition  data,  particularly
data  related  to  Pavement  Condition  Index  (PCI),  poses  a  chal-
lenge  for  model  developers.  Furthermore,  finding  a  suitable
flexible  pavement  with  complete  service  life  information  can
also  be  difficult[119].  Since  the  1990s,  ANNs  have  been  exten-
sively used as a  machine-learning algorithm for  predicting the
condition or life expectancy of highway assets. However, select-
ing  appropriate  training  algorithms  and  finding  the  optimal
model architecture can be challenging. Additionally, the perfor-
mance of traditional ANNs can be limited by the time-consum-
ing  training  process  and  the  instability  of  the  model  in  local
minimum points[23,129].

 Comparison between deterministic, probabilistic, and
machine learning models

In  summary,  each prediction model  has  its  specific  features,
strengths,  and  limitations.  Therefore,  choosing  an  appropriate
prediction model is crucial for developing a high-quality predic-
tion performance system.

The  paper  is  focused  on  the  input/output  of  deterministic,
probabilistic,  and  machine  learning  pavement  performance
prediction approaches.  Furthermore,  comparison between the
pavement  performance  models  in  terms  of  the  advantages,
disadvantages, and potential applications is presented in Table
4.

Markovian-based  models  are  a  valuable  tool  in  pavement
management  systems  when  historical  data  is  available.  More-
over,  it  is  useful  when  a  simplified  probabilistic  approach  to
pavement  performance  prediction  is  sufficient  for  decision-
making.  Markovian-based  models  are  found  extensively  being
used  for  pavement  performance  prediction  in  asset  manage-
ment systems to predict when maintenance or rehabilitation is
necessary  for  a  pavement  section,  in  allocating  budgets  for
pavement maintenance and rehabilitation projects by estimat-
ing which sections are likely to deteriorate in the near future, in
assessing  the  impact  of  different  maintenance  and  rehabilita-
tion strategies on the long-term condition of pavements and in
real-time  pavement  monitoring  systems  to  assess  current  and
future  pavement  conditions.  However,  the  choice  between
deterministic,  probabilistic,  or  machine  learning  approaches

Table 3.    Summary of machine learning prediction models in the reviewed papers.

Reference Pavement types Findings Approach

Guo et al., 2022[105] Asphalt Enhance pavement performance estimation, offering a dependable maintenance
reference.

GBDT

Alatoom& Al-
Suleiman, 2022[106]

Asphalt ANN models outperform regression models in accurately predicting IRI. ANN

Haddad et al.,
2022[107]

Flexible pavements Predictive rutting curves to estimate road deformations based on traffic, climate, and
performance factors.

DNN

Issa et al., 2022[108] General A cost-effective model utilizing machine learning techniques was developed to assess
Palestinian pavement conditions. Traditional visual inspections were replaced with a
hybrid model, combining classical machine learning and neural networks.

ANN

Sudhan et al.,
2020[109]

Flexible pavements Pavement deterioration prediction models for low-volume roads in Kerala, India, using
system dynamics and Powersim Studio version 10. Fourteen roads were analyzed, and
the models were validated against field data. Results show that system dynamics is
effective for developing accurate pavement deterioration prediction models.

Powersim
Studio

(to be continued)
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Table 3.    (continued)
 

Reference Pavement types Findings Approach

Choi & Do, 2020[110] Flexible pavements An algorithm was developed to predict the condition of road sections for a year based
on time series data. Optimized sequence lengths reduced errors by 58.3-68.2%,
achieving high prediction accuracy (0.71-0.87).

RNN

Hussan et al.,
2019[111]

Asphalt Non-linear regression and artificial neural networks effectively modeled permanent
strain, with temperature as the most significant factor. ANN outperformed regression,
accurately predicting strain for SP-B graded mixtures (R2 = 0.99) and showing high
overall prediction performance.

ANN

Rezaei-Tarahomi et
al., 2019[112]

Rigid airfield
pavements

Compared critical tensile stresses predicted by ANNs with 3D-FE solutions for large
aircraft which demonstrated that ANNs accurately assessed top-down critical tensile
stress sensitivity, suggesting their potential for airport pavement failure analysis.

MLPNN

Yao et al., 2019[113] Asphalt Models to predict pavement deterioration (rutting, roughness, skid-resistance,
transverse cracking, and surface distress) achieving an average testing R-square of
0.8692. Traffic loads affected skid-resistance and transverse cracking, while pavement
treatments had a high impact on crack prediction models.

NN

Chopra et al.,
2018[114]

Flexible pavements Genetic Programming (GP) models to predict pavement distress on urban roads in
Patiala City, Punjab, India. These models accurately forecasted cracking, raveling,
pothole, rutting, and roughness progression using data from 16 roads collected
between 2012 and 2015.

GP

Okuda et al.,
2017[115]

General Method to predict rutting depth using NN and applied dropout and gradient clipping
techniques to enhance accuracy. Compared to MLR and Multi-Layer Perceptron (MLP),
RNN showed superior prediction ability, with lower RMSE and higher correlation
coefficient (R) with measured values

RNN

Marcelino et al.,
2017[116]

Asphalt Used scikit-learn, a Python machine learning library, to predict asphalt pavement
friction using data from 113 sections of asphalt concrete pavement across the US. Two
machine learning models were developed, showing similar performance. The research
emphasized the significance of initial friction in the evolution of friction over time.

ML-LR &ML-
Lasso

Hamdi et al.,
2017[117]

Flexible pavements Creating an ANN model for SDI prediction based on parameters like crack area, crack
width, pothole, rutting, patching, and depression. The model, applied to Integrated
Road Management System (IRMS) data, achieved a high correlation (R2 = 0.996%).
Rutting (59.8%), crack width (29.9%), and crack area (5.0%) were identified as the most
influential parameters.

ANN

Sanabria et al.,
2017[22]

Flexible pavements Compared Probabilistic Neural Networks Model (PNNM) and Ordered-Probit Models
(OPM) using traffic data in which PNNM proved more accurate, identifying peak hour
volume and single heavy commercial average volume as significant predictors.

ANN

Amin & Amador-
Jiménez, 2017[118]

Flexible and rigid
pavements

Applied a Backpropagation Neural (BPN) network to improve PCI predictions for
Montreal City's roads. Key factors like AADT, ESALs, Structural Number (SN), pavement
age, slab thickness, and ΔPCI were considered.

BPNN

Ziari et al., 2016[119] General Explores Support Vector Machine (SVM) methods to predict pavement condition using
five kernels and nine input variables. Results demonstrate the effectiveness of the
Pearson VII Universal kernel in accurately forecasting pavement performance over its
life cycle.

SVM

Karlaftis & Badr,
2015[120]

Asphalt Used a genetically optimized Neural Network model to accurately predict alligator
crack initiation following pavement treatments. Utilizing data from LTPP and SPS-5, the
approach established links between external factors and cracking probability.

ANN

Kargah-Ostadi &
Stoffels, 2015[121]

Asphalt Creating a framework to compare pavement performance modeling techniques and
improving parameterization robustness, comparing machine-learning techniques
using Federal Highway Administration data. Key principles were considered, and
models like artificial neural networks and support vector machines were tested.

ANN

Sirvio & Hollmén,
2014[122]

General Comparing three prediction model for road condition.
Least Squares Support Vector Regression outperforms Radial Basis Function networks
and multiple linear regression, demonstrating superior accuracy in road condition
predictions.

LSSVR

Lee et al., 2014[123] Flexible pavements Three ANN models were developed using deflection databases. The model considering
all key parameters proved most accurate and required less training time. Complex
models didn't improve results significantly. Integrating engineering and statistical
knowledge led to accurate predictions, minimizing time and effort.

ANN

Chandra et al.,
2013[124]

Flexible pavements Nonlinear regression models are outperformed by ANNs in predicting pavement
roughness. The ANN model shows 18% lower Mean Absolute Error (MAE) than the
linear model and 11% lower than the nonlinear model, demonstrating its superior
forecasting capability based on distress parameters.

ANN

Bosurgi et al.,
2007[125]

General Showcased the effectiveness of a neural network-based Sideway Force Coefficient
(SFC) prediction model for an Italian motorway, proving its superiority over traditional
linear regression methods in analyzing road problems.

ANN

Yang et al., 2003[126] Flexible pavements ANN models to forecast pavement conditions like crack rating, ride rating, and rut
rating. These models, based on Florida Department of Transportation data, accurately
predict pavement conditions for up to five years.

ANN

Huang et al.,
1997[127]

General Assessed pavement condition prediction in Kansas Department of Transportation's
(KDOT) system using multiple regression and ANN. ANNs proved more effective due to
the binary nature of the data, outperforming multiple regression methods.

ANN

ANN:  Artificial  Neural  Network,  BPNN:  Back  Propagation  Neural  Network,  DNN:  DeepNeural  Network,  GBDT:  Gradient  Boosting  Decision  Tree,  GONN:
Genetically Optimized Neural Network, GP: Genetic Programming, LSSVR: Least Squares Support Vector Regression, ML-Lasso: Machine Learning regularized
regression with Lasso, ML-LR: Machine Learning Linear Regression, MLPNN: Machine Learning Propagation Neural Network, RNN: Recurrent Neural Network.
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depends on the specific application, the availability of data, the
level  of  uncertainty  in  the  problem,  and  the  desired  level  of
prediction. Often, a hybrid approach that combines elements of
these different approaches can provide the most accurate and
comprehensive pavement performance predictions.

 Conclusions

The  increase  in  the  number  of  road  users  has  led  to  the

degradation of pavement surfaces, resulting in safety and com-

fort issues for road users. Researchers have extensively studied

Table 4.    Comparison between deterministic, probabilistic, and machine learning models.

Models Advantages Disadvantages Potential applications

Deterministic
models

• User-friendly and straightforward
• Uses well-defined equations and
models, making them transparent and
understandable
• Utilizes material properties closely tied
to real pavement performance
• Offers dependable performance
forecasts
• Considers environmental factors,
varying loads, and material aging effects
• Yields highly accurate predictions when
the conditions, materials, and loads are
well-known
• Provide insights into which factors
contribute to pavement performance
• Generally stable and do not rely on
probabilistic assumptions

• Limited to predicting performance
within its specific development setting
• Offers an impractical estimation for
long-term performance prediction
• Solely relies on the mechanics of
materials theory for predictions
• Sensitive to the quality and accuracy of
the input data, and minor errors in
material properties, traffic loads, or
environmental factors can lead to
inaccurate predictions
• Hardly accounts for real-world
conditions which are often subject to
significant variability that can lead to
conservative predictions.
• Often simplify or ignore complex
interactions between different factors
affecting pavement performance
• Are inflexible and do not adapt well to
changing conditions

• Useful in the initial design phase of
pavements, especially when the
conditions and loads are well-understood
• Valuable for quality control during
pavement construction
• Can assist in planning maintenance and
rehabilitation activities based on the
predicted deterioration rate
• Provides a clear way to illustrate the
fundamental mechanics of pavement
behavior
• Suitable for predicting pavement
performance on simple road networks or
specific sections of roads with constant
traffic loads and materials

Probabilistic
models

• Well-suited to handle the inherent
variability in pavement performance due
to factors such as traffic loads, material
properties, and environmental conditions
• Allows for quantifying risks associated
with pavement performance which is
valuable for decision-makers in
understanding the likelihood of different
performance outcomes
• They can adapt to different scenarios
and changing conditions, making them
suitable for a wide range of pavement
types and locations
• Can effectively integrate data from
various sources, including historical
performance data, material testing, and
environmental monitoring, to improve
predictions

• Often more complex than deterministic
models, requiring advanced statistical
and mathematical techniques
• A significant amount of data is often
needed to build reliable models
• Outputs of models may be less intuitive
for non-technical stakeholders due to
their reliance on statistical distributions
and probabilities
• Models require extensive computational
resources, which can be a limitation for
some applications, especially when real-
time predictions are needed

• Models are crucial for asset
management in pavement networks
helping to prioritize maintenance and
rehabilitation efforts based on the
likelihood of pavement distress and
performance degradation.
• Models can be used for life-cycle cost
analysis, allowing agencies to evaluate
the cost-effectiveness of different
pavement design and maintenance
strategies over the long term
• Can be used to develop performance-
based specifications that set performance
targets meeting the specific performance
criteria
• Models can help in assessing the
vulnerability of pavements and plan for
adaptation strategies based on
probabilistic scenarios in environmental
conditions
• Used in research to better understand
the uncertainties and variability
associated with pavement performance

Machine
learning
models

• Uncovers complex, data-driven patterns
and relationships that might not be
captured by traditional analytical
methods and can lead to more accurate
predictions.
• Adapts changing conditions and
continuously improve their predictions as
new data becomes available
• Effectively handles and integrates
various types of data, including sensor
data, images, and textual information,
providing a holistic view of pavement
performance
• Models can be trained, hence can
automate the prediction process,
reducing the need for manual
intervention and potentially saving time
and resources
• Can scale to handle large datasets and
can be used for predicting performance
across entire pavement networks

• Require a substantial amount of high-
quality training data, and the availability
and quality of such data can be a limiting
factor for their application
• Some machine learning algorithms can
be complex and difficult to interpret
• Models are prone to overfitting, where
they perform well on training data but
generalize poorly to new, unseen data
• Developing and fine-tuning machine
learning models can be time-consuming
and resource-intensive, requiring
expertise in data science and machine
learning
• Models often lack a direct physical
understanding of the underlying
pavement mechanics, which may limit
their utility for some engineering
applications

• Predicts the timing and type of
maintenance or repair needed for specific
pavement sections based on data such as
distress measurements, traffic loads, and
environmental conditions
• Forecasts the future condition and
performance of pavements, helping
agencies plan and budget for
maintenance and rehabilitation activities
• Can be used to optimize pavement
designs by analyzing various design
parameters and their impact on
performance, leading to cost-effective
design decisions.
• Quantifies the risks associated with
different pavement scenarios, helping
agencies make informed decisions about
asset management and funding
allocation
• Assesses the environmental impact of
pavements, including energy
consumption, emissions, and
sustainability, by considering various
design and maintenance strategies
• Processes a real-time sensor data to
monitor pavement performance, detect
distress early, and trigger maintenance
actions when necessary
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the current state of pavement degradation and made efforts to
predict  future  changes  in  pavement  structure.  Pavement
Management  Systems  (PMS)  are  instrumental  in  developing
performance  models  that  estimate  pavement  condition  and
degradation  severity  over  time.  Previous  studies  have  focused
on  creating  performance  prediction  models  using  various
datasets  and  indices,  including  the  Long-Term  Pavement
Performance  (LTTP)  database.  Machine  learning  (ML)  algo-
rithms and artificial neural network (ANN) modelling have been
widely  employed,  with  researchers  generally  acknowledging
their  accuracy  in  estimating  pavement  condition  considering
factors  like  traffic,  pavement  age,  and  weather  conditions.
Regression models have also exhibited high accuracy in detect-
ing  and  classifying  pavement  damages.  However,  it  is  impor-
tant  to  acknowledge  that  each  prediction  model  possesses  its
own  strengths  and  weaknesses.  Some  models  excel  in  multi-
prediction and multi-classification tasks,  such as ANN, ML,  and
RE models. Deterministic models, on the other hand, may have
limitations  in  predicting  the  actual  condition  of  pavement
surfaces.  Therefore,  selecting an appropriate  prediction model
is  crucial  for  achieving  a  high-quality  prediction  performance
system.  By  considering  the  specific  features,  strengths,  and
weaknesses  of  each  model,  researchers  and  practitioners  can
make  informed  decisions  in  implementing  prediction  models
that  best  suit  their  needs.  The  advancement  of  prediction
models  and  the  integration  of  innovative  technologies  will
continue  to  contribute  to  improved  pavement  management
and the overall safety and comfort of road users.

Furthermore,  the  prominent  aspects  missing  in  the  predic-
tion  models  are  extreme  climate  events  and  climatic  condi-
tions,  which  have  impacts  on  performance  of  pavements.
Climate  change  consequences  like  droughts,  floods,  tempera-
ture  changes,  wind  variations,  hurricanes,  and  freezing-thaw-
ing  cycles  affect  roadway  assets.  Buckling,  washed-out  shoul-
ders,  and pavement cracks  become more common due to the
climate.  Thus,  consideration  of  climatic  conditions  in  predic-
tion  models  is  necessary  to  improve  pavement  resilience  in
further studies of predictive techniques.
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