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Abstract
Investigating how COVID-19 has influenced Liquefied Natural Gas (LNG) is significant for benefits evaluation for shipping companies and safety
management for sustainable LNG shipping in case of accidents. This paper proposes a quantitative method to model the impact of COVID-19 on
global  LNG  shipping  efficiency  based  on  the  spatiotemporal  characteristics  of  behavior  mining  for  LNG  ships.  The  time  cost  for  LNG  carriers
serving inside LNG terminals is calculated based on the status of LNG carriers specifically based on arrival and departure times. Then, the time
series analysis method is employed to extract the statistical characteristics of the COVID-19 severity index and time cost for LNG carriers inside
LNG terminals.  Finally, the impact of COVID-19 on global LNG shipping is explored through the Vector Autoregressive Model (VAR) combined
with the sliding window. The results demonstrate that the COVID-19 pandemic has a certain influence on the service time for LNG carriers with
time lags worldwide. The impact is spatial heterogeneity on a large scale or small scale across global, countries, and trading terminals. It can be
used for decision-making in energy safety and LNG intelligent shipping management under unexpected global public health events in the future.
The results provide support for intelligent decision-making for safety management under unexpected public health events, such as reducing the
seafarer’s explosion to risk events and taking efficient actions to ensure the shipping flow to avoid the energy supply shortage.
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Introduction

Since  the  World  Health  Organization  (WHO)  formally
announced the COVID-19 pandemic on March 11, 2020, nations
around the world have taken steps to prevent and control  the
transmission, such as internal movement restrictions, the entry
of foreign personnel restrictions, and strictly inspecting import
goods  at  various  ports.  The  shipping  industry  is  significantly
affected  by  the  shutdown  or  trade  restrictions  of  ports.
Maritime  shipping  can  be  represented  as  a  bridge  connecting
the global economy. Consequently,  the COVID-19 pandemic is
inevitably  bringing  huge  impacts  on  the  global  economy  and
trade due to shipping restrictions.  Research has demonstrated
the  impact  of  COVID-19  on  public  transit  service[1],  shipping
trade[2],  human  mobility  behavior[3−7],  and  carbon  emissions
reduction[8,9],  and  its  impacts  on  sustainable  maritime  LNG
shipping are still worth further research.

Energy  is  a  necessity  of  human  life  and  a  sustainable
society[10,11].  Under  the  situation  of  extremely  unbalanced
global  energy  distribution,  energy  transportation  needs  to  be
carried  out  through  maritime  shipping.  Liquefied  Natural  Gas
(LNG),  as  a  low-carbon  clean  fossil  energy,  is  attractive  to  all
countries in the world, especially under the Carbon Neutraliza-
tion  Initiative.  The  behavior  of  the  LNG  carrier  is  essential  to
ensure  the  safety  and  efficiency  of  sustainable  LNG  shipping.
Investigating how COVID-19 has affected LNG is significant for
benefits  evaluation  for  shipping  companies  and  safety

management  for  the  port,  for  example,  taking  efficient
measures  to  avoid  the  LNG  shipping  supply  shortage  Auto-
matic  Identification  System  (AIS)  could  broadcast  static  and
dynamic information between ships, as well as between a ship
and  coast  at  regular  time  intervals,  with  the  help  of  satellites.
AIS  data  is  comprised  of  abundant  information,  such  as
Maritime  Mobile  Service  Identity  (MMSI),  deadweight  (DWT),
ship  length,  gross  tone,  course  over  ground,  speed  over
ground, and time-stamp[12−16].  The huge amount of data could
support  nearly  real-time tracking of  various kinds of  ships  and
has  been  extensively  used  in  ship  traffic  analysis,  collision
avoidance  recognition,  port  connectivity  evaluation,  ship
itineraries  patterns  mining,  etc.[17−24].  Therefore,  AIS  data  is
employed to analyze the spatiotemporal characteristics of LNG
carriers' behavior in this paper.

Considering  current  research  mostly  investigating  the
changes  in  ship  traffic  density,  ship  indexes,  and  shipping
network  structure  under  COVID-19,  it  is  hard  to  reveal  how
COVID-19 related to shipping behavior  in different spaces and
periods. This makes it very difficult to deploy fine management
of ship behavior to prevent unnecessary risks.  Thus,  this paper
provides  a  theoretical  framework  to  identify  ship  behavior
patterns of LNG carriers and quantify the impacts of LNG ship-
ping  on  multi-scales,  including  multi-source  data  fusion,  fea-
ture extraction, and knowledge discovery. This paper proposes
a time-series analysis method to identify ship behavior patterns
of  LNG  carriers  and  quantify  the  impacts  of  LNG  shipping  on
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multi- scales,  including  global,  country,  port,  and  trade  termi-
nal  scales.  The  main  contributions  are  shown  as  follows:  1)
applying  a  multi-source  database  consisting  of  LNG  trading
terminal  data  and  AIS  trajectory  of  LNG  ships  to  calculate  the
time cost for LNG carriers serving in the various LNG terminals;
2)  quantifying  the  effect  of  COVID-19  on  global  LNG  shipping
through feature extraction and knowledge discovery combined
with  the  VAR  model  and  spatiotemporal  data  analysis;  3)
performing the spatial heterogeneity of service efficiency varia-
tion  across  multi-scales  including  trade  terminals,  countries,
and regions under the COVID-19 pandemic. 

Related work

There is  some research involved on the influence of  COVID-
19  on  the  maritime  shipping  industry  through  qualitative  and
quantitative analysis,  as  shown in Table 1.  Qualitative analyses
such  as  expert  experience  and  descriptive  argument  can  be
applied  to  evaluate  the  influence  of  COVID-19  on  maritime
shipping. Dhaliwal et al.[25] investigated the influence of COVID-
19  based  on  a  close-ended  questionnaire  survey  aided  by
Google. The survey responses show the negative effects of the
virus  on  inland  logistics  and  supply  chains.  The  result  may  be
biased because it was only from 105 participants. The quantita-
tive  analysis  can  be  divided  into  traffic  density  changes,  the
shipping  freight  index  variation  analysis,  and  the  shipping
network structure variation.

In  traffic  density  changes,  Zheng  et  al.[26] tried  to  use  the
changeable  ports  of  call  for  various  types  of  ships  with  differ-
ent deadweights during January and October 2020 to track the
effect  of  COVID-19  transmission  on  maritime  transportation.
The clustering algorithm can detect the similarity of changes in
ports of  calls.  Ports of  call  are part of  each voyage.  The origins
and destinations of voyages support tracking cargo flow and its
correlation  with  COVID-19  cases.  Wang  et  al.[15] demonstrated
the feasibility of the dynamic time-warping technique in identi-
fying  abnormal  ship  behavior  in  the  Oslo  area  during  the
pandemic  crisis.  The  drastic  fluctuation  concerning  the  traffic
flow of ferry cruises appears and significant variations occur in
berthing  time  and  throughput  of  the  quay  numbered  3.  This
phenomenon may be different from other countries or regions,
for  instance,  cargo  ships  and  port  operations  may  be  poten-
tially  influenced.  Ihsan  et  al.[27] and  Riess  et  al.[28] studied  that
the  reduction  of  ship  activity  caused  by  the  epidemic  is  inti-
mately  tied  to  ocean  health  through  literature  studies,  and
concluded  that  it  was  conducive  to  noise  reduction,  pollution

decrease,  and  ecosystem  recovery.  The  qualitative  analysis
cannot comprehensively explain the impact of COVID-19, and a
quantitative model is required to fulfill decision-making in ship
route  management.  March  et  al.[29] tracked  the  variability
changes  in  maritime  traffic  density  during  the  COVID-19  pan-
demic and believe the temporal  changes of  spatial  patterns in
more regions and sectors will be the future research direction.

Regarding  the  shipping  freight  index  variation,  Xu  et  al.[30]

studied  the  decreasing  shipping  of  the  Yangtze  River  during
the  COVID-19  epidemic  and  commented  that  the  overall
impact  is  controllable,  stage-specific,  and  short-term.  Ge  &
Yang[31] tried  to  infer  the  market  changes  through  a  compari-
son of China's dry bulk and container shipping during the 2003
SARS  and  COVID-19.  Dai  &  Liang[32] applied  the  regression
model  to  study  the  short-term  impact  on  the  bulk  shipping
market from COVID-19 based on the Baltic Dry index and inter-
national  crude  oil  prices.  The  shipping  freight  index  dynamics
are closely related to the supply and demand changes. It’s very
hard  to  discriminate  the  dynamics  under  COVID-19  from
market  fluctuation  especially  only  based  on  the  comparison
analysis  between  the  shipping  freight  index  before  and  after
COVID-19 broke up. Xu et al.[33] analyzed the effect of COVID-19
on Chinese port performance using the linear regression model
considering  the  relationship  between  cargo  throughput  and
cumulative confirmed cases, industrial added value, stringency
index,  and  consumer  price  index.  Rožić et  al. [34] have  investi-
gated  the  continuous  growth  in  consumer  goods  prices  and
volatile freight rates in container shipping during the pandemic
in  the  European  Union.  The  correlation  between  the  consi-
dered  variables,  for  instance,  cumulative  confirmed  cases  and
stringency  index,  could  be  further  explored  to  improve  the
preciseness of methodology and results.

In  terms  of  shipping  network  structure  variation,  Wan  et
al.[35] analyzed  the  maritime  network  structure  changes  in
China  connected  with  other  countries  during  the  COVID-19
pandemic  based  on  the  expected  service  lines  for  containe-
rized vessels released by shipping companies in February 2020
and  May  2020.  Dirzka  &  Acciaro[36] investigated  the  maritime
transport  network  disruption  based  on  public  notices  and  the
shipping  schedule  of  liner  operators  during  the  epidemic
development  stage  from  January  to  May  2020.  The  changing
calling  frequencies  could  be  used  to  investigate  how  the
epidemiology  of  COVID-19  is  related  to  maritime  network
dynamics.

These  researches  extract  how  COVID-19  affects  maritime
shipping  activities  based  on  the  ship  traffic  density,  ship

 

Table 1.    Analytical methods used in previous literature.

Reference Analytical method Specific method

Hale & Angrist[1] Quantitative Quantitative indicators to assess the severity of
the outbreak

Wang et al.[15] Quantitative Dynamic time warping technique
Dhaliwal et al.[25] Qualitative Closed questionnaire survey
Zheng et al.[26] Quantitative Clustering algorithm
Ihsan et al.[27] & Riess et al.[28] Qualitative Literature review and analysis
March et al.[29],  Xu et al.[30] &
Rožić et al.[34]

Quantitative Data analysis/statistical methods

Ge & Yang[31] Quantitative Comparative analysis, time series analysis, etc
Dai & Liang[32] Quantitative Regression analysis
Xu et al.[33] Quantitative Linear regression analysis
Wan et al.[35] Quantitative analysis, combined with qualitative analysis Network analysis
Dirzka & Acciaro[36] Quantitative analysis, combined with qualitative analysis Network analysis, time series analysis
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behavior  patterns  in  port  areas,  ship  indexes,  and  shipping
network  structure,  and  further  compare  with  the  situation
before  the  COVID-19  outbreak.  How  COVID-19  is  related  to
shipping  behavior  on  a  large  scale  and  the  spatiotemporal
heterogeneity  of  their  correlation  is  still  unknown.  Oxford
University  quantified  the  pandemic  severity  of  a  country
(region)  based  on  its  released  policies  to  cut  down  pandemic
transmission,  and  then  public  the  cellulated  data[1].  Thus,  a
quantitative  analysis  using  quantified  epidemic  data  and  LNG
trajectories  is  applicable  and  reliable  for  exploring  the
spatiotemporal  heterogeneity  of  influences  of  COVID-19  on
global LNG maritime shipping.

Motivated  by  the  aforementioned  research  and  considering
current  limitations,  this  paper  proposes  a  comprehensive
method  to  quantify  the  impact  of  COVID-19  on  global  LNG
shipping efficiency based on the spatiotemporal characteristics
of the behavior of LNG ships combined with time series models.
It  is  not  only  able  to  quantify  impacts  on global  LNG shipping
caused  by  COVID-19  but  is  also  suitable  for  identifying  spatial
heterogeneity of service efficiency variation across multi-scales.
The results  could provide insights for  decision-making in ship-
ping companies and safety management. 

Materials and methods

This  section  outlines  the  quantitative  impact  analysis  of
COVID-19 on the efficiency of global  LNG shipping.  The whole
analysis  program  consisted  of  three  parts,  as  shown  in Fig.  1.
The first part is multi-source data collection, including epidemic

severity  index  data,  LNG  trading  terminal  data,  and  the  AIS
trajectories of LNG ships. The second part is data preprocessing,
including the calculation of the time cost for an LNG carrier to
serve  in  the  LNG  terminal  based  on  the  LNG  trading  terminal
data and AIS trajectory of LNG ships and then normalization of
the  time  cost  and  epidemic  severity  index.  The  third  part  is
feature extraction and knowledge discovery based on the VAR
model that is significant to quantitative analysis of the effect of
COVID-19 on global LNG shipping. 

Data collection
To  quantitatively  analyze  the  effect  of  the  epidemic  on

global  LNG shipping,  this  paper collected the COVID-19 sever-
ity  index  (hereinafter  referred  to  as  the  severity  index)  of  180
countries or regions in the world through the website of Oxford
COVID-19  Government  Response  Tracker  (https://ourworldin-
data.org/covid-stringency-index).  The  severity  index  is  calcu-
lated based on nine indicators  including school  closure,  work-
place  closure,  cancellation  of  public  events,  restriction  on
public  gatherings,  shut  down  of  public  transport,  home  quar-
antine,  public  information  campaigns,  internal  movement
restriction,  and  international  travel  restriction.  The  severity
index  of  any  given  date  is  computed  as  the  average  value  of
nine  indicators.  This  index  can  quantitatively  evaluate  the
epidemic  severity  of  a  specific  country  or  region.  Thus,  it
performs well in evaluating the epidemic severity of global LNG
trading countries and regions.

The  LNG  shipping  dataset  consists  of  multi-source  data,  in-
cluding the LNG trading countries (or regions) from the giignl's
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Fig. 1    Flowchart of quantitative analysis of the efficiency dynamics of global liquefied natural gas shipping under COVID-19.
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annual  report  (https://giignl.org),  the  location  information  of
LNG  trading  terminals  from  the  Global  Energy  Inspection
Website (www.gem.wiki/Main_Page), the berth image informa-
tion from HiFleet (www.hifleet.com), and the AIS trajectory data
of  LNG  carriers  from  the  Maritime  Safety  Administration.  The
AIS  track  of  LNG  carriers  in  2021  is  shown  in Fig.  2.  The  AIS
trajectory  dataset  includes  IMO,  MMSI,  time  of  the  recorded
point,  course,  speed,  longitude,  latitude,  and  true  bearing.
According  to  giignl's  annual  report,  it  is  found  that  there  is  a
total of 60 LNG trading countries (or regions) and 200 LNG trad-
ing  terminals  in  the  world.  The  location  information  of  LNG
trading  terminals  are  collected  through  the  Global  Energy
Inspection  Website.  The  berth  image  information  obtained
from HiFleet is used to correct the wrong LNG trading terminal
information. 

Data processing
To  ensure  the  service  time  of  LNG  carriers  at  different  LNG

terminals  and  the  pandemic  severity  index  covering  the  same
period, a time frame of 2020−2021 was selected to support this
study.  The  time  dimension  selected  in  the  research  process  is
daily/weekly/monthly  as  the  research  unit,  but  the  epidemic
strictness index is updated once a day in each country (region),
and  the  berthing  time  of  ships  may  have  multiple  berthing
records in ports or countries (regions). To maintain the unity of
the  epidemic  strictness  index  and  the  berthing  time  of  ships,
the  data  are  processed  according  to  the  average  value  of
formula  (1).  If  there  is  a  missing  value  in  a  certain  time  unit,
linear interpolation is uniformly adopted.

yx =
∑n

T=1

yx,T

n
, T ∈ {1,2, . . . ,n} (1)

yx

where, x represents the data set,  if  x = I  represents the epidemic
severity index of a certain port, country (region), or the world, and
x  =  D  represents  the  berthing  time  of  ships  in  a  certain  port,
country (region), or the world. T represents the set of time series;
yx,T represents the corresponding value in the x dataset at time T ,
and  represents the average value of the x dataset over the time
range T.

In  addition,  to  eliminate  the  impact  of  dimension,  the
epidemic  strictness  index  and  the  boundary  data  listed  in  the
ship  berthing  time  was  normalized  according  to  formula  (2),
and  all  values  were  normalized  between  0  and  1,  which  was
convenient for statistical analysis.

y′x,t =
yx,t −min({yx,t)

max({yx,t)−min({yx,t)
, t ∈ {1,2, . . . ,T } (2)

yx,t

y′x,t

where,  t  represents  the  time-series  set  in  the  same  time
dimension,  represents  the average value of  the x  data  set  in

the time dimension t, and  represents the normalized value of

the average value of the x data set in the time dimension t. 

Statistical analysis
Statistical  analysis  is  an  effective  method  for  analyzing  the

distribution and trend of epidemic index or service time under
the  study  period.  The  mean,  standard  deviation,  and  quantile
statistics  can  be  calculated  as  formulas  (1)  and  (3)  to  (5).  The
standard  deviation  can  be  used  to  measure  the  dispersion  of
the severity index and service time, as shown in formula (3).

σyx =

√∑n

T=1

(yx,T − yx)2

n−1
T ∈ {1,2, . . . ,n} (3)

σyxwhere,  is expressed as the standard deviation of the x dataset.
Quantile  statistics  provide  information  about  the  distribu-

tion of  data between minimum and maximum values.  By sort-
ing  the  data  set  from  smallest  to  largest  and  calculating  the
corresponding  cumulative  percentile,  the  value  of  the  data
corresponding to a certain percentile is called the percentile of
this percentile, as shown in formulas (4) and (5).

k = 1+ (T −1)× p% (4)

yx,p = yx,s+
(
yx,s+1− yx,s

)
× (k− s) (5)

where, p represents the percentile, k represents the location index
where p% data is located, s represents the integer part of k, when
k is  an  integer,  s  =  k;  yx,s and yx,s+1 represent  the  s  and s+1 digit
data values of dataset x after sorting from smallest to largest, and
yx,p represents the p% quantile data values of dataset x. 

Vector autoregressive model
There is a lag between the impact of the COVID-19 index and

LNG transport time, and the COVID-19 index autocorrelation in
time  scales,  as  well  as  short-term  LNG  transportation  time
highly  correlates.  Thus,  the  time  series  vector  autoregressive
model (hereinafter referred to as the VAR model) is proposed to
explain  the  co-related  relationship  between  stringency  index
and  service  time.  The  VAR  model  consists  of  five  parts:  time-
series  stationarity  test,  determination  of  lag  order,  model

 

Fig. 2    AIS track chart of LNG carrier in 2021 (the global map is from ArcMap World map).
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stationarity  test,  Granger  causality  test,  and  impulse  response
analysis.

The  current  mainstream  method  of  hypothesis  testing  for
stationarity is the unit root test,  which tests whether there is a
unit  root  in  the  sequence.  If  there  is,  it  is  a  non-stationary
sequence,  and  if  there  is  not,  it  is  a  stationary  sequence.  The
dickey-Fuller  test  (ADF  test)  is  a  unit  root  test  method.  In  this
study,  the  ADF  test  was  used  to  test  the  stability  of  the
epidemic  stringency  index  and  ship  berthing  time.  Taking  the
q-order  autoregressive  time  series  as  an  example,  the  formula
(6) can be expressed.

y′x,t = ϕx,1 · y′x,t−1+ · · ·+ϕx,q · y′x,t−q+εx,t, t ∈ {1,2, . . . ,T } (6)

ϕx,k,k ∈ {1, . . . ,q} εx,twhere,  is  the  parameter;  represents  the
white noise sequence;

λx,k,k ∈ {1, . . . ,q}∣∣∣λx,k

∣∣∣ < 1
The characteristic  root set ,  when all  feature

roots are in the unit circle, i.e. , the sequence is station-
ary. And this kind of stationary is called strict stationary. In prac-
tice,  there  are  more  relaxed  wide  stationary  time  series.  A
relaxed  stationary  time  series  usually  adds  the  intercept  term
and  the  trend  term  to  the  time  series  equation,  taking  the
q-order autoregressive time series as an example, which can be
represented by formulas (7) and (8).

y′x,t = µ+ϕx,1 · y′x,t−1+ · · ·+ϕx,q · y′x,t−q+εx, t, t ∈ {1,2, . . . ,T } (7)

y′x,t = µ+β · t+ϕx,1 · y′x,t−1+ · · ·+ϕx,q · y′x,t−q+εx,t, t ∈ {1,2, . . . ,T }
(8)

ϕx,k,k ∈ {1, . . . ,q} µ

β

where,  is  the  parameter;  represents  the
intercept term;  represents the trend term. To determine the lag
order  of  VAR  model,  parameters  such  as  Akaike  information
criterion  (AIC)  and  Bayesian  Schwarz  information  criterion  (BIC)
can  be  used  under  the  principle  of  minimum  value  that  means
the model is the optimal.

VAR  model  is  a  multi-variable  time  series  model,  which  is
used  to  describe  the  dynamic  relationship  between  multiple
variables.  The  stability  of  a  VAR  model  refers  to  whether  the
model  will  produce  systematic  deviations  and  cumulative
errors  over  time.  In  order  to  determine  the  stability  of  the
model, the stationarity test of the model is needed. Taking the
sequence of the q-order VAR model with intercept terms as an
example, formula (9) can be expressed. y′I,t

y′D,t

 =(
µ1 µ3
µ2 µ4

)
+

(
ϕ1,1 ϕ1,3
ϕ1,2 ϕ1,4

)
·
 y′I,t−1

y′D,t−1

+ · · ·+(
ϕq,1 ϕq,3
ϕq,2 ϕq,4

)
·
 y′I,t−q

y′D,t−q

+ (
εI,t

εD,t

)
, t ∈ {1,2, . . . ,T } (9)(

µ1 µ3

2 µ4

) (
ϕk,1 ϕk,3
ϕk,2 ϕk,4

)
k ∈ {1, . . . ,q}

(
εI,t
εD,t

)
(

y′I,t
y′D,t

)
 represents  intercept  matrix, 

 is  coefficient  matrix,  said  white  noise  vector,

 said  the  virus  index  and  the  berthing  time  vector  after

normalization.

|λk | < 1 .

A characteristic root is an eigenvalue of a matrix and is used
to  describe  the  properties  of  the  matrix.  For  VAR  models,
feature roots  are used to judge the stability  of  the model.  The
characteristic root of the model can be obtained by solving this
formula (10). When all characteristic roots are in the unit circle,
that is, , the sequence is stable

∣∣∣∣∣∣
(
ϕk,1 ϕk,3
ϕk,2 ϕk,4

)
−λk · I

∣∣∣∣∣∣ = 0 (10)(
ϕk,1 ϕk,3
ϕk,2 ϕk,4

)
λk I
Among  them,  is  the  regression  coefficient  matrix,

 is characteristic root,  is a unit matrix.
The Granger Causality Test is a statistical method used to test

whether  there  is  a  causal  relationship  between  two  variables.
The  one-way  causality  test,  infers  that  the  residual  of  ship
berthing  time  has  a  significant  explanatory  ability  to  the  resi-
dual  of  the epidemic rigor index,  as shown in the q-order VAR
model (formula 12). Formula (11) is the opposite.

y′D,t = µD+
∑q

i=1
y′D,t−i+

∑q

i=1
y′I,t−i+εD,t (11)

y′I,t = µI +
∑q

i=1
y′I,t−i+

∑q

i=1
y′D,t−i+εI,t (12)

µI µD
εD,t

εD,t

where,  and  represent  the  intercept  terms  of  epidemic
severity index and ship docking time of a single VAR model. 
and  represent  the  white  noise  sequence  of  a  single  VAR
model of epidemic severity index and ship docking duration. 

Results
 

The flow direction of LNG trade
For the empirical analysis,  the datasets of LNG ship trajecto-

ries  in  2020  and  2021  (www.shipxy.com),  LNG  trade  data
(https://giignl.org),  and  LNG  terminals  (www.lngport.info/ter
minalListing.aspx)  are  explored to  provide safeguards  that  the
LNG shipping network is  accurate and correct.  The trajectories
record  the  detailed  information  for  LNG  ships'  movement.
However,  the  loading  origin  ports  and  the  unloading  destina-
tion ports are unknown in the movement database. LNG ships
are always shipping cargo from exported countries to imported
countries  and  then  returning  empty.  According  to  LNG  trade
data,  the exported,  imported,  and reexported ports  are identi-
fied to construct the directed LNG shipping network, as shown
in Fig. 3. 

Statistical analysis of LNG shipping during the
COVID-19

The statistical analysis of LNG shipping during the pandemic
in 2020 and 2021 illustrates that  the mean,  25th,  50th,  and 75th

percentile  values  in  April  2020  when  the  virus  broke  up  were
significantly lower than in other months, as shown in Fig. 4. This
phenomenon cannot be maintained in the standard deviation.
Consequently, the smaller time cost in LNG terminals accounts
for  a  larger  proportion  in  April  2020  compared  with  other
months.  This  indicates  the  virus  may  seriously  affect  the  port
operation  in  March  2020.  To  mitigate  these  impacts,  acceler-
ated  loading  and  unloading  at  LNG  terminals  was  needed  in
April 2020. The 75th percentile value from April 2020 to August
2020  increased  significantly  and  decreased  obviously  from
August  2021  to  November  2021.  That  illustrates  the  pheno-
menon of longer time costs in LNG terminals fluctuating during
the  pandemic.  There  were  no  significant  changes  in  standard
deviation  in  2020  and  2021,  which  showed  the  fluctuations
around mean value similar in 2020 and 2021. 

Impacts on the global LNG shipping
The mean value of the stringency index and time cost in LNG

terminals for different countries was calculated and normalized
first,  and  then  the  stationarity  analysis  based  on  the  ADF  test
was  conducted.  The  unstable  unit  roots  were  revealed  in  the
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mean value of the stringency index and time cost along all LNG
terminals  globally.  Thus,  the  first-order  difference  processing
was employed to stringency index and time cost of LNG ships.
The daily change trends are as shown in Fig. 5, in which the x-
axis represents the number of days from January 1st, 2020. The
y-axis is the variation of stringency index and service time after
normalization.  The  average  daily  change  rate  of  the  global
COVID-19  strictness  index  fluctuated  significantly  from  March

to April 2020 highly to 0.113 after first derivation, because that
was the time period when the global COVID-19 prevention and
control  policies  were  highly  adjusted.  The  fluctuation  of  the
LNG  transport  service  time  from  March  to  April  2020  is  obvi-
ously  highly  to  0.389  after  first  derivation  due  to  the  different
prevention and control policies among various countries affect-
ing the  operation situation of  the  port  and the  stability  of  the
crew  market.  The  ADF  test  (PI =  0.001  and  PD =  0.001)

 

Fig. 3    Directed network of LNG shipping (the global map is from ArcMap World map).
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Fig. 4    Statistical analysis of LNG shipping under the pandemic in 2020 and 2021.
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demonstrates that the first-order difference between the strin-
gency index and service time was stable.  The stringency index
and  service  time  both  show  significant  variation  between
March and April 2020. In general, the fluctuation of daily service
time is higher than the stringency index across 2020 and 2021.

∣∣∣λp

∣∣∣ = |xt −µ|

Then  Granger  causality  test  was  conducted  for  the  time
series of stringency index and service time as shown in Table 2.
That  indicates  there  is  an  obvious  cross-correlation  between
them  with  a  lag  period  of  3−32  days.  The  optimal  lag  period
was obtained as 15 days based on the minimum AIC.  The Chi-
square  Distribution  shows  the  statistic  value  was  larger  than
the critical  value and the p-value was smaller  than 0.05,  which
indicates  the  cross-correlation  between  the  stringency  index
and service time is significant. The unit roots of the VAR model
with  a  lag  of  15  days  all  fell  within  the  unit  circle  namely  all

 less  than  1.  It  can  be  concluded  that  the  VAR
model structure is stable.

To  analyze  the  short-term  influence  of  the  variations
between  the  stringency  index  and  service  time,  the  impulse
response  is  shown  in Fig.  6.  From  the  shock  of  the  stringency
index,  the  disturbance of  time cost  in  LNG terminals  increases
between  the  5th and  8th weeks  and  gradually  returning
between the 8th and 15th weeks. From the shock of time cost in
LNG  terminals,  the  stringency  index  shows  high  fluctuation
during  the  5th and  7th weeks  and  gradually  returns  to  smooth
between the 7th and 15th weeks. These indicate the short-term
close  correlation  between  the  stringency  index  and  service
always maintaining ten weeks. 

Spatial heterogeneity of impacts on countries
To analyze the effect of COVID-19 on the LNG trade of major

importing and exporting countries or regions, the trend of the
severity index and time cost for different countries are obtained
for  the  preliminary  situation  analysis.  Then,  the  VAR  model
combined  with  a  sliding  window  is  employed  to  analyze  the
co-relationship  between  the  severity  index  and  time  cost  in
LNG  terminals.  There  are  bidirectional  effects,  unidirectional
effects,  and  no  causality  among  different  countries  in  variable

periods, as shown in Fig. 7. The bidirectional effect means that
the  COVID-19  severity  index  helps  predict  the  service  time  of
LNG carriers  and vice  versa.  The unidirectional  effect  indicates
the COVID-19 severity index can be used to predict the service
time  of  LNG  carriers,  but  not  the  opposite.  The  no  causality
illustrates  the  dynamics  between  the  COVID-19  severity  index
and  the  service  time  of  LNG  carriers  show  no  significant
correlation.

According  to  regional  distribution,  the  COVID-19  severity
index of countries or regions in the Middle East and Asia except
Japan  showed  low  correlation  with  LNG  service  time  cost.  In
Africa and Europe, the COVID-19 severity index and LNG service
time  showed  diversified  patterns  of  irrelevant,  unidirectional
and  bidirectional  effects  existed.  There  is  a  one-way  effect
between the severity of COVID-19 in Australia and LNG service
time cost. In the Americas, the COVID-19 severity index showed
no correlation and one-way effect with LNG service time cost.

The bidirectional effects between the severity index and time
cost  in  LNG  terminals  for  Angola  (AGO)  (LNG  export  country),
Russia  (RUS),  and  Spain  (ESP)  (LNG  import  country)  are  shown
in Fig. 8 and Table 3. AGO had smaller lags compared with ESP
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Table 2.    Granger causality test.

H0 Decision Distribution Statistic p-value Critical value

Exclude lagged D in the I equation Reject H0 Chi-square Distribution 33.99 0.003416 24.996
Exclude lagged I in the D equation Reject H0 Chi-square Distribution 74.349 7.4223e-10 24.996
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and RUS. The effect of the virus on RUS lasted longer compared
with  AGO  and  ESP.  The  bidirectional  effects  with  lags  of  two
weeks  emerged  from  the  fourteenth  week  since  2020  January
1st in  AGO  and  lasted  until  the  end  of  2021.  The  bidirectional
effects with lags of four weeks from the 12th to 25th week since

2020  January  1st in  ESP.  The  bidirectional  effects  with  lags  of
four weeks from the 8th to 32nd week since 2020 January 1st in
RUS.

The unidirectional  effects  of  the  severity  index  on time cost
in LNG terminals for different LNG import countries are shown

 

Fig. 7    The spatial distribution of impacts from COVID-19 in countries (the global map is from ArcMap World map).
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in Fig.  9 and Table  4,  including  Japan  (JPN),  France  (FRA),
Gibraltar  (GIB),  Belgium  (BEL),  Brazil  (BRA),  Jamaica  (JAM),
Netherlands  (NLD),  and  The  Republic  of  Turkey  (TUR).  The
unidirectional effects of the pandemic on the time cost for LNG
ships  in  different  countries  were  phased and appeared during
different  periods.  Most  of  these  countries  with  a  lag  of  one or
two weeks derived from the pandemic effect  on the time cost
for  LNG  ships.  TUR  is  the  only  country  with  a  longer  lag  than
other countries. In JPN, the variations in the severity index and
time  cost  in  LNG  terminals  were  distinct,  showing  that  the
pandemic only affected the time cost partly in the 23rd and 26th

weeks  with  a  lag  of  one  week.  Japan  kept  the  LNG  terminals
normally operated during the pandemic. In FRA, the severity of
the virus has affected the time cost in LNG terminals since the
35th week with lags of two weeks.  The more serious the virus,
the more time cost in LNG terminals. In GIB, the little effects of
the  severity  index  on  the  operation  of  LNG  terminals  were
revealed during the 8th and 13th week as well as during the 38th

and 52nd weeks with lags of two weeks. In BEL, the fluctuation
of  time  cost  in  LNG  terminals  was  significant.  The  unidirec-
tional  effects  of  the  severity  index  on  LNG  terminal  operation
were detected during the 10th and 30th weeks with lags of two
weeks.  Even  though  COVID-19  has  been  alleviated,  the  time
cost in LNG terminals increased. In BRA, COVID-19 had a signifi-
cant effect on the LNG terminal operations during the 18th and
41st weeks with the increasing time cost. The lag for the unidi-
rectional effects of the severity index on time cost in LNG termi-
nals in BRA was one week. In JAM, the unidirectional effects of
the  severity  index  on  LNG  terminal  operation  existed  during
the 14th weeks and 32nd weeks with lags of two weeks. In NLD,
the unidirectional  effects  of  COVID-19 on LNG terminal  opera-
tions emerged during the 38th and 54th weeks with lags of two
weeks  in  which  the  virus  was  continuously  getting  worse.  In
TUR,  the  unidirectional  effects  of  COVID-19  on  LNG  terminal
operations emerged during the 11th and 44th weeks with lags of
four weeks.

The unidirectional  effects  of  the  severity  index  on time cost
in LNG terminals  for  different LNG export  countries  are shown
in Fig.  10 and Table  5,  including  Australia  (AUS),  Qatar  (QAT),
The  United  States  of  America  (USA),  Algeria  (DZA),  Norway
(NOR), and Republic of Trinidad and Tobago (TTO). These coun-
tries  had  differentiated  affected  periods  corresponding  to  the
virus,  as well  as various durations.  The unidirectional effects of

the pandemic in these countries were with different lags, such
as one, two, three, and four weeks. In Australia (AUS), the virus
severity  index  and  time  cost  in  LNG  terminals  maintained  the
same  trend  from  the  fifth  week  since  2020  January  1st,  for
instance,  the  time  cost  increased  with  the  more  serious  virus
pandemic  in  the  25th and  40th weeks,  and  the  time  cost
decreasing with less serious virus pandemic in the 60th and 75th

weeks. The VAR model showed the unidirectional effects of the
severity index on time cost emerged with lags of four weeks. In
Qatar  (QAT),  the  VAR  model  showed  the  unidirectional  effects
of  the  severity  index  on  time  cost  emerged  with  lags  of  three
weeks  from  the  12th to  44th weeks,  indicating  that  the  pan-
demic affected the LNG terminals operation only in 2020. In the
USA and NOR, the unidirectional relationship between the virus
and  LNG  terminal  operation  with  lags  of  two  weeks  could  be
detected since the 41st week,  but it  only lasted 7 weeks in the
USA  and  14  weeks  in  NOR.  The  connection  appeared  partly
both in the USA and NOR. In DZA, the unidirectional effects of
the severity index on time cost in LNG terminals only appeared
across  the  11th and  19th weeks  with  lags  of  one  week.  In  TTO,
the virus affected the LNG terminals' operation during the 18th

and 23rd weeks as well as during the 48th and 53rd weeks.
The  no  causality  between  the  pandemic  and  time  cost  for

LNG ships  appeared in  China,  India,  the  United Arab Emirates,
The  United  Kingdom,  Indonesia,  Italy,  the  Republic  of  Korea,
Kuwait, the Republic of Lithuania, Papua New Guinea, Panama,
and Singapore. That indicates the variation of time cost for LNG
ships in these countries wasn't significantly correlated with the
pandemic.  The  correlation  between  virus  severity  and  LNG
terminal  operation  cannot  be  detected  in  these  countries,
which  may  be  related  to  the  smooth  operation  of  LNG  termi-
nals during the pandemic. 

Variations of impacts on LNG terminals
The variations of  impacts  on LNG terminals  in  different  LNG

import  and  export  countries  have  been  explored  through  the
VAR  model  combined  with  a  sliding  window.  The  majority  of
LNG terminals both in LNG import and export countries appear
unidirectional  correlation  from  COVID-19  to  time  cost  for  LNG
ships  in  LNG  terminals.  The  bidirectional  effect  between
COVID-19  and  time  cost  for  LNG  ships  only  can  be  found  in
Wheatstone (in AUS) with lags of four weeks from the 5th to 24th

weeks.  The  VAR  model  of  Wheatstone  is  shown  in Fig.  11 and
Table 6.

 

Table 3.    VAR models for LNG trade countries with bidirectional effects.

Countries VAR model No. p-value

Angola (AGO)
[

yI,t
yD,t

]
=

[
0.0987
0.4276

]
+

[
1.2477 0.0110
−0.1193 0.1056

]
·
[

yI,t−1
yD,t−1

]
+

[
−0.3634 −0.1244
−0.1326 0.0444

]
·[

yI,t−2
yD,t−2

]
+

[
εI,t

εD,t

]
(13) 0.045

Russia (RUS)
[

yI,t
yD,t

]
=

[
0.2243
0.2598

]
+

[
1.0696 −0.0328
01282 0.0914

]
·
[

yI,t−1
yD,t−1

]
+

[
−0.2360 −0.0221
−0.5976 0.2035

]
·
[

yI,t−2
yD,t−2

]
+[

0.0602 −0.1326
−0.1697 0.0690

]
·
[

yI,t−3
yD,t−3

]
+

[
−0.1371 −0.0140
0.5124 0.2163

]
·
[

yI,t−4
yD,t−4

]
+

[
ϵ I,t
ϵD,t

]
(14) 0.046

Spain (ESP)
[

yI,t
yD,t

]
=

[
0.0568
0.2904

]
+

[
1.1786 −0.0676
0.2758 0.1075

]
·
[

yI,t−1
yD,t−1

]
+

[
−0.2480 −0.0101
−0.8114 −0.0989

]
·
[

yI,t−2
yD,t−2

]
+[

0.0856 −0.0711
1.6907 0.1255

]
·
[

yI,t−3
yD,t−3

]
+

[
−0.0656 0.0593
−1.1612 −0.0218

]
·
[

yI,t−4
yD,t−4

]
+

[
ϵ I,t
ϵD,t

]
(15) 0.039
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The unidirectional  effects  of  the  severity  index  on time cost
in  LNG  import  terminals  are  shown  in Fig.  12 and Table  7,
including  RuDong  (in  China  (CHN)),  WuHaoGou  (in  CHN),
YangShan  (in  CHN),  Dapeng  (in  CHN),  Tangguh  (in  India),  Old

Harbour  (in  JAM),  Futtsu  (in  JPN),  Ohgishima  (in  JPN),  Sode-
gaura  (in  JPN),  Himeji  (in  JPN),  Zeebrugge  (in  BEL),  Gate  (in
NLD), and Gibraltar (in GIB). The unidirectional effect started at
different  times  among  RuDong,  WuHaoGou,  and  Dapeng,  but

 

1.0a

0.8
0.7

0.9

JPN Trend chart

0.6
0.5

I
D

Va
lu

e

0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

1.0b

0.8
0.7

0.9

FRA Trend chart

0.6
0.5

I
D

Va
lu

e

0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

1.0c

0.8
0.7

0.9

GIB Trend chart

0.6
0.5

I
D

Va
lu

e

0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

1.0d

0.8
0.7

0.9

BEL Trend chart

0.6
0.5

I
D

Va
lu

e
0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

1.0e

0.8
0.7

0.9

BRA Trend chart

0.6
0.5

I
D

Va
lu

e

0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

1.0f

0.8
0.7

0.9

JAM Trend chart

0.6
0.5

I
D

Va
lu

e

0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

1.0g

0.8
0.7

0.9

NLD Trend chart

0.6
0.5

I
D

Va
lu

e

0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

1.0h

0.8
0.7

0.9

TUR Trend chart

0.6
0.5

I
D

Va
lu

e

0.4
0.3
0.2
0.1

0
0 20 40 60

Week from 2020.1.1 to 2021.12.31
80 100 120

Fig. 9    LNG trade countries with the unidirectional effects.
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all of them ended in the 52nd week. The unidirectional effect in
RuDong, WuHaoGou, and Dapeng started in the 39th, 43rd, and

5th weeks,  respectively.  Yangshan  Port  was  significantly
different  from  the  other  three  terminals  with  a  unidirectional

 

Table 4.    VAR models for LNG trade countries with unidirectional effects.

Country VAR models No. p-value

Japan (JPN) yD,t = 0.7089−0.3462yI,t−1−0.0782yD,t−1+εD,t (16) 0.045

France (FRA) yD,t = 0.2924+0.9373yI,t−1+0.3880yD,t−1−0.8978yI,t−2−0.0189yD,t−2+εD,t (17) 0.037

Gibraltar (GIB) yD,t = 0.6415−0.3850yI,t−1−0.1292yD,t−1+0.0845yI,t−2−0.1165yD,t−2+εD,t (18) 0.038

Belgium (BEL) yD,t = 0.5767+0.7123yI,t−1−0.0269yD,t−1−1.3813yI,t−2+0.0881yD,t−2+0.5651yI,t−3−
0.1666yD,t−3+εD,t

(19) 0.016

Brazil (BRA) yD,t = 0.0366+0.3695yI,t−1+0.4148yD,t−1+εD,t (20) 0.030

Jamaica (JAM) yD,t = 0.2570−0.5282yI,t−1+0.1874yD,t−1+0.3536yI,t−2+0.1969yD,t−2+εD,t (21) 0.016

Netherlands (NLD) yD,t = 0.5710−0.8500yI,t−1−0.0341yD,t−1+0.7375yI,t−2−0.0909yD,t−2+εD,t (22) 0.042

The Republic of
Turkey (TUR)

yD,t = 0.2526+0.0182yI,t−1+0.3547yD,t−1−0.4094yI,t−2+0.0653yD,t−2+0.9584yI,t−3−
0.2432yD,t−3−0.6571yI,t−4+0.0492yD,t−4+εD,t

(23) 0.001
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Fig. 10    LNG trade countries with the unidirectional effects.
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correlation  from  pandemic  to  time  cost  in  the  LNG  terminal
during the 21st and 27th week. RuDong and Dapeng had lags of
one  week,  and  WuHaoGou  and  YangShan  had  a  delay  of  two
weeks  in  response  to  the  Pandemic.  Tangguh  terminal  in
IDN(Indonesia)  had  a  longer  time  cost  for  LNG  ship  operation
during  the  more  serious  pandemic  between  the  21st and  52nd

weeks  with  lags  of  one  week.  The  unidirectional  correlation
between  the  Pandemic  and  Old  Harbor  LNG  terminal  opera-
tion can be detected between the 14th and 53rd weeks with lags
of  two  weeks.  The  time  cost  for  LNG  ships  in  both  Ohgishima
and Himeji had a week delay in response to the pandemic. This
unidirectional  correlation  can  be  found  between  the  25th and
45th weeks  in  Ohgishima.  The  unidirectional  effect  that
emerged  in  Himeji  was  ahead  of  Ohgishima  which  can  be
found during the 8th and 24th weeks.  In  Zeebrugge,  the unidi-
rectional  correlation  emerged  during  the  earlier  time  of  the
pandemic,  specifically  between  the  10th and  17th weeks  with
lags  of  two  weeks.  In  Gate,  the  severity  of  the  pandemic  was
continuously  increasing  in  the  stage  from  the  38th and  52nd

weeks,  which resulted in high fluctuation of  time cost  for  LNG
ships  with  lags  of  two  weeks.  In  Gibraltar,  there  is  only  one
LNG  terminal.  The  little  effects  of  the  severity  index  on  the

operation  of  LNG  terminals  were  revealed  during  the  8th and
13th week as well as during the 38th and 52nd weeks with lags of
two weeks.

The unidirectional  effects  of  the  severity  index  on time cost
in  LNG  import  terminals  are  shown  in Fig.  13 and Table  8,
including  Calcasieu  Pass  (in  USA),  Sabine  Pass  (in  USA),  Glad-
stone (in AUS), Atlantic LNG (in TTO), Arzew (in DZA), Ras Laffan
(in  QAT),  and  Yamal  (in  RUS).  In  Calcasieu  Pass,  the  severity  of
the  pandemic  was  continuously  increasing  in  the  stage  from
the 45th and 52nd weeks, which led to more time costs for LNG
ships with lags of two weeks. In Sabine Pass, the unidirectional
effect  appeared  ahead  of  Calcasieu  Pass  which  can  be  found
during  the  6th and  10th weeks  with  two  weeks  of  lags.  Glad-
stone  had  a  significant  effect  on  the  time  cost  for  LNG  ships
with  lags  of  four  weeks  when  it  was  near  the  outbreak  of  the
pandemic,  especially  between the 5th and 11th weeks.  Atlantic
LNG  is  the  only  LNG  terminal  in  TTO,  thus  it  maintained  the
same  variation  as  the  country.  The  unidirectional  correlation
appeared  during  two  periods,  specifically  during  the  18th and
23rd weeks and between the 48th and 53rd weeks. The unidirec-
tional  effects  of  the  pandemic  on  time  cost  for  LNG  ships  in
Arzew  had  been  detected  between  the  10th and  25th weeks.
The time cost increased with the severity of the pandemic. Ras
Laffan  is  the  only  LNG  terminal  in  QAT,  the  unidirectional
effects of the severity index on time cost emerged with lags of
three  weeks  from  the  12th to  44th weeks.  The  unidirectional
correlation  from  the  pandemic  to  time  cost  for  LNG  ships  can
be  detected  during  the  23rd and  46th weeks  with  a  lag  of  one
week in Yamal.

In general,  there are four circumstances through comparing
the  spatial  heterogeneity  of  impacts  in  countries  and  LNG
terminals,  as shown in Fig.  14.  The first  one is  that the correla-
tion appeared in the specific LNG terminal but did not emerge
in  the  whole-time  cost  change  of  the  country,  including  CHN
and IDN. That indicates there are several LNG terminals in these
two  countries.  The  variation  in  time  cost  in  different  LNG
terminals  during the  pandemic  was  significantly  different.  The
second  situation  is  that  the  correlation  didn't  appear  in  the
specific  LNG  terminal  but  emerged  in  the  whole-time  cost

 

Table 5.    VAR models for LNG trade countries with unidirectional effects.

Country VAR models No. p-value

Australia (AUS) yD,t = 0.0022+0.0666yI,t−1+0.2705yD,t−1+0.0817yI,t−2+0.1347yD,t−2−0.1475yI,t−3+

0.1131yD,t−3+0.2427yI,t−4+0.1534yD,t−4+εD,t

(24) 0.031

Qatar (QAT) yD,t = 0.1406+1.0000yI,t−1+0.1896yD,t−1−1.5588yI,t−2+0.0267yD,t−2+

0.7354yI,t−3+0.2484yD,t−3+εD,t

(25) 0.048

The United States of
America (USA)

yD,t = 0.7903−0.3672yI,t−1+0.2552yD,t−1−0.2243yI,t−2−0.0257yD,t−2+εD,t (26) 0.023

Algeria (DZA) yD,t = 0.0849+0.3148yI,t−1+0.2820yD,t−1+εD,t (27) 0.008

Norway (NOR) yD,t = 0.1928−0.0231yI,t−1−0.0066yD,t−1−0.0664yI,t−2−0.0394yD,t−2+εD,t (28) 0.041

Republic of Trinidad
and Tobago (TTO)

yD,t = 0.3134+0.3438yI,t−1+0.1425yD,t−1−0.2941yI,t−2−0.1221yD,t−2+εD,t (29) 0.019
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Fig. 11    LNG trade terminals with bidirectional effects.

 

Table 6.    VAR models for LNG trade terminals with bidirectional effects.

Country VAR models No. p-value

Wheatstone (in AUS)
[

yI,t
yD,t

]
=

[
0.2149
0.2195

]
+

[
0.9943 −0.1503
0.0583 0.1290

]
·
[

yI,t−1
yD,t−1

]
+

[
−0.2033 −0.0349
−0.1242 0.0727

]
·
[

yI,t−2
yD,t−2

]
+[

−0.2492 0.0803
−0.5307 0.0528

]
·
[

yI,t−3
yD,t−3

]
+

[
0.2894 −0.0732
0.5183 −0.1099

]
·
[

yI,t−4
yD,t−4

]
+

[
εI,t

εD,t

]
(30) 0.026
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change of the country, including FRA, BRA, and TUR. That illus-
trates there was a small amount of service in the LNG terminals
of  these  countries.  Thus,  the  unidirectional  correlation  cannot
be detected in the individual station but can be investigated in
the whole country. The third one is the correlation between the
pandemic  and  time  cost  for  LNG  ships  can  be  found  both  in
station and country,  however,  the correlation relationship was
differentiated.  This  kind  of  country  contains  several  terminals
with  differentiated  unidirectional  correlations  leading  to  not
non-synchronized  changes.  The  last  circumstance  is  that  the
station  and  country  maintained  the  same  correlation  relation-
ship. This kind of circumstance always occurs in a country with
only one LNG terminal.
 

Discussion

The  results  of  spatiotemporal  heterogeneity  of  impacts  in
countries  and  LNG  terminals  show  that  different  government
control and prevention measures can help ensure the shipping
industry  to  normal.  Under  the  influence  of  the  pandemic,
observing  the  changeable  trend  can  help  LNG  shipping
involved stakeholders in making short-term decisions for choos-
ing  suitable  importing  and  exporting  countries  or  stations
based on different risk levels. Also, the proposed methodology
can  quantify  various  impacts  of  the  pandemic  on  different
stations  and  countries  that  can  assist  LNG  shipping  involved
stakeholders  in  evaluating  the  efficiency  and  cost  in  different
LNG  terminals  to  make  the  optimal  decision.  The  discovered
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knowledge can further be employed for LNG terminal manage-
ment  and  providing  preplanning  support  for  the  next  emer-
gency  crisis.  In  terms  of  policy  recommendations,  the  govern-
ment can control the berthing efficiency of LNG vessels accord-
ing to the changing trend of the COVID-19 severity index at the
port  of  departure.  Considering  the  country  implementation,
the adjustment of import or export source countries can ensure
the energy supply under the COVID-19. In terms of global scale,
it  helps  international  shipping  companies  to  understand  the
global  transportation  situation,  adjust  business  strategies  in  a
timely manner, and reduce economic losses.

To  validate  the  obtained  results,  current  research  has  been
carefully  reviewed.  As  the  last  study  by  Gavalas  et  al.[37],  the
effect  of  the  virus  on  maritime  shipping  is  more  trustworthy
through  short-horizon  analysis.  This  is  consistent  with  the
research  results  of  this  article  that  the  impact  mostly  lasts
approximately  two  to  three  weeks.  The  five-day  and  15-day
windows are used in maritime stock market analysis.  This indi-
cates  the  shipping  network  may  have  a  longer  delayed
pandemic reaction than maritime stock because there are lags
between  the  stock  fluctuations  and  maritime  shipping
dynamics. 

Conclusions

All  studies  aimed  to  investigate  whether  there  was  such  an
association  between  the  COVID-19  pandemic  and  LNG  trans-
portation  efficiency.  Whether  changes  in  the  severity  index  of

the  pandemic  contributed  to  changes  in  the  time  service  in
LNG terminals for different ships was investigated in this study.
These results  are of  interest  to gas companies,  terminals,  ship-
ping  companies,  and  ship  operators.  If  the  stringency  index
does  not  affect  the  change  of  LNG  berthing  time,  it  can  be
ignored  that  the  change  of  epidemic  is  a  source  of  risk.  If  the
stringency index has a serious effect on the service time of LNG
ships,  some  actions  should  be  taken  to  alleviate  the  impact.
This  study  provides  deeper  insights  into  the  impact  of
pandemic  fluctuations  on  LNG  transportation  and  facilitates
future change forecasting and policy planning.

Our  findings  can  be  summarized  as  follows:  (1)  The  bidirec-
tional causality is observed in the VAR model from the point of
global  LNG  shipping  service  time.  (2)  In  the  view  of  countries,
the  bidirectional  effects  between  the  severity  index  and  time
cost  in  LNG ports  occurred in  AGO (LNG export  country),  RUS,
and ESP (LNG import country). The unidirectional effects of the
pandemic  on  the  time  cost  for  LNG  ships  in  different  LNG
import  countries  were  phased  and  appeared  during  different
periods, including JPN, FRA, GIB, BEL, BRA, JAM, NLD, and TUR.
The different  LNG export  countries  had differentiated affected
periods corresponding to the virus, as well as various durations,
including AUS, QAT, USA, DZA, NOR, and TTO. The no causality
between  the  pandemic  and  time  cost  for  LNG  ships  appeared
in China, India, the United Arab Emirates, The United Kingdom,
Indonesia,  Italy,  the Republic  of  Korea,  Kuwait,  the Republic  of
Lithuania,  Papua  New  Guinea,  Panama,  and  Singapore.  That
indicates the variation of time cost for LNG ships in these coun-
tries wasn't significantly correlated with the pandemic.

 

Table 7.    VAR models for LNG trade terminals with unidirectional effects.

Country VAR models No. p-value

RuDong (CHN) yD,t = −0.0044+0.2351yI,t−1+0.1944yD,t−1+εD,t (31) 0.036

WuHaoGou (CHN) yD,t = 0.1814+0.1611yI,t−1+0.2823yD,t−1−0.1776yI,t−2−0.0726yD,t−2+εD,t (32) 0.047

YangShan (CHN) yD,t = 0.3060+0.2477yI,t−1−0.0487yD,t−1−0.1985yI,t−2−0.0873yD,t−2+εD,t (33) 0.021

Dapeng (CHN) yD,t = 0.3496+0.1668yI,t−1+0.0598yD,t−1+εD,t (34) 0.025

Tangguh (IDN) yD,t = −0.1925+0.7286yI,t−1+0.3988yD,t−1+εD,t (35) 0.035

Old Harbour (JAM) yD,t = 0.2729−0.6179yI,t−1+0.2106yD,t−1+0.4548yI,t−2+0.1951yD,t−2+εD,t (36) 0.017

Ohgishima (JPN) yD,t = −0.0869−0.3893yI,t−1+0.2866yD,t−1+0.8705yI,t−2+0.2662yD,t−2+εD,t (37) 0.034

Himeji (JPN) yD,t = 0.4339+1.1299yI,t−1+0.2915yD,t−1−1.3366yI,t−2−0.0446yD,t−2+εD,t (38) 0.019

Zeebrugge (BEL) yD,t = 0.5767+0.7123yI,t−1−0.0269yD,t−1−1.3813yI,t−2+0.0881yD,t−2+

0.5651yI,t−3−0.1666yD,t−3+εD,t

(39) 0.016

Gate (NLD) yD,t = 0.5710−0.8500yI,t−1−0.0341yD,t−1+0.7375yI,t−2−0.0909yD,t−2+εD,t (40) 0.042

Gibraltar (GIB) yD,t = 0.6415−0.3850yI,t−1−0.1292yD,t−1+0.0845yI,t−2−0.1165yD,t−2+εD,t (41) 0.038

 

Table 8.    VAR models for LNG trade terminals with unidirectional effects.

Countries VAR model No. p-value

Calcasieu Pass (USA) yD,t = 0.1810+0.0503yI,t−1−0.213yD,t−1+0.0290yI,t−2−0.0348yD,t−2+εD,t (42) 0.034

Sabine Pass (USA) yD,t = 0.6854+0.2954yI,t−1+0.0383yD,t−1−0.5424yI,t−2−0.1727yD,t−2+εD,t (43)
0.003

Gladstone (AUS) yD,t = 0.1265−0.0496yI,t−1+0.2311yD,t−1−0.1505yI,t−2+0.2017yD,t−2−0.0681yI,t−3+

0.0441yD,t−3+0.4782yI,t−4+0.0114yD,t−4+εD,t

(44) 0.001

Atlantic LNG (TTO) yD,t = 0.3134+0.3438yI,t−1+0.1425yD,t−1−0.2941yI,t−2−0.1221yD,t−2+εD,t (45) 0.003

Arzew (DZA) yD,t = 0.1302+0.3213yI,t−1+0.0516yD,t−1+εD,t (46) 0.094

Ras Laffan (QAT) yD,t = 0.1406+1.0000yI,t−1+0.1896yD,t−1−1.5588yI,t−2+0.0267yD,t−2+

0.7354yI,t−3+0.2484yD,t−3+εD,t

(47) 0.048

Yamal (RUS) yD,t = 0.3903−0.24120yI,t−1+0.3309yD,t−1+εD,t (48) 0.050
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There are four circumstances through comparing the spatial
heterogeneity  of  impacts  in  countries  and  LNG  terminals.  The
first  one  is  that  the  correlation  appeared  in  the  specific  LNG
terminal but did not emerge in the whole-time cost change of

the country, which indicates several LNG terminals are affected
by  the  virus  differentially  and  dissimilarly  in  these  two  coun-
tries.  The second situation is that the correlation didn’t appear
in  the  specific  LNG  terminal  but  emerged  in  the  whole-time
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Fig. 13    LNG trade terminals with unidirectional effects.
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cost change of the country,  which illustrates there was a small
amount of service in the LNG terminals of these countries that
cannot support detection of the effect of the virus on time cost
for a specific terminal. The third one is the correlation between
the pandemic and time cost for LNG ships can be found both in
station and country,  however,  the correlation relationship was
differentiated.  This  kind  of  country  contains  several  stations
with  differentiated  unidirectional  correlation  leading  to  no
synchronized  changes  in  the  whole  country.  The  last  circum-
stance  is  that  the  station  and  country  maintained  the  same
correlation  relationship,  which  always  occurred  in  the  country
with only one LNG terminal.

The results of these studies can help domestic and potential
foreign  investors  understand  the  impact  of  various  factors  on
changes in maritime LNG transportation to effectively manage
their  portfolios.  There  are  some  avenues  for  further  research
and  investigation.  This  paper  focuses  on  the  effect  of  the
epidemic on LNG transportation, and subsequent research can
distinguish  different  shipping  types  such  as  bulk  cargo,
container,  and oil  to study the effect of the epidemic on these
types  of  shipping.  Also,  the  multidimensional  analysis  by
comparing  the  different  impacts  on  various  ship  types  can  be
further  conducted.  The  impact  of  changes  in  the  epidemic
severity  index  on  LNG  transportation  can  be  expanded  and
improved  if  we  can  access  more  sufficient  data  for  2022.  In
addition,  more  statistical  methods  and  data  mining  methods
can  be  employed  in  future  research  to  obtain  more  potential
features  and  rules,  so  as  to  improve  the  persuasiveness  and
credibility of LNG transportation dynamics under COVID-19. 
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