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Abstract
Urban intersections without traffic signals are prone to accidents involving motor vehicles and pedestrians. Utilizing computer vision technology

to detect pedestrians crossing the street can effectively mitigate the occurrence of such accidents. Faced with the complex issue of pedestrian

occlusion at signal-free intersections, this paper proposes a target detection model called Head feature And ENMS fusion Residual connection For

CNN (HAERC). Specifically, the model includes a head feature module that detects occluded pedestrians by integrating their head features with

the overall  target.  Additionally,  to address the misselection caused by overlapping candidate boxes in two-stage target  detection models,  an

Extended Non-Maximum Suppression classifier  (ENMS) with expanded IoU thresholds is  proposed.  Finally,  leveraging the CityPersons dataset

and  categorizing  it  into  four  classes  based  on  occlusion  levels  (heavy,  reasonable,  partial,  bare),  the  HAERC  model  is  experimented  on  these

classes  and compared with baseline models.  Experimental  results  demonstrate that  HAERC achieves superior  False Positives  Per  Image (FPPI)

values of  46.64%,  9.59%,  9.43%,  and 6.78% respectively  for  the four  classes,  outperforming all  baseline models.  The study concludes that  the

HAERC  model  effectively  identifies  occluded  pedestrians  in  the  complex  environment  of  urban  intersections  without  traffic  signals,  thereby

enhancing safety for long-range driving at such intersections.
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Introduction

Unsignalized  intersections  represent  accident-prone  areas
within  urban  road  networks,  where  the  primary  collision  type
involves  conflicts  between  motor  vehicles  and  pedestrians[1,2].
For drivers, limited visibility at unsignalized intersections results
in their  inability  to anticipate pedestrians crossing within their
line  of  sight  triangle.  Driver  misjudgment  of  pedestrians  is  a
leading  cause  of  accidents  at  unsignalized  intersections[3,4].
Detecting pedestrians at these intersections enables drivers to
promptly  perceive  their  complex  situations,  yield  to  them in  a
timely  manner,  enhance  intersection  safety  and  reduce  acci-
dents caused by driver misjudgment[5−7].

Computer  vision  methods  offer  effective  means  for  detect-
ing  pedestrians  crossing  at  unsignalized  intersections.  Early
approaches such as YOLO models detect road conditions ahead
from  the  driver's  perspective,  effectively  recognizing  pedestri-
ans[8].  However,  the complex environments of  urban unsignal-
ized intersections and pedestrians crossing in groups often lead
to occlusions,  rendering computer vision algorithms incapable
of precise detection[9,10].

To  address  these  challenges,  Dalal  &  Triggs[11] proposed  a
method  using  Histogram  of  Oriented  Gradients  (HOG)  com-
bined with Support Vector Machine (SVM) and sliding window
technique. This approach scans the entire image with fixed-size

windows and performs binary classification for foreground and
background  in  each  window  to  detect  occluded  pedestrians.
However, HOG features primarily capture edge and shape infor-
mation  of  objects,  lacking  effective  representation  of  appear-
ance information, making it difficult to handle occlusion. More-
over, due to the nature of gradients, this feature is sensitive to
noise. To tackle these issues, Dollár et al.[12] introduced Integral
Channel  Features  (ICF),  employing  AdaBoost  classifier  with  a
soft cascade in a cascaded manner. Different classifiers of vary-
ing scales were trained to detect pedestrians of different sizes,
and for pedestrians of other scales, predictions from these typi-
cal scale classifiers were interpolated to approximate the detec-
tion  of  occluded  targets.  However,  these  methods  rely  on
feature  expansion  for  detection.  Conversely,  Ruan  &  Zhang[13]

and  others  shifted  their  focus  by  using  Generative  Adversarial
Networks (GANs) to enhance images,  thereby achieving clarity
of  targets.  They  then  utilized  object  detection  algorithms  for
occluded  pedestrian  detection.  This  detection  method  based
on  visual  enhancement  effectively  mitigates  the  problem  of
occlusion-induced  missed  detections.  However,  when  the
occlusion rate exceeds 50%, information loss poses a challenge
even for visual enhancement methods[14,15].

In response to this situation, Ouyang & Wang[16] proposed a
method  of  overall  target  detection  using  body  parts.  They
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trained  a  convolutional  neural  network  pedestrian  classifier
using  the  Caltech  Pedestrian  Database,  categorizing  different
parts of pedestrians for classification to enhance the detection
probability  of  occluded  pedestrians.  Building  upon  this,  Li
et al.[17] proposed an SA-FastRCNN model, which performs hier-
archical  detection  of  different  features  of  pedestrians  to
achieve detection of overall occluded targets. Additionally, Tian
et  al.[18] devised  a  part-based  detection  scheme  called  Deep-
Parts,  dedicated  to  solving  occlusion  issues.  This  approach
divides  the  human  body  into  multiple  parts  for  individual
detection  and  then  combines  the  results  to  detect  occluded
targets.

This  method,  based  on  the  detection  of  human  body  parts,
can accurately detect occluded targets. However, for the prob-
lem  of  detecting  occluded  pedestrians  at  signal-free  intersec-
tions,  a  faster  inference  speed  is  required.  The  methods
proposed by scholars for part-based detection often face chal-
lenges in achieving fast inference speeds due to their computa-
tional  complexity.  In  tasks  such  as  pedestrian  detection  at
signal-free intersections, it is necessary to reduce the computa-
tional  complexity  based  on  part  detection.  Therefore,  This
paper  proposes  a  target  detection  model  called  HAERC  (Head
feature  And  ENMS  fusion  Residual  connection  For  CNN)  to
address  the  phenomenon  of  occluded  pedestrians  at  signal-
free intersections. The model focuses on the singular feature of
pedestrian  heads  and  utilizes  a  two-stage  object  detection
approach.  It  merges  the  head  feature  with  the  overall  pedes-
trian  feature  through  regression  fusion  to  detect  occluded
targets.  Furthermore,  to  mitigate  errors  caused  by  overlap
between  candidate  boxes  and  to  address  suboptimal  selec-
tions  due  to  excessively  large  Intersection  over  Union  (IoU)
values  between candidate  boxes,  this  paper  introduces  a  scal-
able  Enhanced  Non-Maximum  Suppression  (ENMS)  algorithm.
By adjusting the IoU threshold, ENMS optimizes the selection of
candidate  boxes,  thereby  enhancing  the  model's  detection
accuracy,  facilitating  the  detection  of  occluded  pedestrians  at
signal-free  intersections,  and  improving  long-range  driving
safety.

The  technical  roadmap  studied  in  this  article  is  shown  in
Fig. 1, and the main contributions of this article are as follows:

(1) To mitigate accidents between motor vehicles and pedes-
trians caused by visibility issues at urban unsignalized intersec-
tions,  this  paper addresses the complex occlusion scenarios of
pedestrians  at  such  intersections  and  proposes  an  occluded
pedestrian recognition model, HAERC, demonstrating its supe-
riority through empirical validation.

(2)  To  achieve  detection  of  occluded  targets  while  avoiding
the  slowdown  in  model  inference  speed  caused  by  complex
computations, a novel object detection method is proposed in
this paper. This method considers pedestrian head features and
integrates them with overall  target features to achieve precise
identification  of  occluded  targets,  thus  overcoming  the  chal-
lenges  posed  by  occlusion  without  compromising  computa-
tional efficiency.

(3)  Considering  the  selection  errors  caused  by  overlap
between  candidate  boxes  in  two-stage  object  detection  algo-
rithms, as well as suboptimal choices resulting from excessively
high  Intersection  over  Union  (IoU)  thresholds,  this  paper  pro-
poses  an  Extended  Non-Maximum  Suppression  Classifier
(ENMS).  This  approach  readjusts  IoU  thresholds  to  optimize
candidate  box  selection  and  improve  the  performance  of
object detection algorithms. 

Existing research
 

Occlusion target detection determined by key
trunk

For  the  detection  of  occluded  targets,  scholars  have  exten-
sively  utilized  the  detection  of  key  body  parts.  In  the  research
by  Pavlakos  et  al.[19],  they  partitioned  the  human  body  into
different  trunk  segments  and  detected  key  points,  enabling
inference  of  pedestrian  positions  considering  occlusions  and
unobstructed areas. Similarly, Li et al.[20] employed this method
by incorporating an attention mechanism during the division of
human  body  trunk  segments,  enhancing  the  weighting  of
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Fig. 1    Overall framework of the study.

 
Recognition of occluded pedestrians

Page 66 of 74   Qie et al. Digital Transportation and Safety 2024, 3(2): 65−74



exposed  trunk  parts.  This  approach  significantly  improved  the
accuracy  of  occluded  target  detection  and  strengthened  re-
cognition  of  occluded  targets.  Similar  methods  have  been
utilized  in  the  studies  by  Pishchulin  et  al.[21] and  Bulat  &
Tzimiropoulos[22].  However,  as  mentioned  in  the  study  by  xx,
while  the  method  of  inferring  partial  trunk  and  overall  target
can  significantly  enhance  the  accuracy  of  occluded  target
detection, it increases the complexity of the model and compu-
tational  load,  resulting  in  prolonged  inference  speed[23].  In
pedestrian detection at intersections,  real-time detection is  re-
quired.  Therefore,  this  paper,  based on scholars'  consideration
of partial trunk, selects the head as the target. On the one hand,
it  reduces  the  number  of  trunks  to  improve  the  model's  infe-
rence speed, while on the other hand, it maintains a high level
of accuracy. 

Evolution of NMS improvement
NMS,  or  Non-Maximum  Suppression  classifier,  is  an  algo-

rithm used in computer vision models for optimizing the selec-
tion  of  candidate  boxes.  In  object  detection  algorithms  gene-
rating  multiple  candidate  boxes  for  detection  targets,  NMS
typically  selects  the  candidate  box  with  the  highest  score.
However,  during  the  scoring  process  for  different  detection
boxes, NMSs selection of the optimal box may not always yield
optimal  results  due  to  occlusion  recognition  factors[24].  This
process  is  limited  by  the  threshold  of  Intersection  over  Union
(IoU). Therefore, in the study by Tang et al.[25], a weighted NMS
for  different  class  detection  boxes  was  proposed,  using  the
classification  regression  results  of  multiple  targets  to  filter  IoU
thresholds.  This  method  effectively  improved  NMS's  ability  to
achieve  optimal  candidate  boxes  for  occluded  targets.  How-
ever, this weighted NMS method, suitable for regression selec-
tion  of  optimal  candidate  boxes  for  pedestrian  trunks  and
overall  bodies  also  increase  the  computational  complexity  of
the model, resulting in reduced inference speed[26].

To  address  this,  Gidaris  &  Komodakis[27] proposed  a  novel
approach  where  multiple  candidate  boxes  are  generated  by
the object model. Utilizing a candidate box sliding mechanism
near  the  image,  composite  candidate  boxes  generate  scores
during the sliding process. This approach's advantage lies in its
ability to utilize the candidate box sliding mechanism to select
high-precision  candidate  boxes  while  effectively  reducing  the
computational complexity required for scoring each candidate
box individually, thus improving detection efficiency.

Therefore, in this paper, while employing this candidate box
selection  method,  we  propose  an  extended  IoU  threshold
selection  mechanism  to  address  the  limitations  of  self-scoring
IoU.  On one hand,  the sliding of  candidate boxes is  utilized to
reduce  computational  efficiency,  and  on  the  other  hand,  the
model's  computational  accuracy  is  improved  through  the  use
of extended IoU thresholds. 

Analysis of occlusion issues

In  pedestrian  detection  research,  typically,  a  pedestrian  is
considered occluded if the occluded area exceeds 10%. If occlu-
sion  is  caused  by  other  pedestrians  of  the  same  category,  i.e.,
intra-class  occlusion  or  crowd  occlusion,  the  occlusion  degree
of the pedestrian is more significant. To measure the degree of
occlusion, the Intersection over Union (IoU) metric is commonly
used  to  quantify  the  occlusion  between  two  objects.  This  is
done  by  calculating  the  ratio  of  the  intersection  area  to  the

union  area  of  two  objects  to  assess  their  overlapping  degree
and evaluate their occlusion status. IoU is a widely used metric
for computing the overlap between targets; if the IoU between
two  pedestrians  is  less  than  a  specific  threshold,  they  are
considered to be mutually  occluded.  When dealing with intra-
class occlusion, multiple detection boxes are used to detect the
same target,  and these detection boxes are merged to restore
the complete pedestrian bounding box.

During  pedestrian  traversal  through  unsignalized  intersec-
tions,  two  primary  categories  of  occlusion  exist:  occlusion
between  individuals  and  occlusion  between  objects  and  indi-
viduals.  Pedestrian  occlusion  can  be  regarded  as  a  specialized
form  of  occlusion,  but  its  level  of  difficulty  in  handling  sur-
passes that of  typical  occlusion scenarios.  This  is  primarily  due
to several reasons:

When pedestrians are partially occluded, the occluded parts
they  receive  may  cause  deformation  or  distortion[28].  When
pedestrians  are  occluded  by  other  objects,  information  in  the
occluded  area  is  lost,  leading  the  detector  to  inaccurately
detect the position and pose of pedestrians[29]. When pedestri-
ans  are  occluded  by  multiple  objects,  the  occluded  area
becomes  more  complex,  potentially  containing  the  contours
and edges of multiple objects, making it difficult for the detec-
tor  to  extract  features.  When  pedestrians  are  occluded,  the
degree of occlusion may vary,  such as different areas of occlu-
sion  for  each  hand.  In  such  cases,  the  detector  needs  to  iden-
tify varying degrees of occlusion.

Regarding  the  pedestrian  detection  problem  in  the  context
of this study, there are two main issues: Firstly, there is informa-
tion  loss  caused  by  pedestrian  occlusion,  resulting  in  un-
detected  regions  in  detection  boxes.  Secondly,  there  may  be
difficulty in identifying candidate boxes when the true bound-
ary  boxes  of  the  target  pedestrian  are  close  to  those  of  other
pedestrians, leading to detection offsets.  Therefore, in the task
of pedestrian detection under occlusion conditions, it is neces-
sary both to avoid information loss caused by occlusion and to
discern  ambiguous  candidate  boxes  to  determine  the  optimal
detection results. 

Construction of the hidden pedestrian
detection model (HAERC)
 

Overview of the HAERC model
In  response  to  the  challenges  identified  in  the  previous

section  regarding  occluded  pedestrian  recognition,  this  study
presents  a  two-stage  object  detection  model  named  HAERC
(Head feature And ENMS fusion Residual connection For CNN),
which  integrates  pedestrian  head  features  with  an  Extended
Non-Maximum  Suppression  (ENMS)  algorithm.  Specifically,  to
comprehensively  capture  information  about  occluded  targets,
the  study  considers  the  pedestrian's  head  as  a  secondary
feature for  recognition.  By weighting the detection box of  the
pedestrian's  head  and  the  overall  target  detection  box,
occluded  targets  can  be  detected  effectively.  Additionally,  to
address  issues  arising  from  overlapping  candidate  boxes,  an
Extended  Non-Maximum  Suppression  Classifier  (ENMS)  is  pro-
posed, which extends the IoU threshold for optimal selection of
candidate boxes, as depicted in Fig. 2. 

HAERC backbone network
In  the  backbone  network  section  of  the  model,  traditional

two-stage  object  detection  algorithms  are  utilized  as  the  core
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framework of the HAERC model. Additionally, to reduce compu-
tational  complexity,  the  residual  connection  method  inspired
by  ResNet[30] is  adopted  within  the  backbone  network  of
HAERC.

For the two-stage object detection method, the key compo-
nent  is  the  Region  Proposal  Network  (RPN),  which  generates
candidate object boxes. This is achieved through a fully convo-
lutional  network  that  slides  over  the  input  image  to  generate
multiple  candidate  object  boxes  at  different  positions.  The
input to the RPN network is the feature map extracted from the
input  image and the  output  consists  of  scores  and coordinate
offsets for each candidate box. The design of the RPN network
primarily involves the concept of anchor boxes, which are a set
of  pre-defined  bounding  boxes  containing  a  center  point  and
various  aspect  ratios.  The  RPN  network  slides  these  anchor
boxes  over  the  feature  map,  performing  classification  and  re-
gression for each anchor box to obtain a set of candidate object
boxes.

Compared  to  existing  object  detection  algorithms,  the  RPN
algorithm  can  effectively  generate  fewer  and  higher-quality
candidate  regions.  The  RPN  network  scans  the  final  feature
map using 3  ×  3  convolutions  to  generate  nine  anchor  boxes.
These anchor boxes, representing various sizes and shapes, are
utilized to detect and classify objects at different scales, thereby
enhancing detection accuracy. Multiple anchor boxes of differ-
ent sizes and aspect ratios are generated at each position of the
feature  map,  with  each  position  serving  as  the  anchor  point.
For each anchor box, a candidate box is generated on the origi-
nal image based on its position and dimensions.

Regarding residual connections,  multiple residual blocks are
typically  employed  in  the  backbone  network  for  connectivity.
In  the  residual  structure,  two  1  ×  1  convolutional  layers  are

introduced  to  simplify  the  complexity  of  the  3  ×  3  convolu-
tional layers.

For all  ground truth (GT) objects,  each prior box is traversed
to  find  the  maximum  IoU  (Intersection  over  Union)  prior  box,
which is labeled as a positive sample. Then, for all  prior boxes,
each  ground  truth  object  is  traversed,  and  if  the  IoU  between
the  prior  box  and  any  ground  truth  object  is  greater  than  0.7,
the prior box is labeled as a positive sample. If the IoU between
the prior  box  and all  ground truth  objects  is  less  than 0.3,  the
prior  box  is  labeled  as  a  negative  sample.  In  terms  of  the  loss
function, which includes both RPN and detection components,
it  comprises  two  main  components:  classification  loss  and
bounding  box  regression  loss,  with  each  component  encom-
passing the aforementioned two types of losses. The computa-
tion is as follows:

L ({pi} , {ti}) =
1

Ncls

∑
i

Lcls
(
pi, p∗i

)
+λ

1
Nreg

∑
i

p∗i Lreg
(
ti, t∗i
)

(1)

The  classification  loss  for  each  prior  box,  denoted  as i is
computed  using  cross-entropy.  Here, pi represents  the  pre-
dicted probability value p* = { 0,1} of class p for the prior box i. If
the prior box is a positive sample, the value is 1; if  it is a nega-
tive sample, the value is 0. The computation is as follows:

λ

p∗i

The  regression  loss,  denoted  as ,  is  a  coefficient  used  to
balance the ratio between regression and classification loss and
is  set  to  a  value  of  10.  controls  whether  only  positive  sam-
ples contribute to the regression loss. The loss is quantified by
measuring  the  adjustment  between  the  prior  boxes  and  the
predicted boxes. Therefore, the following metrics are designed
to  represent  the  loss:  Translation  offset  represents  (tx, ty)  the
translation  amount  of  coordinates.  Scale  factor  (tw, th)  repre-
sents the scaling factor.
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tx = (x− xa)/wa ty = (y− ya)/ha (2)

tw = log(w/wa) th = log(h/ha) (3)
According  to  Eqns  (2)  and  (3),  the  coordinates  of  the  pre-

dicted boxes can be computed. In these coordinates, ha repre-
sents  the  coordinates  of  the  samples, xa,ya,wa,ha denotes  the
coordinates  of  the  anchors,  and x*,y*,w*,h* signifies  the  coordi-
nates of the ground truth (GT). 

Pedestrian head feature module
In  densely  crowded  environments,  detecting  pedestrians

efficiently using CNNs can be challenging due to the extensive
occlusion  between  pedestrians.  CNNs,  after  multiple  convolu-
tional  layers,  may  easily  lead  to  target  confusion.  Therefore,
utilizing  more  discriminative  features  for  pedestrian  detection
is  crucial.  As  the head is  typically  unobstructed and located at
the highest point of a person's body, it tends to exhibit higher
stability  compared  to  other  body  parts[31,32].  Leveraging  this
information,  the  head  region  of  pedestrians  can  be  employed
as additional cues to assist neural networks in learning distinc-
tive features for occluded pedestrians.  Introducing a head fea-
ture  module  alongside  classification  and  regression  modules,
working  in  parallel,  aid  in  predicting  head  masks.  The  model
architecture, as depicted in Fig. 2, comprises four layers of 3 × 3
convolutional  layers  with  a  size  of  14  ×  14  ×  256,  followed  by
deconvolutional  layers  of  size  28 × 28 × 256,  a  1  ×  1  convolu-
tional  layer,  and  a  pixel-wise  sigmoid  function  for  predicting
binary head masks.

Building  upon  this  premise,  a  head  feature  module  is  intro-
duced to work in parallel with the classification and regression
modules  to  predict  head  masks.  The  model  architecture,  as
depicted  in Fig.  2,  includes  four  layers  of  3  ×  3  convolutional
layers  with  dimensions  14  ×  14  ×  256,  followed  by  decon-
volutional  layers  with  dimensions  28  ×  28  ×  256,  a  1  ×  1  con-
volutional  layer,  and  a  pixel-wise  sigmoid  function.  These
components  collectively  predict  binary  head  masks  for  each
pedestrian.

This approach proves effective in recognizing pedestrians in
complex crowd scenarios.  It  eliminates the need for additional
data  and  only  requires  the  inclusion  of  a  head  region  within
pedestrian  information.  Furthermore,  this  method  does  not
incur  any  additional  computational  overhead.  By  leveraging
information  from  the  head  portion  of  pedestrians,  neural  net-
works  are  better  equipped  to  extract  features.  Consequently,
this  approach  enhances  the  ability  to  distinguish  between
different  pedestrian  targets  in  crowded  scenes,  thereby
improving detection accuracy. 

Extended non-maximum suppression classifier
For  two-stage  object  detection  models  like  the  Faster  R-

CNN[33] model,  the  first  stage  involves  fuzzy  detection  of
objects,  generating  multiple  candidate  boxes.  Non-Maximum
Suppression  (NMS)  is  commonly  used  within  these  candidate
boxes to effectively remove redundant detection results. How-
ever,  situations  arise  where  candidate  boxes  overlap  signifi-
cantly  or  entirely.  In  such  cases,  NMS  is  employed  to  select
neighboring boxes with higher scores while filtering out those
with lower scores.

Although  the  NMS  classifier  has  been  widely  applied  in
practice,  it  still  encounters  several  issues.  One  is  when  two
detection boxes have very close IoU values, but their bounding
box  regression  results  differ  significantly.  In  such  cases,  NMS
may  select  the  wrong  detection  box,  leading  to  a  decrease  in

accuracy[34].  Another  issue  is  that  the  optimal  IoU  threshold
may  vary  across  different  datasets  and  tasks,  increasing  the
difficulty  of  algorithm  tuning[35].  To  address  these  challenges,
this  study  proposes  an  extensible  Non-Maximum  Suppression
algorithm, termed the ENMS classifier.

(1) The IoU threshold for HAERC is increased from 0.5 to 0.75
to  further  enhance  HAERC's  recognition  accuracy  of  positive
samples.  This  adjustment  implies  that  only  candidate  boxes
highly overlapping with the ground truth bounding boxes will
be considered positive samples, while those with lower overlap
will be filtered out or labeled as negative samples.

[δx1, δy1, δx2, δy2]

δx1, δx2 ∼ Uni f orm(−0.2w,0.2w)
δy1, δy2 ∼ Uni f orm(−0.2h,0.2h),

(2)  Increasing the IoU threshold  will  significantly  reduce the
number  of  positive  samples,  leading  to  class  imbalance.  To
address  this  issue,  a  method  is  introduced  that  utilizes  the
ground  truth  bounding  boxes  (GT)  to  make  multiple  adjust-
ments  to  the  position  within  a  short  period .
Specifically, within a small region, the position can be adjusted
eight  times  using ,

,  etc.,  where  'w'  and  'h'  repre-
sent the width and height of the ground truth box, respectively.
These  adjusted  values  are  then  inputted  into  the  R-CNN  for
proposal and training.

The  final  results  are  depicted  in Fig.  3.  The  left  image  illus-
trates  the  classification  process  using  NMS,  where  the  green
boxes  represent  true  positive  candidate  boxes,  and  the  red
boxes denote false positive candidate boxes. It can be observed
that  the  overlapping  true  positive  candidate  boxes  do  not
effectively  restrict  the  false  positive  candidate  boxes.  On  the
right side is the classification process using ENMS, which signifi-
cantly improves the quality of true positive samples and effec-
tively  reduces  the  number  of  false  positive  candidate  boxes
observed on the left side. 

Experiments and results discussion
 

Data description
The  dataset  chosen  for  this  study  is  the  CityPersons

dataset[36], a subset of CityScape focusing on pedestrian detec-
tion.  Through  statistical  analysis,  it  is  found  that  the  dataset

 

Fig. 3    Comparison of classification processes between NMS and
ENMS.
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encompasses 18 cities from three different countries and spans
across  three  seasons.  On  average,  each  image  contains  seven
pedestrian  samples.  A  comparison  was  made  between  the
CityPersons  dataset  and  the  Caltech  dataset,  which  is  widely
used  in  pedestrian  detection  tasks  (as  depicted  in Fig.  1).  The
comparison results confirmed the advantages of CityPersons in
the tasks undertaken in this study.

Figure  4 illustrates  that  the  distribution  of  samples  in  the
'Reasonable'  category  is  highly  imbalanced,  with  80%  of  the
samples being unoccluded data. Conversely, the sample distri-
bution in the CityPersons dataset is  relatively balanced.  There-
fore,  CityPersons  was  chosen  as  the  experimental  dataset  for
this research.

The  CityPersons  dataset  includes  labels  such  as  'rider'  and
'ignore', which bear resemblance to pedestrian appearances. In
this  study,  the validation set  of  this  dataset  was chosen as the
test set. The pedestrian head was utilized to assist in detecting
obstructed pedestrians. 

Evaluating indicator
In pedestrian detection tasks, one of the most common eva-

luation  metrics  is  the  False  Positive  Per  Image  (FPPI),  also
known  as  the  Log-average  Miss  Rate.  It  is  calculated  by
uniformly  sampling  nine  points  in  the  logarithmic  interval
[10−2,  100].  If  the  curve  terminates  prematurely,  the  miss  rate
value at  the termination point  is  used.  Then,  the average miss
rate of the nine points is computed as the final metric.

To  evaluate  the  effectiveness  of  this  method  comprehen-
sively,  experiments  will  be  conducted  on  multiple  datasets  to

assess its performance across various scenarios. To compare the
algorithm's  performance  under  different  occlusion  conditions,
the CityPersons dataset will be partitioned based on the occlu-
sion rates of its samples. Regarding the subdivision of datasets,
there  are  two  perspectives.  Du  et  al.[37] highlighted  that  the
accuracy  of  object  detection  models  drops  significantly  when
the  occlusion  rate  exceeds  50%.  Conversely,  Yang  et  al.[38]

proposed that  during pedestrian crossings  at  signal-free inter-
sections,  when  the  occlusion  area  exceeds  50%,  it  generally
corresponds  to  high  pedestrian  traffic,  making  pedestrians
easily observable. Therefore, the subsets are divided as follows:

'Heavy'  occlusion  subset:  when  the  occlusion  rate  is  greater
than 50%.

'Reasonable' occlusion subset: when the occlusion rate is less
than or equal to 50% but greater than 30%.

'Partial' occlusion subset: when the occlusion rate is less than
or equal to 30% but greater than 10%.

'Bare'  occlusion  subset:  when  the  occlusion  rate  is  less  than
or equal to 10%. 

Comparison with existing technology
To  validate  the  superiority  of  the  model,  four  widely  used

object detection algorithms were selected for comparison with
the  proposed  HAERC  model.  The  evaluation  was  conducted
using the four subsets constructed previously.  The experimen-
tal  results  are  presented  in Table  1,  and  the  FPPI-Miss  rate
curves for the five models are shown in Fig. 5.

The  ALFNET  model[39] utilizes  VGG16  as  its  backbone  net-
work  and  employs  a  one-stage  approach  for  recognition.  The
Rep  Loss  model[40] adopts  a  two-stage  approach  and  incorpo-
rates  residual  connections  in  the  backbone  network.  Faster  R-
CNN[33] employs a two-stage approach and enhances accuracy
through  dual-stage  image  classification,  albeit  slightly  slower
inference  speed  due  to  model  complexity.  YOLOv8[41] stands
out as a powerful one-stage object detection algorithm, widely
applied across various domains, showcasing impressive perfor-
mance  and  broad  recognition,  The  division  result  is  shown  in
Fig. 4.

Figure 5 illustrates the FPPI-Miss rate curves for five models.
It can be observed that, in comparison with the other four base-
line models, the HAERC model exhibits overall strong occlusion
resistance.  However,  in  Heavy  occlusion  datasets,  its  FPPI  is
46.64,  slightly  weaker  than  the  YOLOv8  model's  44.24.

 

70

60

Heavy
Reasonable

Partial

Bare

0.9 0.8 0.7 0.6 0.5
Occlusion rate

0.4 0.3

CityPersons Caltech

0.2 0.1 0

50

40

Pr
op

or
tio

n 
(%

)

30

20

10

0

Fig. 4    Distribution of occlusion ratio in the pedestrian dataset.

 

Table 1.    Performance comparison with other occlusion models.

Heavy Reasonable

Accuracy Recall F1 score FPPI Accuracy Recall F1 score FPPI

ALFNet 57.34% 63.70% 65.49% 51.90% 70.81% 64.12% 70.87% 12%
Rep Loss 55.26% 62.31% 55.00% 64.12% 68.24% 62.04% 68.71% 13.20%
Faster R-CNN 56.36% 54.00% 65.51% 55.67% 66.45% 62.35% 67.97% 14.37%
YOLOv8 57.70% 63.53% 66.59% 44.24% 72.05% 61.12% 68.59% 12.07%
HAERC 60.68% 63.70% 68.09% 46.64% 73.33% 62.40% 69.83% 9.59%

Partial Bare

Accuracy Recall F1 score FPPI Accuracy Recall F1 score FPPI

ALFNet 74.39% 60.94% 69.73% 11.40% 74.82% 60.94% 69.86% 8.40%
Rep Loss 69.99% 59.88% 67.34% 16.80% 75.51% 60.28% 69.56% 7.60%
Faster R-CNN 70.74% 59.47% 67.30% 15.84% 74.92% 60.56% 69.39% 8.13%
YOLOv8 75.10% 61.32% 70.25% 9.86% 76.54% 60.83% 70.31% 7.45%
HAERC 75.91% 61.05% 70.30% 9.43% 77.16% 60.51% 70.24% 6.78%

The bold part indicates that the optimality can be strengthened.
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Nonetheless,  it  outperforms  the  other  three  baseline  models.
This is speculated to be due to the HAERC model employing a
two-stage approach,  which entails  higher computational  com-
plexity  compared  to  the  one-stage  YOLOv8.  In  scenarios  of
extensive occlusion,  the model's  performance is  compromised
due to  its  computational  intensity[42].  Although YOLOv8 yields
relatively good results, its FPPI remains at 44.24, indicating that
various models still struggle to achieve precise detection under
occlusion rates exceeding 50%[15].

In the dataset with relatively weak occlusion, reasonably, the
HAERC model achieves an FPPI of 9.59, outperforming the most
powerful  YOLOv8  model  with  an  FPPI  of  12.07.  Moreover,  the
HAERC model surpasses all  baseline models, demonstrating its
superiority in Partial and Bare occlusion scenarios, with FPPIs of
9.43 and 6.78, respectively. These results confirm the outstand-
ing  performance  of  the  HAERC  model  in  occluded  environ-
ment object detection.

To  validate  the  detection  accuracy  of  the  proposed  HAERC
model,  we  compared  its  performance  against  four  baseline
models using accuracy as the metric. The comparison revealed
that in the Heavy dataset, which involves severe occlusion, the
HAERC model achieved an accuracy of 60.68%. While this indi-
cates  room  for  improvement,  it  significantly  outperforms  the
Rep  Loss  model,  which  achieved  an  accuracy  of  55.26%.  Even
the advanced YOLOv8 model had an accuracy of 57.70% in this
subset,  making  the  HAERC  model's  performance  over  5%
better,  which  is  a  notable  improvement.  In  the  other  subsets
with  less  severe  occlusion  (Reasonable,  Partial,  and  Bare),  the
HAERC  model  demonstrated  even  stronger  performance,  with
accuracies of 73.33%, 75.91%, and 77.16%, respectively. With an
average accuracy exceeding 75%, these results  clearly demon-
strate the robustness and effectiveness of the HAERC model.

Furthermore, to validate the model's recognition of occluded
pedestrians  from  a  driver's  perspective,  experiments  were
conducted  in  a  real  driving  scenario.  Cameras  were  placed  in
vehicles to collect data while driving on city roads. Over a week,
a total of 3 h of data were collected, and the proposed HAERC
model was tested.  The recognition effectiveness of  the HAERC
model  for  occluded  pedestrians  from  a  driver's  perspective  is
illustrated in Fig. 6.

From the results shown in Fig. 6, it is evident that the model
can  accurately  recognize  pedestrians  in  both  types  of  occlu-
sion  scenarios  caused  by  interactions  between  people  and
objects. In Fig. 6e1, which illustrates complex occlusion caused
by  interactions  between  people  directly  in  front,  the  HAERC
model achieves precise recognition. Moreover, Fig 6e2 and 6e3
demonstrate  that  the  HAERC  model  effectively  identifies
occluded  pedestrians,  even  when  they  are  small  and  at  a
distance,  through  its  integration  of  pedestrian  head  features
and  ENMS  classifier  strategies.  Furthermore,  in Fig.  6e4,  the
occlusion caused by objects on the right side is also accurately
identified  by  the  HAERC  model,  leveraging  pedestrian  head
features.

By comparing the detection performance of different models
in Fig.  6,  it  is  evident  that  the  ALFNe  and  Rep  Loss  models
depicted in Fig. 6a & b respectively do not achieve satisfactory
results.  In  these  models,  there  is  a  noticeable  occurrence  of
missed  detections,  particularly  for  small  occluded  pedestrians
in the images. However, there is a notable performance impro-
vement  observed in  Faster  R-CNN,  YOLOv8,  and the proposed
HAERC model.  When faced with occluded pedestrians,  such as
the occluded pedestrian on the right side of the fourth image, it
is evident that the HAERC model exhibits superior performance
in  recognizing  occluded  targets.  Regarding  the  missed  detec-
tion phenomenon observed in the second image for the HAERC
model, it can be attributed to the model's emphasis on pedes-
trian  head  features.  In  this  particular  image,  the  head  features
of the pedestrian are not prominent, leading to the occurrence
of missed detections. 

Ablation experiment
To  assess  the  influence  of  different  modules  in  the  HAERC

model  on  occlusion  detection  and  to  evaluate  the  scientific
integrity of the model,  we conducted ablation experiments by
selectively  removing  modules  to  create  two  variants:  HAERC1
and  HAERC2.  HAERC1  integrates  only  the  pedestrian  head
feature module, while HAERC2 considers only the utilization of
ENMS classification criteria.  Subsequently,  we performed com-
parative validation experiments on datasets with Heavy and Rea-
sonable  occlusion  levels.  The  experimental  results  and  model
compositions are summarized in Table 2.

The  comparison  between  HAERC  and  HAERC1  models
reveals  that  HAERC  achieves  an  FPPI  of  46.64  and  9.59  on  the
Heavy  and  Reasonable  datasets,  respectively.  In  contrast,  the
HAERC1 model, which solely employs the head feature module,
achieves FPPI  values of  49.74 and 11.67 on the same datasets.
These  results  effectively  demonstrate  that  considering  the
pedestrian  head  feature  module  can  significantly  enhance
pedestrian detection performance in occluded scenarios.  Simi-
larly, the HAERC2 model, which relies solely on the ENMS classi-
fier,  achieves  FPPI  values  of  47.3  and  10.74  on  the  Heavy  and
Reasonable  datasets,  respectively,  indicating  weaker  perfor-
mance  compared  to  HAERC.  This  confirms  the  superiority  and
scientific integrity of the HAERC model composition. 

Conclusions

This  study  focuses  on  accurately  identifying  pedestrians  in
complex occlusion environments at  urban signal-free intersec-
tions  to  enhance  safety  during  long-range  driving  and  reduce
the  probability  of  accidents.  A  pedestrian  detection  method
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called HAERC, considering pedestrian head features, was devel-
oped in this study. Specifically,  the model's backbone network
is  based  on  a  two-stage  object  detection  algorithm,  which
simultaneously  considers  pedestrian  head  features  and  the
overall  target  during  target  extraction,  detecting  occluded
targets  through  weighted  fusion.  Moreover,  to  address  the
misjudgment  issue  during  the  optimal  selection  of  candidate
boxes  in  the  two-stage  method,  this  study  proposed  an
Extended  Non-Maximum  Suppression  (ENMS)  classifier  by
extending  the  IoU  threshold  for  candidate  boxes.  Finally,  the
performance  of  HAERC  was  validated  using  the  CityPersons
dataset,  and  comparisons  were  made  with  four  baseline
models.  The  results  confirmed  the  superiority  of  the  HAERC
model  in  detecting  occluded  pedestrians  at  urban  signal-free
intersections,  highlighting  its  robust  performance.  This  study,
through computer vision technology, aims to address the issue

of  false  positives  caused  by  pedestrian  occlusion  during
pedestrian  crossing  at  signal-free  intersections.  By  integrating
this method into vehicle auxiliary driving systems, vehicles can
autonomously  detect  and  avoid  pedestrians  crossing,  mitigat-
ing driver blind spots, extending the visual range of vehicles at
signal-free intersections, and enhancing intersection safety.

With  the  advancement  of  vehicle-to-everything  (V2X)  tech-
nology  and  the  widespread  application  of  future  connected
vehicle  technology,  utilizing  traffic  infrastructure  to  better
address safety concerns becomes a paramount goal. This study
solely  considers  detecting  occluded  pedestrians  from  the
driver's  perspective.  In  future  research,  a  more  accurate  de-
tection  could  be  achieved  by  integrating  monitoring  cameras
with  in-vehicle  cameras,  enabling  detection  from  multiple
viewpoints. 
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Table 2.    Results of ablation experiments.

Model ENMS Head feature
module

Backbone Heavy Reasonable

HAERC1 √ ResNet-50 49.74 11.67
HAERC2 √ ResNet-50 47.3 10.74
HAERC √ √ ResNet-50 46.64 9.59
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