
 

Open Access https://doi.org/10.48130/dts-0024-0008

Digital Transportation and Safety 2024, 3(3): 75−81

Research on visual differences of exits of different grades of tunnels
based on machine learning
Fangtong Jiao1, Zhenwei Shi1, Lingyu Li1, Wenpin Xu2,3* and Qing Lan2,3

1 School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
2 Department of Transportation Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, Hebei, China
3 Hebei Higher Institute of Transportation Infrastructure Research and Development Center for Digital and Intelligent Technology Application, Cangzhou 061001,

Hebei, China
* Corresponding author, E-mail: xuwenpin@hbwe.edu.cn

Abstract
Tunnels  are vital  in connecting crucial  transportation hubs as transportation infrastructure evolves.  Variations in tunnel  design standards and

driving  conditions  across  different  levels  directly  impact  driver  visual  perception  and  traffic  safety.  This  study  employs  a  Gaussian  hybrid

clustering machine learning model to explore driver gaze patterns in highway tunnels and exits.  By utilizing contour coefficients,  the optimal

number of classification clusters is determined. Analysis of driver visual behavior across tunnel levels, focusing on gaze point distribution, gaze

duration, and sweep speed, was conducted. Findings indicate freeway tunnel exits exhibit three distinct fixation point categories aligning with

Gaussian distribution, while highway tunnels display four such characteristics. Notably, in both tunnel types, 65% of driver gaze is concentrated

on the near area ahead of their lane. Differences emerge in highway tunnels due to oncoming traffic, leading to 13.47% more fixation points and

0.9% increased fixation time in the right lane compared to regular  highway tunnel  conditions.  Moreover,  scanning speeds predominantly fall

within the 0.25−0.3 range, accounting for 75.47% and 31.14% of the total sweep speed.
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Introduction

In  recent  years,  the  construction  of  highway  tunnels  has
shown significant growth, especially in mountainous areas with
complex  terrain  and  in  cities  with  rapid  urbanization.  As  an
important  part  of  modern  transportation  infrastructure,  high-
way  tunnels  have  remarkable  performance,  which  not  only
greatly  improves  transportation  efficiency  and  shortens  travel
time,  but  also  effectively  saves  valuable  land  resources,  and
plays a  crucial  role  in  promoting the high-speed development
of the national economy[1,2].

According to the latest statistics, by the end of 2022, the total
number of highway tunnels in the country had reached 24,850,
with  a  total  length  of  more  than  26,784,300  linear  meters.
Among them, the extra-long tunnels occupy 1,752 places, with
a  total  length  of  7,951,100  linear  meters;  long  tunnels  occupy
6,715 places,  with  a  total  length of  11,728,200 linear  meters[3].
However,  the  rapid  development  of  highway  tunnels  has  also
brought new challenges, especially in terms of traffic safety[4−6].
Statistics show that the accident rate of tunnel sections is much
higher  than  that  of  conventional  sections,  with  the  accident
rate  usually  ranging from 1.31  to  9.67  times  that  of  the  whole
route,  with  an  average  of  about  5.17  times.  In  addition,  the
proportion of casualties caused by accidents in tunnels is signif-
icantly higher than that in other road sections[7].

Driver  factors  directly  cause  about  65%  of  traffic  accidents,
while  accidents  related  to  driver  factors  account  for  about
93%[8],  and  the  above  data  fully  illustrates  the  centrality  of

drivers  in  overall  accident  prevention  work.  The  driver  is  the
receiver  of  information  about  the  traffic  environment  and  the
driver  of  the  vehicle,  and  is  the  most  important  element  in
maintaining  the  safe  operation  of  the  driver-pedestrian-vehi-
cle-road system[9]. According to statistics, in the process of vehi-
cle  driving,  each  sensary  organ  is  utilized  to  provide  drivers
with a perception of  the proportion of  traffic  information data
as  follows:  vision  accounts  for  80%  of  the  overall  information,
hearing is 14%, touch is 2%, taste is 2%, and smell is 2%[9,10].

In  terms of  visual  research,  Du et  al.[11] obtained the driver's
pupil  response  to  light  intensity  through  a  large  number  of
tunnel  exit  driving  tests  firstly  putting  forward  the  concept  of
visual shock,  and used the conversion of the visual shock time
to  establish  the  evaluation  index  of  the  visual  comfort  level,
and  quantitatively  evaluated  the  safety  and  comfort  of  the
tunnel exits. Wang et al.[12] quantified the overall physiological
load of different sections by conducting real vehicle tests, using
eye-tracking  and  physiological  instruments  to  collect  physio-
logical indicators such as pupil area, heart rate, and respiratory
rate  of  drivers  at  the  exits  of  extra-long  tunnels,  and  further
dividing  the  tunnel  exits  into  different  sections.  Jiao  et  al.[13]

used the maximum transient velocity value of pupil  area as an
evaluation  index  to  perform  quantitative  research  on  visual
load,  combined  with  the  change  of  illuminance  under  the
continuous  time  series  when  entering  and  exiting  the  tunnel,
and  verified  that  the  grille-type  light  shelter  and  the  higher
tunnel  side  walls  on  both  sides  of  the  exit  can  alleviate  the
black-and-white-hole effect and improve visual comfort.
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In  the  study  of  physiological-psychological  and  driving
behaviors  of  tunnel  exit  drivers,  abnormal  fluctuations  in
drivers' physiology and psychology can lead to dangerous driv-
ing  behaviors,  of  which  distracted  driving,  following  too  close
to the car in front,  and dangerous lane changing are the most
common  in  the  tunnel  process[14].  Wang  et  al.[15] showed  that
narrow lane width decreases traveling speed and increases the
driver's  driving  load  by  studying  the  relationship  between
speed,  driving  load,  and  lane  width.  Vashitz  et  al.[16] analyzed
the  safety  of  tunnel  driving  from  the  driver's  psychological
point  of  view  and  pointed  out  that  in-vehicle  information
systems can improve the safety of tunnel driving. Feng et al.[17]

found  that  drivers'  heart  rate  increase  rate  was  more  sensitive
to  gradient  than its  sensitivity  to  speed,  and that  drivers  were
more  nervous  when  traveling  on  downhill  sections  than  on
uphill sections, based on real-vehicle tests.

In  terms  of  traffic  safety  improvement  at  tunnel  entrances,
Zhao  et  al.[18] obtained  driving  behavior  and  corresponding
visual  data  based  on  driving  simulation  technology  proposed
an evaluation index system and quantified the comprehensive
effect  explored  the  parameters  of  the  optimal  deployment  of
facilities, and explored the mechanism of the influence of multi-
factors  on  driving  behavior.  Pan  et  al.[19] conducted  an  indoor
simulation experiment to investigate the effectiveness of  opti-
cal illusion deceleration markings and road color on the speed
control  effect  at  the  entrance  of  a  subway  tunnel.  Li  et  al.[20]

utilize assisted driving with human-computer interfaces, where
drivers  can  identify  tunnels  in  advance  and  take  matching
speeds  to  ensure  tunnel  traffic  safety  in  a  connected  vehicle
environment.

In  summary,  there  is  still  a  lack  of  research  into  the  visual
differences  between  freeway  tunnel  exits  and  highway  tunnel
exits, which leads to the inability to provide more accurate and
targeted  design,  optimization,  and  management  solutions  for
all levels of tunnel exits. Given this, in the present study a natu-
ralistic  driving  test  was  conducted  to  investigate  in  depth  the
visual  distribution  characteristics  of  two  different  levels  of
tunnel exit drivers under continuous time series in a real tunnel
environment,  to  provide  a  scientific  basis  for  solving  this
problem. 

Experiment design
 

Experimental scenarios and subjects
The road sections selected for the real vehicle experiment are

a  freeway tunnel  and a  highway tunnel  in  Shandong Province
(China),  in  which  the  highway  tunnel  is  a  bidirectional  8-lane
separated tunnel with a single length of 1,435 m, of which the
right-length is 695 m and the left-length is 740 m. The highway
tunnel is a single-bore, two-way carriageway with a total length
of  735  m,  in  which  there  are  two  motorized  and  two  non-
motorized  lanes,  in  addition  to  sidewalks  on  both  sides,  the
foundation  parameters  of  the  freeway  tunnel  and  highway
tunnel are shown in Table 1. The device uses a spectacle-based
eye tracking system Dikablis  Glass  3,  which is  compatible with
eyeglasses,  binocular  acquisition,  scene  cameras,  adjustable
eye cameras, support for region-of-interest analysis, pupil track-
ing  accuracy  of  0.1°,  line-of-sight  tracking  accuracy  of  0.1°  to
0.3°, and a sampling frequency of 60 Hz.

The  test  drivers  had  a  female-to-male  ratio  of  3:7  among
Chinese drivers 18 drivers were recruited, including five female
drivers and 13 male drivers. All drivers were young and middle-
aged  people  between  the  ages  of  25  and  44,  so  the  effect  of
age  on  driving  behavior  was  not  taken  into  account,  and  all
were in good health and had normal vision (or glasses). Consid-
ering the safety of the real vehicle test and the fact that tunnel
driving  experience  may  interfere  with  the  test  results,  all  the
subjects  were  required  to  have  driving  experience  in  freeway
tunnels  and  highway  tunnels  when  they  were  recruited.  The
test scenario is shown in Fig. 1. 

Experiment procedure and data acquisition
Considering the interference of different traffic flow states on

drivers'  visual  characteristics,  the  low  traffic  flow  states  of
9:00−11:00  a.m.  and  3:00−5:00  p.m.  from  Monday  to  Friday
were  selected  for  the  experiment.  After  completing  a  real-
vehicle  experiment,  each  driver  rested  for  10  min  before  con-
ducting the test in turn, to avoid the effects of prolonged driv-
ing or driving fatigue.  The test was suspended in bad weather
to  ensure  the  consistency  of  the  test  conditions  as  much  as
possible.

In  the  experiment,  the  driver's  rest  time  was  utilized  to
export  the  data  collected  by  the  device,  the  test  data  and  the
video data  of  the  car  recorder  were  numbered accordingly,  to
facilitate  the  end  of  the  test  according  to  the  time  and  the
distance node extraction of  the tunnel  exit  area of  the coordi-
nates  of  the  point  of  view,  the  time  of  view,  the  angle  of  the
sweep as well as the time of the sweep to be analyzed. 

Gaussian mixture attention clustering
 

Data preprocessing
The test data of 100 m before and after the tunnel exit  area

were  extracted  and  analyzed.  The  coordinates  of  the  gaze
points  of  different  drivers  at  the  same  location  for  the  same
sign were used as the reference standard, and the coordinates
of the gaze points were calibrated as shown in Eqns (1), (2), and
(3).

 

Table 1.    Information on the basic parameters of the tunnels.

Characteristic Freeway tunnel Highway tunnel

Exit linear Straightness
Tunnel portal direction Northbound exit
Tunnel grade Primary Secondary
Speed limit 100 km/h 40 km/h
Tunnel structure Dual access 8 lanes

in both directions
Single access 4 lanes
in both directions

Traffic composition Motor vehicles Pedestrian, motor
vehicles, non-
motorized vehicles

 

a b

Fig. 1    Vehicle experiment scene. (a) Exit area of freeway tunnel;
(b) exit area of highway tunnel.
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Ai = min
1⩽i⩽k

{√
(Xa− xi)2+ (Ya− yi)2

}
(1)

where, Ai is the minimum distance from the driver's gaze point to
the average value of the gaze point coordinates, Xa and Ya are the
average values of the gaze point coordinates of all drivers, and xi
and yi are the i-frame gaze coordinates.Dxi = xi−Xc

Dyi = yi−Yc
(2) xxii = xii−Dxi

yyii = yii−Dyi
(3)

where, Dxi, and Dyi are the calibrated distances on the coordinate
axes  of  the  gaze  point  of  driver i; Xc and Yc are  the  calibrated
standard  gaze  point  coordinates; xxii and yyii are  the  calibrated
coordinates; xii and yii are the coordinates of the ith frame of driver
i.

Finally,  the driver's  gaze points in different tunnel  exit  areas
are fused into a coordinate system, and the data are limited to
[0,1]  by  normalization,  thus  eliminating  the  adverse  effects
caused by singular sample data, as shown in Eqn (4).

x′i =
xi−min(xi)

max(xi)−min(xi)

y′i =
yi−min(yi)

max(yi)−min(yi)

(4)

x′i y′iwhere,  and  are the post-normalized coordinates and xi and yi
are the pre-normalized coordinate points, respectively. 

Gaussian mixture clustering model building
To study in depth the differences in the visual characteristics

of  drivers  near  the  exits  of  the  freeway  tunnel  and  highway
tunnels,  this  paper  adopts  the Gaussian Mixture Model  (GMM)
to systematically cluster analyze the distribution of drivers' gaze
points near the exits of the tunnels at different levels.

Gaussian  mixture  clustering  model  is  a  clustering  method
based  on  probabilistic  models.  It  consists  of  a  linear  combina-
tion of multiple functions of Gaussian distribution states based
on  different  weighting  coefficients,  which  can  theoretically  be
fitted to various distributions. The principle is to use the expec-
tation-maximization  algorithm  for  training  to  construct  the
most  reasonable  multidimensional  model  distribution  accord-
ing to the distribution of different data under the same set. The
input  samples  are  assumed  to  obey  k  Gaussian  distributions
with  unknown  parameters,  each  of  which  corresponds  to  a
different mean μi and covariance matrix ∑i(1 ≤ i  ≤ k).  Based on
the  assumption  of  the  Gaussian  mixture  clustering  model,  the
distribution  of  the  driver's  gaze  point  is  influenced  by  the
special  environment  near  the  tunnel  exit,  which  is  generated
from multiple Gaussian distributions.

First,  each variable of  the GMM is  initialized with the proba-
bility  density  function  of  the  GMM  consisting  of  k  Gaussian
distributions:

p(x) =
k∑

i=1

αi×p(x
∣∣∣∣µ,∑ i ) (5)

where, k is  the  number  of  Gaussian  distributions; αi denotes  the
weight  of  the  Gaussian  distribution  (also  known  as  the  prior
distribution); μi is the mean vector of the Gaussian distribution; ∑i
is the covariance matrix; and x is the random variable.

γi, j

Calculate  the  posterior  probability  that xj is  generated  by
each mixture component,  i.e.,  the probability  that  observation
xj is generated by the ith submodel, p(∑i = i | xj), and denote it
as , as shown in Eqn (6).

γi, j =
αi · p (x|µi,

∑
i)

k∑
p=1

αi · p|µp,
∑

p

(6)

Calculate  the  mean  vector μi,  covariance  matrix  (∑i)′,  and
weight αi of  Gaussian distribution in  the new model  as  shown
in Eqns (7), (8), and (9).

µ′ =

m∑
j=1

γi, jxi, j

m∑
j=1

γi, j

(7)

(∑
i
)′
=

m∑
j=1

γi, j

(
x j−µ′i

) (
x j−µ′i

)
m∑

j=1

γi, j

(8)

α′i =

m∑
j=1

γi, j

m
(9)

The computation is  repeated continuously  according to  the
parameters  in  the  new  model  until  Gaussian  convergence.
Finally,  the  clusters  are  classified  into  the  corresponding  clus-
ters  according  to λj,  and  finally, k clusters  are  obtained,  as
shown in Eqn (10).

λ j = argmax
i∈{1,2,....,k}

γi, j (10)
 

Fixation point clustering
The  choice  of  the  number  of  clusters  (i.e.,  the  number  of

Gaussian distributions) is an important issue in GMM clustering.
Too many or too few clusters may adversely affect the effective-
ness of  clustering.  If  the number of  clusters  is  too high,  it  may
lead  to  overfitting.  This  means  that  the  model  is  so  complex
that it fits the training data very well, but generalizes poorly to
new data. In clustering tasks, too many clusters may cause each
cluster  to  contain  only  a  few  data  points,  leading  to  unclear
cluster boundaries and unstable clustering results.

On  the  other  hand,  if  the  number  of  clusters  is  too  small,  it
may  lead  to  underfitting.  This  means  that  the  model  is  too
simple to adequately capture the structure of the data. In clus-
tering tasks, too few clusters may allow some data points with
significant  differences  to  be  classified  into  the  same  cluster,
resulting  in  poor  clustering.  Therefore,  when  choosing  the
number of clusters,  this paper weighs the actual data distribu-
tion  and  the  needs  of  the  actual  driving  environment  of  the
tunnel.  Finally,  the  clustering  test  is  conducted  for  cluster
numbers 2, 3, 4, 5, and 6, and the optimal number of clusters is
determined by combining the contour coefficients.

Silhouette  Coefficient  is  a  metric  used  to  quantitatively
assess the effectiveness of clustering by calculating the ratio of
the  average  distance  of  a  sample  point  within  the  cluster  to
which  it  belongs  (compactness)  to  the  average  distance  to  its
nearest  neighboring  cluster  (separateness).  The  value  of  the
contour coefficient is between −1 and 1 as shown in Eqn (11).

S i =
bi−ai

max {ai,bi}
(11)

Si is used to evaluate whether sample i is suitable for the clus-
ter where it is located if the value of Si is close to 1, it indicates
that  the  average  intra-cluster  distance αi is  smaller  than  the
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minimum  inter-cluster  average  distance bi,  i.e.,  sample i is
reasonable to be clustered; on the contrary, if  the value of Si is
close to −1, it indicates that the clustering of sample i is unde-
sirable, and it is more suitable to be clustered to other clusters;
and if the value of Si is nearly 0, it indicates that the sample i is
on the boundary of the two clusters.

The  optimum  number  of  clusters  is  selected  by  comparing
the  contour  coefficients  at  different  numbers  of  clusters.  The
results of contour coefficients are shown in Fig. 2.

At  the  exit  of  the  freeway  tunnel,  the  contour  coefficient
peaked at 0.776 when the optimal number of clusters of driver
gaze  point  clustering  results  was  3,  while  the  contour  coeffi-
cient  peaked at  0.806 when the optimal  number of  clusters  of
driver  gaze  point  clustering  results  at  the  exit  of  the  highway
tunnel was 4. 

Tunnel exit visual characterization
 

Fixation point analysis
Based on the optimal number of clusters determined by the

calculated  values  of  the  contour  coefficients,  the  gaze  point
data  at  the  exit  of  the  tunnel  are  clustered,  and  the  results  of
the gaze point clustering are shown in Fig. 3.

In the exit area of the freeway tunnel, there exist three cate-
gories that are more compatible with the Gaussian distribution;
while  in  the  highway  tunnel,  four  regions  characterized  by
Gaussian  distribution  are  exhibited.  Among  them,  category  B
refers to the near front of the current lane; category E refers to
the left area in front of the current lane; and categories H and K
represent the far and near right areas in front of the front lane,
respectively.

Due to the potential interference of oncoming traffic and the
dynamic  changes  of  non-motorized  vehicles  and  pedestrians,
the distribution of attention points in highway tunnels is more
skewed toward the left and right sides, resulting in a visual field
neglect  zone  in  the  far  distance  in  front  of  the  current  lane,
which  is  more  significant  in  complexity  compared  to  the  exit
area  of  freeway  tunnels.  Therefore,  the  distribution  of  drivers'
visual attention in highway tunnels is more diversified than that
at the exit of freeway tunnels.

To  dig  deeper  into  the  visual  distribution  characteristics  of
freeway  tunnels  and  highway  tunnel  exits,  the  statistical
percentage  of  the  number  of  gaze  points  and  the  cumulative
percentage were analyzed, and the results are shown in Fig. 4.

During driving in freeway tunnels and highway tunnel exits,
the  distribution  of  Class  B  attention  points  accounted  for  the
largest proportion, 79.64%, and 68.46%, respectively. The loca-
tion of Class B attention points corresponds to the near front of
the  current  lane,  which  indicates  that  drivers  pay  more  atten-
tion to the front of the vehicle at the exit of the tunnel.

When  driving  in  a  freeway  tunnel,  the  driver's  attention  is
distributed in the area of the left and right sides in front of the
current  lane,  accounting  for  20.36%,  while  when  driving  in  a
highway tunnel, due to the complexity of the environment, the
driver needs to pay more attention to other areas,  resulting in
an increase of 11.18% in the sum of the other areas compared
with  the  freeway  tunnel,  reaching  31.54%.  Moreover,  the
proportion  of  the  right  area  in  front  of  the  current  lane  in  the
highway  tunnel  (H  +  K)  is  13.47%  more  than  that  of  the  free-
way (H). This indicates that non-motorized vehicles and pedes-
trians  on  the  right  side  in  the  exit  area  of  the  highway  tunnel
impose more driving loads on drivers. 
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Fig. 2    Contour coefficient for different numbers of clusters at the
fixation points.
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Fixation time analysis
The  gaze  time  during  traveling  can  reflect  the  driver's  diffi-

culty  in  extracting  information  to  a  certain  extent,  the  higher
the  difficulty  of  information  processing,  the  longer  the  gaze
duration. The result of logarithmic processing of gaze duration
tz is shown in Fig. 5.

In the exit  area of the freeway tunnel,  the logarithmic mean
gaze  time  is  4.95,  which  is  lower  than  that  of  the  highway
tunnel,  which  is  5.54.  In  addition,  the  difference  between  the
85th and  15th gaze  times  for  each  category  of  the  freeway
tunnel is larger than that of the highway tunnel, indicating that
the distribution of the gaze times of the drivers in the freeway
tunnel is more extensive. Comparatively speaking, the distribu-
tion of gaze time in highway tunnels is more concentrated and
the gaze time is longer.

In  the  exit  area  of  the  freeway  tunnel,  the  longest  average
gaze  time  was  found  in  category  E  at  5.15,  while  in  the  high-
way tunnel,  the longest  was  found in  category  H at  6.05,  indi-
cating that drivers had the greatest difficulty in extracting and
processing  information  in  the  left  area  ahead  of  the  current
lane in the freeway tunnel and in the far area on the right side
of the highway tunnel.  However,  the difficulty is  more difficult

in  highway  tunnels  relative  to  freeway  tunnels  due  to  the
greater interference from oncoming traffic. Therefore, the aver-
age  longest  gaze  time  for  the  longest  category  of  highway
tunnel gaze is 0.9 longer than that of the freeway tunnel. 

Scanning behavior analysis
Scanning  angle,  as  an  important  measure  of  visual  breadth,

reflects  the  range  of  visual  recognition  of  an  individual  by
quantifying  the  degrees  of  visual  angle  between  neighboring
gaze  points.  Scanning  time,  on  the  other  hand,  accurately
describes  the  duration  of  the  start  and  end  of  the  scanning
behavior. To deeply investigate the differences in the scanning
behaviors  between freeway tunnels  and highway tunnel  exits,
the ratio of the scanning angle to the scanning time is used as
the  scanning  speed  to  compare  the  differences  between  the
two tunnels.  Higher scanning speed means that a wider visual
area can be covered in a shorter time but at the cost of reduced
detailed attention and understanding of specific targets.

The data indicated that the scanning speeds were within the
0−0.3  deg/ms  interval.  To  compare  the  scanning  behavior  in
the exit area of freeway tunnels and highway tunnels in a more
detailed way, this interval is divided into six different scanning
speed intervals  by  0.05 deg/ms equal  parts.  The differences  in
the  scanning  behavior  of  the  exit  areas  of  the  two  types  of
tunnels  can  be  analyzed  more  accurately,  and  the  results  are
shown in Table 2.

In  the  exit  area  of  the  freeway  tunnel,  drivers'  scanning
speeds  are  mainly  concentrated  at  low  and  medium  speeds.
Specifically,  the  proportion  of  drivers  with  scanning  speeds  in
the  0.0−0.05  range  is  22.62%,  and  drivers  scan  more  slowly  in
the  exit  area  accounts  for  about  1/5  of  the  total,  while  the
proportion of drivers in the 0.1−0.15 and 0.15−0.2 ranges is still
relatively high, accounting for 19.64% and 27.98% respectively.
It indicates that in the exit area of the freeway tunnel, the driver
is mainly scanning at low and medium speeds, and the percent-
age is 77.98%.

In contrast, the distribution of drivers' scanning speeds in the
exit  area  of  the  highway  tunnel  showed  different  characteris-
tics.  The  proportion  of  scanning  speeds  within  the  0.25−0.3
interval  was  the  highest,  at  38.20%,  meaning  that  drivers
performed relatively fast scans in the exit area. In addition, the
percentage  of  scanning  speeds  within  the  0.1−0.15  and
0.2−0.25 intervals was also high at 17.13% and 16.89%, respec-
tively.  Comparatively,  the  percentage  of  scanning  speeds
within  the  0.0−0.05  interval  is  the  lowest  at  4.58%,  which  is
significantly  lower  than  that  of  freeway  tunnels.  This  suggests
that due to the complex and changing driving environment in
the  exit  area  of  highway  tunnels,  drivers  are  less  likely  to
perform  slow  and  detailed  scanning  and  are  more  inclined  to
perform fast scanning to cope with the changing environment
of non-motorized vehicles and pedestrians[21,22].

 

Table  2.    Exit  area  of  tunnel  exit  scanning  behavior  percentage  by
interval.

Section Freeway tunnel Highway tunnel

0.0−0.05 22.62% 4.58%
0.05−0.1 5.36% 10.37%
0.1−0.15 19.64% 17.13%
0.15−0.2 27.98% 12.47%
0.2−0.25 8.33% 16.89%
0.25−0.3 13.69% 38.20%
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To  further  study  the  scanning  behavior  between  each  cate-
gory  in  the  freeway  tunnel  and  the  exit  area  of  the  highway
tunnel,  the  percentage  of  scanning  speed  intervals  of  each
category  is  counted  separately,  and  the  statistical  results  are
shown in Fig. 6.

For  the  freeway  tunnel  exit,  in  the  right  area  in  front  of  the
current  lane  (H),  drivers'  scanning  speeds  were  mainly
distributed  in  the  moderately  fast  speed  interval,  reaching  a
peak of 47.17% on the 0.15−0.2 interval for the whole freeway
tunnel.

In  comparison,  at  the  exit  of  a  highway  tunnel,  the  drivers'
scanning speed for  the right  area (H,  K)  in  front  of  the current
lane  is  significantly  faster  than  other  areas,  especially  within
0.25−0.3,  which  accounts  for  75.47%  and  31.14%.  This  indi-
cates that drivers need to quickly scan the right area in front of
the current lane to perceive non-motorized vehicles and pedes-
trians in time to cope with the complex environment. 

Conclusions

Eye-movement data were collected from real-vehicle tests in
freeway  tunnels  and  highway  tunnels,  and  the  visual  charac-
teristics  of  drivers  in  the exit  areas  of  tunnels  of  different  road
classes  were  compared  and  analyzed  with  the  coordinates  of
the gaze point,  the gaze time,  and the sweeping speed as  the
main  parameters  and  the  following  three  conclusions  were
obtained:

(1)  Using  the  Gaussian  hybrid  clustering  machine  learning
model, the driver's gaze point data in the exit area of the free-
way tunnel can be classified into three categories that are more
consistent  with  the  Gaussian  distribution,  while  the  driver's
gaze  point  data  shows  four  Gaussian  distributions  due  to  the
driving  environments  such  as  bi-directional  traffic  in  highway
tunnels, traffic mixing, and other driving environments.

(2) In the tunnel exit area drivers gaze at the left area in front
of the current lane of the freeway tunnel and the far right area
of  the  highway  tunnel  for  the  longest  time,  and  it  is  the  most
difficult  to obtain the information, due to the variability of the
driving  environment,  the  average  maximum  time  of  the

longest category of the highway tunnel gaze is 0.9 longer than
that of the freeway tunnel.

(3)  The  distribution  of  drivers'  scanning  speeds  in  the  free-
way  tunnel  exit  area  is  relatively  more  uniform  in  the  0−0.3
interval,  while  the  proportion  of  scanning  speeds  in  the  high-
way tunnel exit area in the 0.0−0.05 interval is only 4.58%, while
the proportion of the H and K gaze zones on the 0.25−0.3 inter-
val  is  as  high  as  75.47%  and  31.14%,  respectively.  Drivers  are
more inclined to scan the right-hand area in front of the current
lane  relatively  quickly  to  deal  with  complex  traffic  conditions
such  as  oncoming  traffic,  non-motorized  vehicles,  and
pedestrians.

This paper quantitatively investigates the visual variability of
drivers  in  the  exit  areas  of  two  different  tunnel  classes,  which
provides theoretical support for the optimization and improve-
ment of the driving safety environment at tunnel entrances and
exits.  However,  limited to the difficulty  of  conducting the test,
time and economic costs, etc., two typical types of tunnels were
selected  for  the  relevant  study.  Further  investigation  of  the
relationship between tunnel exit drivers'  physiological psycho-
logy, driving behavior, and traffic safety will be the focus of the
next phase of research. 
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