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Abstract
Traffic  sign  detection  in  real  scenarios  is  challenging  due  to  their  complexity  and  small  size,  often  preventing  existing  deep  learning  models

from  achieving  both  high  accuracy  and  real-time  performance.  An  improved  YOLOv8  model  for  traffic  sign  detection  is  proposed.  Firstly,  by

adding  Coordinate  Attention  (CA)  to  the  Backbone,  the  model  gains  location  information,  improving  detection  accuracy.  Secondly,  we  also

introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based

on  CIoU.  Additionally,  Focal  Loss  is  incorporated  to  balance  sample  difficulty,  enhancing  regression  accuracy.  Finally,  the  model,  YOLOv8-CE

(YOLOv8-Coordinate Attention-EIoU), is tested on the Jetson Nano, achieving real-time street scene detection and outperforming the Raspberry

Pi  4B.  Experimental  results show that YOLOv8-CE excels in various complex scenarios,  improving mAP by 2.8% over the original  YOLOv8. The

model  size  and  computational  effort  remain  similar,  with  the  Jetson  Nano  achieving  an  inference  time  of  96  ms,  significantly  faster  than  the

Raspberry Pi 4B.
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Introduction

Although  cars  have  undoubtedly  improved  people's  lives,
they  have  also  introduced  higher  risks  of  traffic  accidents  and
fatalities due to factors like fatigue, drowsiness, and road condi-
tions. From the past to the present, various solutions have been
developed  to  establish  the  infrastructure  for  assisted  driving
(ADAS)  and  autonomous  driving.  ADAS  aims  to  assist  drivers
and vehicles in identifying potentially hazardous situations and
taking emergency measures to enhance the safety and comfort
of the driving experience.

Deep  learning-based  methods  have  demonstrated  their
excellence  in  assisted  driving  tasks,  including  traffic  sign
detection[1], lane detection[2], pedestrian detection[3], and other
tasks.  And  traffic  sign  detection  is  a  crucial  component  of  it.
Traffic  sign  detection  systems  are  crucial  components  of  both
intelligent  transportation  systems  and  autonomous  driving
systems. The accuracy and real-time performance of traffic sign
detection  technology  are  critical  in  enabling  these  systems  to
make  informed  decisions.  As  such,  achieving  a  balance
between real-time performance and accuracy  is  of  utmost  im-
portance in ensuring the effectiveness of these technologies[1].
Therefore,  we  want  to  assist  drivers  in  driving  by  deploying
traffic  sign  detection  on  edge  devices  to  achieve  real-time
detection.

The  key  components  of  traffic  sign  detection  and  recogni-
tion include feature extractor,  classification, and localization of
traffic  signs,  among  which  localization  is  focused  on  by
researchers as a part specific to object detection. With the rapid

development  of  deep  learning  technology,  object  detection
algorithms,  such  as  Faster  RCNN,  YOLO,  SSD,  etc.  have  been
widely used in traffic sign detection.

In research on traffic sign detection, Wang et al.[4] proposed a
deep  model  for  traffic  sign  detection  and  recognition  in
complex  road  conditions,  incorporating  innovations  like  Coor-
dinate Attention (CA), angle loss, SimOTA for label assignment,
and  a  Hierarchical-Path  Feature  Fusion  Network  (HPFANet).
Their  model  significantly  improves  precision,  recall,  and  mAP
over  YOLOv5s,  demonstrating  superior  performance  and
robustness across various datasets.  Lai  et  al.[5] introduced STC-
YOLO  for  traffic  sign  detection,  enhancing  YOLOv5  with
advanced  data  augmentation,  modified  architecture  for  small
object  detection,  and  a  novel  feature  extraction  module  with
multi-head  attention,  yielding  substantial  accuracy  gains
compared  to  traditional  approaches.  Chu  et  al.[6] developed  a
model  with  a  global  feature  extraction  module  using  self-
attention and a lightweight parallel detection head to enhance
small  traffic  sign  detection  accuracy,  supported  by  extensive
data augmentation for improved robustness.

While  deep  learning  methods  have  made  some  progress  in
traffic sign detection tasks, they still face limitations when deal-
ing  with  complex  natural  environments  and  real-time  edge
detection. For example, when deployed to edge platforms, the
inference speed is low, and the accuracy is low. To address the
above  problems,  this  paper  presents  several  enhancement
strategies  based  on  the  lightweight  version  of  the  YOLOv8
algorithm, namely the YOLOv8-CE algorithm.
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(1)  Coordinate  Attention  is  a  feature  extraction  mechanism
that  enables  the  model  to  better  pinpoint  and  recognize  the
target area, while also capturing inter-channel connections.

(2) Changing the localization loss function to EIoU helps the
model  converge  quickly  and  makes  the  regression  process
more  stable,  which  improves  the  regression  accuracy  of  the
prediction box. 

Related works

Traffic  sign  detection  stands  as  a  pivotal  area  of  research  in
autonomous  driving.  Many  researchers  have  introduced
diverse  algorithms  aimed  at  classifying  and  identifying  road
traffic  signs.  Broadly  speaking,  these  algorithms  fall  into  two
categories:  the  first  utilizes  traditional  detection  techniques
such  as  color-based,  shape-based  features,  and  feature  fusion.
The second category is rooted in deep learning methodologies. 

Traffic sign detection-based traditional
techniques

Since the 1970s, a group of researchers has been working on
traffic signs. Firstly,  the traditional traffic sign detection, where
researchers extracted features manually, such as color features,
shape  features,  and  fusion  features,  and  performed  the  corre-
sponding detection:  de la  Escalera et  al.[7] segmented by color
to  extract  the  region  of  interest  (ROI),  and  then  got  shape
features  for  analysis  to  detect  traffic  signs.  Fleyeh[8] first
converted  RGB  images  into  IHLS  color  space  and  then  used
segmentation algorithms to extract the color features of traffic
signs for  detection.  However,  these algorithms are  not  able  to
obtain  the  expected  results  consistently,  they  face  various
challenges  such  as  internal  and  external  conditions  of  the
traffic sign environment, the external conditions are some envi-
ronmental  factors  such  as  weather  conditions,  lighting  condi-
tions,  occlusion  degradation  of  traffic  signs,  these  conditions
are  not  changeable,  so  some  researchers  try  to  solve  these
problems,  but  often  can  not  take  care  of  all  the  cases  so  the
detection  effect  is  limited.  On  the  other  hand,  internal  condi-
tions are variables that can be controlled by algorithms such as
response time and detection accuracy, and these series of chal-
lenges  to  improve  accuracy  and  increase  detection  speed
contributed  to  the  development  of  traditional  traffic  sign
detection.  After  this,  with  the  development  of  machine  learn-
ing,  support  vector  machine  SVMs  were  also  applied  to  sign
recognition,  and  Maldonado-Bascón  et  al.[9] used  support
vector  machines  (SVMs)  for  shape  classification  and  content
recognition. 

Traffic sign detection-based deep learning
However,  in  actual  driving,  for  high-speed  vehicles,  the

requirements  for  traffic  sign  speed  are  very  strict,  and  this
method  does  not  meet  the  demand  for  real-time  detection,
researchers have consequently turned their attention to convo-
lutional neural networks. Cireşan et al.[10] were able to attain a
classification accuracy of 99.15% on the GTSRB dataset through
the  utilization  of  a  convolutional  neural  network  (CNN).  The
arrival  of  convolutional  neural  networks  (CNN)  opened  a  new
era in image processing. Since the introduction of AlexNet, CNN
has  been  continuously  optimized  with  increased  depth  and
more  complex  structures.  Its  results  in  the  field  of  computer
vision have been extremely good. Deep learning methods have
allowed traffic sign detection accuracy to be greatly improved.

In  comparison  with  traditional  sign  recognition  methods  such
as  color  and  shape  and  machine  learning  methods,  better
recognition  and  detection  can  be  obtained,  faster  and  can  be
adapted to more complex scenes.

The  current  mainstream  detection  algorithms  can  be  classi-
fied as two-stage and one-stage. The two-stage mainly includes
R-CNN[11], Fast R-CNN[12], Faster R-CNN[13], etc. The R-CNN series
of algorithms first obtains the region containing the object, and
then uses the classifier for classification and regression. The one
stage  mainly  includes  YOLO[14−17] as  the  main  representative,
the YOLO series algorithms directly use CNN for feature extrac-
tion  and  consider  the  task  as  regression  to  directly  complete
object classification and location localization.

Huang  et  al.[1] introduced  asymptotic  feature  pyramid
network (AFPN) into YOLOv8 with the goal of highlighting the
influence of  key  layer  features  after  feature  fusion and solving
the  direct  interaction  of  non-adjacent  layers.  Chen  &  Fan[18]

introduced  Multi-Scale  Group  Convolution  to  replace  the  C2f
module  and  integrated  Deformable  Attention  into  the  model
to  improve  the  detection  efficiency  and  performance  of
complex  targets.  While  the  parameters  are  reduced  by  59.6%,
the accuracy remains at a high level. Zhang et al.[19] proposed a
multi-scale  traffic  sign  detection  model,  CR-YOLOv8  based  on
YOLOv8.  By  incorporating  an  attention  module  in  the  feature
extraction stage and an RFB module in the feature fusion stage,
the  model  enhances  key  features  and  improves  multi-scale
object detection with minimal computational overhead.

The advancement of convolutional neural networks has been
accompanied  by  significant  growth  in  the  field  of  cloud  plat-
forms[20],  but  at  the  same  time,  numerous  issues  have  arisen,
making it challenging for centralized cloud services to fulfill the
real-time  demands  of  most  intelligent  transportation  applica-
tions amidst the current deluge of big data. Therefore, transfer-
ring computing resources  from cloud centers  to  network edge
devices close to users has become an inevitable requirement for
IoT technology development, real-time computing, and achiev-
ing network edge intelligence. In response to the existing situa-
tion,  many  researchers  have  started  to  focus  on  lightweight
neural  networks  and use some lightweight  methods to  deploy
detection  algorithms  to  inexpensive  embedded  devices  to
achieve  edge  detection  and  share  the  computational  pressure
of the central computer.  Luo et al.[21] opted to use Ghostnet as
the  feature  extraction  network.  This  lightweight  network
reduced  the  number  of  parameters  and  computations.  The
author's  test  results  on  the  edge  device  Raspberry  Pi  was
790  ms.  Additionally,  Artamonov  &  Yakiomov[22] utilized  the
processing  power  of  NVIDIA  mobile  platforms,  such  as  Jetson
TX1 and Jetson TX2, to deploy the YOLO algorithm for continu-
ous video traffic sign detection with GPUs. 

Methodology
 

Data processing
To  better  train  the  model  and  make  it  more  generalizable,

processing  of  the  data  is  required.  The  techniques  utilized  in
this  section for  handling data involve Mosaic,  MixUp,  adaptive
image scaling, and adaptive anchor box calculation. Firstly, the
data  augmentation  method  is  used  in  YOLOv4  to  stitch  four
images  with  random  scaling  respectively.  Then  combining
them  into  one  image,  which  improves  the  detection  of  small
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objects  more  effectively.  Then,  adaptive  image  scaling  was
used  to  obtain  a  standard  image  of  640  ×  640  for  training.  In
addition,  if  the  difference  between  the  anchor  box  and  the
object  size  is  large,  the  K-means  algorithm  was  employed  to
find  the  most  suitable  anchor  box  size  and  use  it  for  training.
The image after data processing is shown in Fig. 1. 

YOLOv8
YOLOv8  is  the  most  mainstream  single-stage  object  detec-

tion  algorithm.  According  to  the  depth  and  height  of  the
network, it can be divided into five models YOLOv8n, YOLOv8s,
YOLOv8m,  YOLOv8l,  and  YOLOv8x.  As  it  is  to  be  deployed  to
embedded  devices,  YOLOv8n,  which  has  the  smallest  volume,
is chosen as the basic network model in the present paper. 

Structure of the network
The  network  architecture  of  YOLOv8  is  illustrated  in Fig.  2.

YOLOv8  consists  of  four  components:  input,  backbone,  neck,
and head.

Firstly,  the  input  layer  is  enriched  with  the  Mosaic  data
augmentation  method  to  enrich  the  dataset  with  low  hard-
ware  device  requirements  and  the  final  input  is  640  ×  640
standard-size images.

In  backbone,  the  core  of  the  network  consists  of  Conv,  C2f,
and  SPPF  modules,  which  are  responsible  for  extracting
features from images. The Conv module comprises a combina-
tion of Conv2d, BN, and the Swish activation function. The C2f
module  is  an  improvement  over  the  C3  module,  with  adjust-
ments  to  the  number  of  channels  for  different  scale  models,
representing a refined tuning of the model structure that signif-
icantly enhances performance. The SPPF module is an improve-
ment over SPP[23], using multiple small-sized pooling kernels in
series  instead of  a  single  large-sized pooling kernel  in  the  SPP
module.  This  modification  retains  the  original  functionality  of
fusing  feature  maps  with  different  receptive  fields,  thereby
enriching  the  feature  map's  expressiveness  while  further
improving running speed.

 

Fig. 1    Results of data processing.
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In addition, the neck part is mainly composed of FPN[24], and
PANet[25] for fusing feature information at different scales,  and
on the basis of FPN, PANet introduces a bottom-up path, which
can  make  the  bottom-up  feature  fusion  after  the  top-down
feature fusion, so that such bottom-up location information can
also  be  transferred  to  the  deeper  layers,  thus  enhancing  the
localization capability at multiple scales.

Finally,  the head section has been replaced with the current
mainstream  decoupled  head  structure,  separating  the  classifi-
cation and detection heads. Additionally, it has shifted from an
Anchor-Based to an Anchor-Free approach. 

Loss function
The  loss  function  of  YOLOv8  consists  of  two  components:

classification loss and regression loss:
● Classification  loss,  calculate  whether  the  anchor  matches

the correct category.
● Regression loss, indicates the error in the position between

the predicted box and the Ground Truth. It  includes CIoU Loss
and Distribution Focal Loss.

Lcls

YOLOv8 uses BCE-With-Logits-Loss to calculate the classifica-
tion loss ( ), which is determined by the following formula:

Loss = −1
n

∑n

i

[
yi · log (σ (xi))+ (1− yi) · log (1−σ (xi))

]
(1)

σ (a) =
1

1+ exp (−a)
(2)

The  metric  often  used  to  calculate  the  localization  loss  in
YOLOv8 is IoU, which represents the overlap ratio between true
box and predicted box, and that is:

IoU =

∣∣∣b∩bgt
∣∣∣

|b∪bgt | (3)

αv
In  the  original  YOLOv8,  the  regression  loss  function  is

CIoU[26], which incorporates a penalty term  to DIoU[26], as an
influencing  factor.  This  factor  considers  the  difference  in  the
aspect  ratio  between  the  predicted  box  and  the  true  box.  In
other words, the penalty term of CIoU is expressed as:

RCloU =
ρ2 (b,bgt)

c2 +αv (4)

Therefore, the loss calculation formula for CIoU is:

LCloU = 1− IoU +
ρ2 (b,bgt)

c2 +αv (5)

where,
α =

v
(1− IoU)+ v

(6)

v =
4
π2

(
arctan

wgt

hgt −arctan
w
h

)2

(7)

where, b and bgt are the prediction box and label box respectively.
wgt and hgt represent the width and height of  the labeled box. w
and h are the width and height of the prediction box respectively.
ρ represents  the  distance  between  the  center  points  of  the  two
boxes, and c is the maximum distance between the boundaries of
the two boxes. 

Improved algorithm model YOLOv8-CE (YOLOv8-
Coordinate Attention-EIoU) 

YOLOv8 based on the Coordinate Attention module
The  visual  attention  mechanism  is  a  specialized  signal-

processing mechanism in the human brain for processing visual
information.  Humans  encounter  some  obstacles  in  processing
information. Therefore, they will focus on some of the informa-
tion and ignore some of  the less  useful  information[27].  Similar
to  the  selective  visual  attention  mechanism  in  humans,  the

attention  mechanism  in  neural  networks  are  designed  to
extract the information relevant to the current task for process-
ing.  The important information is  enhanced by introducing an
attention  mechanism  that  assigns  different  weights  to  each
input part. The aim is to focus attention on the more important
information and reduce the attention on the remaining minor
information,  thus  reducing  the  computational  burden  and
improving  the  model  performance[28].  In  the  present  paper,
Coordinate Attention[29] is added to the backbone network.

Hou  et  al.  proposed  an  attention  mechanism – Coordinate
Attention (CA)  in  2021,  which not  only  captures  cross-channel
information  but  also  incorporates  direction-aware  and  posi-
tion-sensitive information, precise object region detection and
finer  localization  of  traffic  signs  in  small  objects.  This  not  only
enhances model accuracy, but also requires minimal computa-
tional overheads[29].

CA  encodes  the  channel  relationship  and  long-term  depen-
dency by precise location information. Firstly, we embed Coor-
dinate  information  and  then  generate  Coordinate  Attention.
The structure diagram is shown in Fig. 3.

The  first  one  is  Coordinate  information  embedding.  When
global encoding of spatial information of channel attention, the
global pooling method, compresses the global spatial informa-
tion  and  lacks  the  location  information.  To  be  able  to  obtain
more accurate location information and capture remote spatial
interactions,  this  paper  decomposes  the  global  pooling  and
converts  it  into  a  bunch  of  one-dimensional  feature  encoding
operations with the following equation:

zc =
1

H×W

H∑
i=1

W∑
j=1

xc (i, j) (8)

The  input  is X.  The  pooling  kernel  of  size  (1, W)  or  (H,  1)  is
applied to encode each channel in horizontal and vertical coor-
dinates respectively.  Thus,  the output of the c-th channel with
height h can be expressed as follows:

zh
c (h) =

1
W

∑
0≤ j<W

xc (h, i) (9)

c wIn  the same way,  the output of  channel  with width  can
be expressed as:

zw
c (w) =

1
H

∑
0≤ j<H

xc ( j,w) (10)
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Then  the  Coordinate  Attention  is  generated.  After  passing
the  transformations  in  the  information  embedding,  this  part
concatenates the result of the embedding and then transforms
it using the convolutional transform function.

f = δ
(
F1

([
zh,zw

]))
(11)

gh = σ
(
Fh

([
f h

]))
(12)

gw = σ
(
Fw

([
f w])) (13)

yAfter  the  above  module,  the  final  output  is  obtained  and
can be expressed as:

yc (i, j) = xc (i, j)×gh
c (i)×gw

c ( j) (14)
 

Improvement of loss function
Although the usage of CIoU in the original algorithm acceler-

ates the regression of the predicted box to some extent,  there
are  still  certain  issues.  During  the  regression  of  the  predicted
box,  if  the  aspect  ratio  of  the  predicted  box  matches  the  true
box's aspect ratio, the predicted box's width and height cannot
increase  or  decrease  simultaneously,  and  the  regression  opti-
mization process cannot proceed. Therefore, the CIoU function
is replaced by the EIoU function in this paper[30].

The  EIoU  is  calculated  as  Eqn  (15),  where  w  and  h  are  the
width and height of the minimum external box that covers the
real box of the prediction box. It takes into account the overlap
area,  the  distance  between  centroids,  and  the  real  distance
between  centroids,  as  well  as  the  actual  differences  in  width
and  height.  Moreover,  Focal  Loss  is  introduced  to  address  the
problems  of  other  localization  loss  functions,  which  helps  the
model  converge  quickly,  makes  the  regression  process  more
stable,  and  enhances  the  precision  of  the  predicted  bounding
box regression.

LEloU = LIOU +Ldis+Lasp

= 1− IoU +
ρ2 (b,bgt)

c2 +
ρ2 (w,wgt)

C2
w

+
ρ2 (h,hgt)

C2
h

(15)

where, Cw and Ch represent the width and height of the minimum
external box covering both boxes.

In  summary,  the  improved  YOLOv8  model  architecture  is
illustrated in Fig. 4. 

Experiments
 

Datasets and evaluation metrics
The  traffic  sign  dataset  in  this  paper  is  derived  from  the

CCTSDB dataset[31], which was produced by the team of Zhang
from  Changsha  University  of  Science  and  Technology  (Chang-
sha,  China),  in  which  the  images  are  Chinese  street  scenes
taken under the driving recorder. The dataset covers traffic sign
images  under  various  traffic  environments,  which  is  more  in
line with real traffic scenes.

There  are  17,856  images  in  the  CCTSDB  dataset,  which
includes three categories of traffic signs: prohibition, indication,
and  warning,  as  shown  in Fig.  5,  and  their  locations  are  cali-
brated. The distribution of the number of each category in the
training  set  is  illustrated  inFig.  6.  Based  on  the  1,500  original
test  sets,  the  papers  categorized  them  into  six  categories  of
multi-weather  test  sets,  including  cloud,  foggy,  night,  rain,
snow, and sunny.

To better evaluate the model, Inference Time and mAP were
chosen  to  evaluate  the  detection  speed  and  accuracy  of  the
model,  where  Inference  Time  is  the  inference  time,  indicating
the speed of model inference. mAP is the average of the region
enclosed by  the  P-R  curve,  reflecting the  recognition accuracy
of the model. 

Experimental environment
The  experiments  in  the  paper  are  trained  on  a  server

equipped with a GPU, model NVIDIA GEFORCE RTX 2080Ti, the
server's  operating system is  Ubuntu system with version 18.04
and  with  11  GB  of  video  memory,  Python  language  develop-
ment,  Pytorch-based  deep  learning  framework,  and  GPU
acceleration tool CUDA11.1.

In the inference stage, to confirm the real-time effectiveness
of  the  model,  this  study  opts  for  the  NVIDIA  Jetson  Nano
embedded  platform,  which  has  a  core  processing  unit  using
CPU  +  GPU  heterogeneous  computing  mode,  which  estab-
lishes that the platform can run neural network applications for
image classification, object detection, etc. Meanwhile, the deep
learning inference acceleration engine TensorRT is available to
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accelerate  the  Inference  time  of  artificial  intelligence  projects.
In  the  inference  stage,  to  confirm  the  real-time  effectiveness
of  the  model,  this  study  opts  for  the  NVIDIA  Jetson  Nano
embedded  platform,  which  has  a  core  processing  unit  using
CPU  +  GPU  heterogeneous  computing  mode,  which  estab-
lishes that the platform can run neural network applications for
image classification, object detection, etc. Meanwhile, the deep
learning inference acceleration engine TensorRT is available to
accelerate  the  Inference  time  of  artificial  intelligence  projects.
Figure 7 illustrates the hardware platform, while Table 1 speci-
fies the configuration used in the study.

During  training,  the  model  takes  640  ×  640  pixel  input
images  and employs  the Adam optimizer  with  an initial  learn-
ing rate of 0.01, runs for 300 epochs with a batch size of 16, and
a weight decay of 0.0005. 

Experiment results and analysis 

Ablation study
To  confirm  the  validity  of  each  part  of  the  improvement

methods,  ablation  studies  are  conducted  on  the  CCTSDB
dataset,  based  on  YOLOv8n,  combining  Coordinate  Attention,
and  EIoU  to  verify  the  effect  of  different  improvement
methods  for  the  network.  Precision,  Recall,  and  mAP  @0.5  are
used  as  evaluation  metrics.  The  resolution  of  640  ×  384  is
selected, and the complex integrated image test set is chosen,
and  the  outcomes  of  the  ablation  study  are  presented  in
Table 2.

Comparing  YOLOv8  with  the  models  CA  and  EIoU,  it  is
evident  from  the  results  that  both  CA  and  EIoU  enhance  the
models' performance, and improve by 1.6% and 1.2% on mAP,
respectively. After YOLOv8 combines all the improvements, the

model  performs  well  in  terms  of  Precision,  Recall,  and  mAP.
Compared  with  the  baseline  model,  the  improvement  in  mAP
was  2.8%.  According  to  the  findings  from  the  ablation  experi-
ments,  it  is  known  that  the  CA  and  EIoU  enhancements  are
effective. 

Comparison with other algorithms
To further validate the comprehensive performance effect of

the  YOLOv8-CE  algorithm  in  terms  of  detection  accuracy  and
inference  speed  on  different  types  of  test  sets,  five  object

 

Fig. 5    Traffic sign categories.
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Fig. 7    Structure of Jetson Nano.

 

Table 1.    Hardware parameters of Jetson Nano.

Parameter Technical specifications

AI performance 472 GFLOPs
GPU 128-core Maxwell
Memory 4 GB 64-bit LPDDR4 25.6 GB/s
CPU Quad-core ARM A57 @ 1.43 GHz
CPU max frequency 1.43 GHz
Storage microSD (not included)
Connectivity Gigabit Ethernet, M.2 Key E
USB 4x USB 3.0, USB 2.0 Micro-B
Power 5 W - 1 0W

 

Table 2.    Results of the ablation study.

Model Precision Recall mAP@0.5

YOLOv8n 88.7% 73.6% 83.3%
CA 89.6% 75.4% 84.9%
EIoU 87.9% 75.1% 84.5%
CA + EIoU 90.2% 78.1% 86.1%
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detection  algorithms  were  selected,  including  YOLOv8n,
YOLOv8-ghost,  YOLOv8-ghostv2,  YOLOv8-shufflenetv2,  and
YOLOv8-mobilenetv3,  to  compare  with  this  algorithm.  The
comparison  experiments  were  performed  on  the  seven  test
sets  delineated  in  this  paper,  and  640  ×  384  resolution  was
selected.  Four  metrics,  Precision,  Recall,  mAP,  and  Inference
time on Jetson Nano, were selected to evaluate each algorithm.
Table 3 illustrates the results of the comparison of accuracy and
inference speed among different algorithms. Table 4 illustrates
the  results  of  accuracy  comparison  between  different
algorithms under different weather test sets. Figure 8 presents
the  detection  results  of  YOLOv8-CE  under  different  weather
test sets.

It  can  be  seen  that  the  mAP  at  the  highest  in  all  three  test
sets  is  YOLOv8-CE,  whose mAPs are 86.1% on the original  test
set, and the inference time of this model on Jetson Nano is only
96 ms. YOLOv8n exhibits the shortest inference time on Jetson

Nano,  but  it  has  lower  accuracy  compared  to  the  algorithm
used  in  this  study  on  all  test  sets.  In  comparison  to  YOLOv8n,
YOLOv8-CE  achieved  an  accuracy  of  2.8%  on  the  original  test
set,  while  detecting  only  4  ms  slower.  Meanwhile,  YOLOv8-CE
showed the best overall performance on all data sets. The algo-
rithm outperforms YOLOv8n by an average of 6.1% in terms of
accuracy. For the other algorithms in the experiment, the algo-
rithm  shows  better  performance.  The  algorithm  ensures  real-
time  detection  of  embedded  devices  while  also  improving
detection  accuracy  to  a  certain  extent,  and  performs  well  in
extreme weather conditions and other conditions. 

Results of field tests
To  confirm  the  real-time  performance  of  the  model  on

embedded devices, the trained model in this paper is deployed
into the NVIDIA Jetson Nano embedded system, and the input
resolution is set to 640 × 384 to complete the traffic sign detec-
tion in the live video of Harbin, China. The hardware system of

 

Table 3.    Comparison of traffic sign detection models.

Model Precision Recall mAP@50 mAP@50-95 Inference
time (ms)

YOLOv8-CE(ours) 90.2 78.1 86.1 57.2 96
YOLOv8n 88.7 73.6 83.3 53.7 92
YOLOv8-ghost 89.2 72.5 82.1 52.1 243
YOLOv8-ghostv2 89.1 71.6 82.2 52.5 230
YOLOv8-
shufflenetv2

81.1 53.6 61.8 61.8 110

YOLOv8-
mobilenetv3

73.4 54.6 61.4 35.7 65

 

Table  4.    Comparison  of  traffic  sign  detection  models  under  different
weather test sets.

Model Orinal Cloud Foggy Night Rain Snow Sunny

YOLOv8-CE(ours) 86.1 92.5 81.6 76.5 43.1 86.5 94.8
YOLOv8n 83.3 89.5 68.3 73.8 32.7 77.8 93.2
YOLOv8-ghost 82.1 88.8 77.9 75.5 29.8 82.5 91.3
YOLOv8-ghostv2 81.9 89.2 63.9 73.0 39.9 70.0 91.3
YOLOv8-shufflenetv2 61.4 74.9 53.7 40.6 10.8 45.7 80.0
YOLOv8-mobilenetv3 61.8 75.9 55.2 40.6 16.9 58.6 77.6
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Fig. 8    Detection results of YOLOv8-CE under different weather test sets.
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Jetson  Nano  is  shown  in Fig.  9 and  the  detection  results  are
shown in Fig. 10.

In  addition,  this  paper  compares  the  Jetson  Nano  with  the
Raspberry  4B  Pi  and  deploys  the  same  algorithm  on  both
devices for testing and comparing the inference time, as shown
in Table  5.  It  can  be  seen  that  the  computational  volume  and
Weight  Size  of  the  algorithm  in  this  paper  are  similar  to
YOLOv8n,  and  the  inference  time  is  around  96  ms.  The  infer-
ence  time  on  Jetson  Nano  is  1/7  of  that  on  Raspberry  Pi  4B.
Although the inference time of YOLOv8-CE is not the fastest, its
overall performance is the best and the inference time is within
100 ms, which is far enough to meet the requirements of real-
time  detection.  In  addition,  it  can  also  be  seen  that  the  infer-
ence time of all models on Jetson Nano is within 250 ms, which
achieves real-time detection. 

Discussion and conclusions

In  this  paper,  an  improved  detection  algorithm  of  YOLOv8
combined  with  the  embedded  system  Jetson  Nano  was
proposed  to  realize  real-time  detection  of  traffic  signs  on  self-
driving  or  assisted-driving  vehicles.  The  main  findings  are  as
follows:

(1) Through ablation study, the effectiveness of the improved
network combining Coordinate Attention, EIoU is considered as
a  function  in  the  paper  is  verified.  The  improved  YOLOv8n
model  achieves  86.1%  mAP  @0.5  in  the  original  test  set.
Compared  to  the  original  YOLOv8,  Precision,  Recall,  and  mAP
@0.5  are  improved  by  1.5%,  3.5%,  and  2.8%,  respectively,  and
the  accuracy  is  also  improved  in  other  test  sets,  with  better
results in all kinds of scenarios and stronger generalization abil-
ity. In addition, the inference time on Jetson Nano is increased
by  4  ms,  the  model  memory  is  increased  by  0.03  MB,  and  the
FLOPs  are  approximately  equal.  Furthermore,  the  improved
method adopted in the paper increases the detection accuracy
substantially  while  slightly  reducing  the  detection  speed.  The
experimental  results  demonstrate  the  superiority  of  the
YOLOv8-CE method adopted in this paper.

(2)  The  superiority  of  the  YOLOv8-CE  model  is  further
confirmed  by  comparing  it  with  classical  lightweight  models
such  as  YOLOv8-mobilenetv3,  and  YOLOv8-ghost.  The
improved model outperforms the other three models in terms
of  accuracy  and  detection  speed  in  general,  showing  the  best
performance.  The  experimental  results  further  demonstrate
that  the  improved  approach  adopted  in  the  paper  has  good
detection performance.

(3)  By  conducting  live  video  tests  on  different  embedded
devices,  it  can  be  seen  that  the  Jetson  Nano  far  outperforms
the Raspberry Pi in the detection of traffic signs, and the detec-
tion  speed  of  YOLOv8-CE  enters  within  100  ms  on  the  Jetson
Nano,  reaching 96 ms,  achieving the performance of  real-time

 

Fig. 9    Hardware system of Jetson Nano.

 

Table 5.    Experiments on different devices.

Model FLOPs
(G)

Weight size
(MB)

Inference time (ms)

Jetson Nano Raspberry pi 4B

YOLOv8-CE(ours) 8.1 5.99 96 690
YOLOv8n 8.1 5.96 92 678
YOLOv8-ghost 6.8 5.97 243 810
YOLOv8-ghostv2 6.8 5.17 230 791
YOLOv8-shufflenetv2 5.0 3.48 110 580
YOLOv8-mobilenetv3 2.8 2.52 65 313

 

Fig. 10    Field test on Jetson Nano in Harbin, China.
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vehicle traffic sign detection. The experimental results demon-
strate the feasibility  of  this  paper's  model  for  edge computing
platforms.

To  summarize,  the  YOLOv8-CE  model  can  detect  the  type
and location of traffic signs more accurately and quickly, which
serves  as  a  foundation  for  future  advancements  in  real-time
traffic sign detection and provides a basis for the implementa-
tion  of  autonomous  driving.  In  addition,  future  studies  will
concentrate on the following fields:

(1)  Some lightweight  methods,  such as  model  pruning[32,33],
model  quantization[34,35],  and  knowledge  distillation[36,37],  will
be used to be less computationally intensive and consume less
model, while combining lightweight network models to create
a lightweight network with better performance that is compati-
ble  with  detection  in  small  mobile  devices  to  further  enhance
the speed of traffic sign detection.

(2)  Collecting  data  sets  from  more  situations  for  model
training  and  processing  the  data  to  make  the  model  more
generalizable  and  able  to  adapt  to  traffic  sign  recognition  in
various situation scenarios.

(3)  The network model  is  going to be further  improved and
self-attention  will  be  added  to  fuse  features  more  effectively,
which in turn will better detection performance of the model. 
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