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Abstract
This paper uses the bibliometric analysis software CiteSpace to examine the current status and evolution of cold-chain logistics vehicle routing
problems  (CCVRP).  7381  relevant  articles  published  in  the  Web  of  Science  core  collection  from  2008  to  2024  were  analyzed,  an  in-depth
understanding  of  the  publication  trends  and  category  distribution  were  gained.  Subsequently,  CiteSpace  was  used  to  create  a  scientific
knowledge graph and perform visualization analysis. The analysis includes collaboration among authors, countries, and institutions; co-citation
analysis of authors, journals, and references; citation burst detection of keywords; and co-citation cluster analysis of references. Based on a deep
understanding of current research hotspots,  an in-depth discussion of existing research was conducted from three perspectives:  optimization
objectives,  distribution  scenarios,  and  solution  algorithms.  The  results  show  that  CCVRP  involves  complex  factors  such  as  temperature
requirements,  time  window  constraints,  and  multi-objective  optimization.  These  intricate  constraints  are  causing  research  to  become
increasingly  interdisciplinary  and  comprehensive.  The  evolution  of  hot  topics  shows  that  the  research  directions  span  multiple  fields,  from
algorithm design to logistics management. This review helps researchers better understand the history, current status, and future development
directions of CCVRP research, and provides valuable references and inspiration for academia and practice.
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Introduction

In today's growing logistics industry, cold chain logistics has
become an important link in ensuring the quality and safety of
perishable goods such as food and medicine. However, the effi-
ciency  and  cost  management  of  cold  chain  logistics  are  often
challenged  by  logistics  vehicle  route  planning.  The  cold  chain
logistics  vehicle  routing  problem  has  thus  emerged,  and  its
evolution  and  research  history  demonstrate  the  continuous
attention  and  exploration  of  logistics  efficiency  and  resource
utilization. As a key supply chain management field, cold chain
logistics aims to keep the goods at a low temperature through-
out  the  distribution  process  to  ensure  the  freshness  and  qua-
lity of the products. In this field, the cold chain logistics vehicle
routing  problem  has  always  been  the  focus  of  attention
because  it  is  directly  related  to  transportation  efficiency,  cost
control,  and the safety of goods. With the development of the
logistics  industry  and  the  continuous  advancement  of  tech-
nology,  the  cold  chain  logistics  vehicle  routing  problem  has
also  been  evolving  and  escalating.  To  better  understand  this
evolution process, this paper conducts a comprehensive biblio-
metric  and  visualization  review  to  trace  the  development
trajectory  of  the  cold  chain  logistics  vehicle  routing  problem
research.

The  research  on  cold  chain  logistics  vehicle  routing  pro-
blems has  a  long history.  The initial  focus  was  mainly  on opti-
mizing  static  route  planning,  with  the  goal  of  reducing  trans-
portation  costs  and  time.  As  shown  in Fig.  1,  cold  chain  logis-
tics  has  expanded  to  many  aspects  of  social  production  and

transportation.  With  the  continuous  expansion  of  logistics
networks  and  the  diversification  of  customer  needs,  the
research focus has gradually shifted to dynamic route planning,
considering  real-time  traffic  conditions,  climate  change  and
other factors to ensure the safety and timely delivery of goods.
However,  the cold chain logistics vehicle routing problem also
faces  many  challenges  and  evolutions.  Traditional  route  plan-
ning methods often fail  to effectively cope with complex envi-
ronmental  changes  and  uncertainties,  resulting  in  inefficiency
and  waste  of  resources.  In  addition,  with  the  acceleration  of
urbanization  and  the  improvement  of  environmental  protec-
tion awareness, the demand for reducing traffic congestion and
reducing  carbon  emissions  is  becoming  increasingly  urgent,
which  poses  new  challenges  to  the  research  on  cold  chain
logistics vehicle routing problems.

In the past  few decades,  scholars  have conducted extensive
and in-depth research on the cold chain logistics  vehicle  rout-
ing  problem.  This  research  explores  the  challenges  of  multi-
objective  optimization,  time  window  constraints,  temperature
control,  etc.,  and  solves  these  problems  by  introducing  intelli-
gent  algorithms  and  optimization  models.  At  present,  the
research  on  the  cold  chain  logistics  vehicle  routing  problem
shows  a  trend  of  diversification  and  integration.  Traditional
methods  are  mainly  based  on  mathematical  optimization
models,  such  as  vehicle  routing  problem  (VRP)  and  dynamic
path  planning  (DVRP),  and  the  optimal  route  is  obtained
through  algorithmic  solution.  Desrochers  &  Verhoog[1] discov-
ered  a  hybrid  vehicle  routing  model;  Solomon  &  Desrosiers
introduced  the  concept  of  service  time  window  in  VRP
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research[2] ; Jabali et al.[3] considered the penalty cost based on
the  restriction  of  service  time  window,  and  proposed  a  soft
time  window  VRP  model;  Moghaddam  et  al.[4] considered  the
demand uncertainty factor in the VRP model; Cattaruzza et al.[5]

discussed  the  vehicle  routing  problem  of  multiple  trips.  There
are  also  many  research  results  on  VRP  model  algorithms:  for
example,  precise  algorithms  include  the  branch  and  bound
method  proposed  by  Laporte  et  al.[6] the  dynamic  pro-
gramming  algorithm  studied  by  Righini  &  Salani[7],  and  the
cutting  plane  method  proposed  by  Kallehauge[8] and  others.
Heuristic  algorithms  include  the  saving  algorithm[9],  the  two-
stage  algorithm[10] ,  and  the  taboo  search  algorithm[11].  How-
ever, these methods often ignore the impact of real-time infor-
mation  and  environmental  changes  on  route  planning,  result-
ing in unsatisfactory results in actual applications.

In  contrast  to  traditional  methods,  modern  methods  have
emerged,  including  intelligent  route  planning  systems  based
on  artificial  intelligence  (AI)  and  big  data  technologies.  These
systems  can  monitor  factors  such  as  traffic  conditions  and
climate  change  in  real-time,  and  combine  historical  data  for
prediction  and  optimization,  thereby  improving  the  accuracy
and flexibility  of  route planning.  Traditional  methods focus on
the  precise  solution  of  mathematical  models  and  algorithms,
and  their  advantages  lie  in  their  solid  theoretical  foundation
and strong interpretability. However, when faced with complex
actual  situations,  it  is  often  difficult  to  fully  consider  various
uncertainties, resulting in unstable results and difficulty in real-
time  adjustment.  In  contrast,  modern  methods  are  based  on
big  data  and  AI  technology  and  are  more  adaptable  and  real-
time. They can adapt to environmental changes and changes in
demand  through  continuous  learning  and  optimization,
improving the flexibility and adaptability of route planning.

Considering  these  broad  objectives  leads  to  more  complex
optimization problems and inspires more variants applicable to
various  real-world  application  scenarios.  To  fully  understand
the  current  state  of  research  in  this  particular  area  and  to  de-
termine  the  significance  of  the  present  work,  a  summary  of
previous review papers on the vehicle routing problem in cold
chain  logistics  was  compiled  and  ranked  by  their  relevance  as
retrieved  by  WOS.  This  summary  is  listed  in Table  1,  which
provides  the  publication  year,  information  on  the  research,
WOS category, research method, time-span, and the number of
articles it reviewed.

Through  the  review  of  the  above  review  papers,  it  can  be
found  that  most  of  the  existing  research  adopts  content

analysis  and  system  analysis  methods.  Therefore,  this  paper
systematically  combs  the  research  literature  in  related  fields
through  bibliometric  methods  to  reveal  the  main  trends  and
hotspots  of  the  research.  The  visual  review  section  will  show
the key nodes, development paths, and academic cooperation
relationships in the research field through charts and graphics.
In this way, we will be able to see the overall pattern of research
on  cold  chain  logistics  vehicle  route  issues  more  clearly  and
provide guidance for future research.

The  contributions  of  this  paper  are:  first,  compared  with
other  studies  that  only  focus  on  certain  aspects  of  the  cost
problem, the scope of the study of cold chain logistics routes is
broader.  Second,  the  article  uses  bibliometric  methods  and
visualization  software  to  conduct  in-depth  analysis,  including
exploring  the  development  stage  of  the  field,  analyzing  the
countries,  authors,  and  journals  that  have  made  significant
contributions,  analyzing  the  evolution  of  topics  based  on
keywords,  and  exploring  research  hotspots  based  on  the  co-
citation  network  of  literature.  Finally,  the  article  discusses
future trends in a quantitative way, which is a valuable supple-
ment  to  the  subjective  conclusions  limited  by  the  author's
knowledge.

The  following  sections  of  this  paper  will  introduce  the  data
source  collection  and  processing  process  in  turn,  and  present
the results of the bibliometric analysis.  Next,  the differences in
cost  quantification  methods  and  constraint  settings  in  cold
chain  logistics  vehicle  routing  optimization  will  be  analyzed
from  the  perspectives  of  objectives,  problem  scenarios,  and
solution  algorithms.  In  addition,  the  solution  algorithms  of
different models will be classified, and the applicability of vari-
ous  algorithms  under  different  optimization  objectives  and
problem scenarios will be compared. Finally, the full article will
be  summarized  and  future  research  directions  will  be
prospected. 

Data collection and research methods

To  systematically  and  comprehensively  review  and  analyze
the literature related to the cold chain logistics vehicle routing
problem,  the  original  literature  database  of  this  paper  comes
from  the  Web  of  Science  Core  Collection.  The  reasons  for
choosing  the  Web  of  Science  Core  Collection  for  bibliometric
analysis  are  as  follows:  (1)  The Web of  Science Core Collection
has  covered  18,000  high-quality  leading  journals  in  different

 

Fig. 1    Cold chain logistics production and transportation route map.
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fields since 1900, with a total citation count of 1.3 billion[27] . (2)
The  present  research  focuses  on  visual  analysis  of  authors,
journals,  countries,  institutions,  keywords,  references,  etc.  The
Web  of  Science  Core  Collection  not  only  covers  a  series  of
metadata  related  to  this  information,  but  also  outputs  it  in  a
recognizable  format  for  direct  reading  through  CiteSpace.  (3)
Due to duplication of literature,  using other databases such as
Google  Scholar  and  Scopus  would  also  produce  fairly  similar
results[28] .  Therefore,  it  may not be necessary to consider vari-
ous databases at the same time in this paper. The data was first
generated by performing a basic search in the Web of Science
(WOS) Core Collection, setting the time span from January 2000
to  January  2024  and  obtaining  55,298  articles  containing  the
keywords 'vehicle routing problem', 'cold chain logistics', 'vehi-
cle  routing  optimization',  'electric  vehicle  routing',  'transporta-
tion cost', 'carbon emission', and 'models and algorithms'. Thus,
a  preliminary  database  was  formed  for  subsequent  analysis
based on these 55,298 records. 

Data processing and results
The  existence  of  duplicate  documents  in  the  database  is

inevitable. To improve the credibility of the analysis results, the
55,298 documents  were imported into the software CiteSpace
6.3.R1 (64-bit) and duplicate documents removed. At the same
time,  the  time  interval  in  CiteSpace  was  set  to  2008  to  2024
(this is because the publication year of the documents included
in the WOS core started in 2008), the year of each slice was set
to 1, and the top 10 high-frequency nodes were selected from
each slice.  That is,  Top N = 10. In order to reduce waiting time
and  simplify  the  network  structure,  the  Pathfinder  pruning
method  in  CiteSpace  was  used  when  generating  different
visualization  graphs.  According  to  the  above  data  processing
procedures, a total of 7,381 unique documents were obtained,
including 4,606 articles,  137 reviews,  2,528 conference papers,
and  110  online  publications. Figure  2 shows  the  detailed
information  of  each  type.  From  the  results  of Fig.  2,  it  can  be
seen  that  4,606  articles  account  for  62%  of  the  entire  sample
size and other types of documents account for 38% of the total.
Of  course,  these  filtered  7381  documents  published  between
2008  and  2024  were  considered  for  the  subsequent  biblio-
metric analysis. 

Basic statistical results of the Web of Science 

Temporal evolution of publications and citations
An article and other studies that cite it can provide informa-

tion  about  the  influence  and  importance  of  the  article  in  the
academic  community.  Information  such  as  the  author,  affi-
liation, and research field reflects the author's background and
professional  field.  Through  this  information,  we  can  under-
stand the topic of the article, the author's identity, the research
region,  the  reputation  and  academic  level  of  the  publishing
journal, etc. In addition, through keyword and citation analysis,
we can also understand the research hotspots and trends in the
field,  as  well  as  the connection and impact of  related research
results.

The  time  series  distribution  of  research  papers  and  their  ci-
tations  can  reflect  the  research  status  and  trends  of  a  certain
research topic in a specific period. Figure 3 shows the number
of  publications  related  to  cold  chain  logistics  vehicle  routing
issues  and  their  citations  between  2008  and  2024.  In  the  past
16  years,  the  number  of  publications  and  citations  have
increased significantly,  indicating that  research on this  issue is
receiving  increasing  attention.  It  can  be  observed  from Fig.  3
that  from  2008  to  2014,  the  number  of  publications  was  in  a
slow growth stage, always staying below 400, and even showed
a  downward  trend  in  2010,  which  indicates  that  the  research
attention  at  this  stage  was  relatively  limited.  From  2015  to
2022, the number of publications gradually increased, reaching
a peak of 836 articles in 2022, ranking second in history in terms
of  citation  frequency.  From  2008  to  2023,  the  number  of-
citations  has  been on an upward trend.  Although the number

 

Table 1.    Summary of review articles on cold chain logistics vehicle routing issues.

Publication Year Scope (WOS) Methodology Time span Count

Li et al.[12] 2023 GVRP Bibliometric analysis 2000−2021 166
Pillac et al.[13] 2013 DVRP Content analysis 1995−2013 154
Qin et al.[14] 2019 VRP-CSC Systematic analysis 1983−2018 53
Ostermeier et al.[15] 2020 MCVRP Content analysis 1981−2020 89
Koç et al.[16] 2016 HVRP Content analysis 1981−2015 137
Kucukoglu et al.[17] 2021 EVRP Systematic analysis 2001−2021 165
Sar & Ghadimi[18] 2023 RLVRP Bibliometric analysis 1959−2022 109
Erdelic & Carić[19] 2019 EVRP Content analysis 1959−2018 175
Braekers et al.[20] 2016 VRP Systematic analysis 2009−2015 309
Zhang & Van Woensel[21] 2022 DVRPRR Systematic analysis 1980−2022 185
Asghari & Mirzapour Al-e-hashem[22] 2021 GVRP Systematic analysis 2000−2020 313
Li et al.[23] 2022 VRP-LBO Content analysis 1959−2020 212
Ni & Tang[24] 2023 VRP Bibliometric analysis 1955−2022 209
Demir et al.[25] 2014 GVRP Content analysis 1996−2013 118
Mardešić et al.[26] 2023 SDVRP Content analysis 1957−2022 180
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Fig. 2    Literature types in CCVRP research.
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of  publications  has  declined  in  2023,  the  number  of  citations
has  reached  a  historical  high  of  25,606  times.  Therefore,  a
decrease  in  the  number  of  publications  does  not  necessarily
lead to a decrease in citation frequency. Comparing the data in
2017  and  2024,  although  the  number  of  publications  in  2017
was about three times that in 2024, the number of citations was
almost the same at about 6,600 times, which shows that people
still maintain interest in this field. 

Category distribution
Table  2 lists  the  top  10  subject  categories  in  the  PDP  field

from  2008  to  2024.  It  should  be  stated  in  advance  that  in  the
records exported by Web of Science, a publication may belong
to  multiple  different  subject  categories,  which  results  in  the
number of papers in Table 2 exceeding the sample size and the
sum of the percentages exceeding 100%.

As shown in Table 2, the first and second most relevant cate-
gories are 'Operations Research and Management Science' and
'Computer  Science  and  Artificial  Intelligence'.  Among  them,
'Operations  Research  and  Management  Science'  ranked  first
with 2749 papers, accounting for 37.07% of the total number of
publications;  'Computer  Science  and  Artificial  Intelligence'
ranked second with 1487 papers, accounting for 20.05% of the
sample size.  The third place is  'Engineering Electrical  and Elec-
tronics',  which shows that the main purpose of this research is
to  solve  complex  management  and  engineering  problems  in
the real world. Moreover, in recent years, with the advent of the
big data era and the development of  artificial  intelligence,  the
scope of this research has expanded to 'Transportation Science
and  Technology'  and  'Interdisciplinary  Applications  of  Com-
puter  Science',  which  also  indicates  that  the  research  analysis
framework is highly adaptable and widely applicable. Based on
the remaining five categories shown in Table 2, we can further
conclude  that  this  research  has  gradually  become  interdis-
ciplinary and highly comprehensive. 

Visualization results and bibliometric analysis
based on CiteSpace 

Analysis of authors and cited authors
In this section, bibliometric and visual analysis of authors and

cited  authors  was  conducated  by  setting  the  node  types  to
'author'  and  'cited  author'  in  CiteSpace  respectively.  The

purpose  of  author  analysis  is  to  find  the  scholars  who  publish
the  most  papers  and  show  the  collaborative  relationship
between different scholars in research. Generally speaking, the
more  papers  he  or  she  publishes,  the  stronger  the  ability  to
accelerate the development of this research. The results of the
cited author analysis can not only help us identify scholars with
the  highest  academic  level  and  academic  influence,  but  also
sort out the complex co-citation relationships between authors.
After  running  the  software,  the  main  results  obtained  are  the
author's  collaboration  network  diagram  and  co-citation  net-
work diagram, as shown in Figs 4 & 5, respectively. Table 3 lists
and  compares  the  distribution  of  the  top  10  highly  published
authors and highly cited authors.

Figure  4 consists  of  239  nodes  and  203  links,  where  each
node represents an author and each link represents a collabo-
ration  between  two  authors.  The  density  value  of  the  entire
network is 0.0069, which indicates that the research directions
of  these  authors  are  relatively  scattered  and  there  are  few
connections and collaborations between them. Combined with
the results in Table 3, it is obvious that Juan is the most prolific
author,  having  published  83  papers,  mainly  focusing  on  the
application of business analytics,  optimization, simulation, and
artificial  intelligence  in  computational  transportation  and
logistics,  production  and  manufacturing,  computational
finance  and  insurance,  and  smart  cities.  Wang  is  the  second
most  prolific  author,  and  is  also  the  only  Chinese  author  who
has  published  more  than  60  papers.  His  research  areas  are
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Fig. 3    Distribution of publications and citation records from 2008 to 2024.

 

Table 2.    Distribution of the top 10 categories in CCVRP research.

No. Web of Science category Count

1 Operations Research Management Science 2749
2 Computer Science Artificial Intelligence 1487
3 Engineering Electrical Electronic 1214
4 Computer Science Interdisciplinary Applications 1123
5 Engineering Industrial 1084
6 Computer Science Theory Methods 956
7 Transportation Science Technology 918
8 Computer Science Information Systems 707
9 Management 637
10 Transportation 531
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Fig. 4    Collaboration network diagram of CCVRP research authors.

 

Fig. 5    Co-citation network of CCVRP research authors.

 

Table 3.    Top 10 most published and most cited authors in the study.

No. Highly published authors Highly cited authors

Author Count 7,416 percentile Author Count Half-life

1 Juan AA 83 1.119 Dantzig GB 1443 10.5
2 Wang Y 69 0.93 Solomon MM 1282 10.5
3 Laporte G 63 0.85 Door G 1457 9.5
4 Gendreau M 50 0.674 T oth P 1628 9.5
5 Lim A 45 0.607 C oreau JF 1097 8.5
6 Zhang J 42 0.566 Gendreau M 1197 8.5
7 Li J 39 0.526 Clarke G 564 7.5
8 Zhang ZZ 39 0.526 B aldacca R 848 6.5
9 Van Woensel T 38 0.512 C hristofides N 261 4.5
10 Yu VF 38 0.512 Prins C 156 4.5
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mainly focused on logistics and transportation, vehicle routing
problems,  and  intelligent  transportation  systems.  His  out-
standing work[29] formulated the PDP with split loads and time
windows as a mixed integer programming problem (MILP) and
proposed  a  mixed  integer  programming  problem  (MILP).
Laporte[6] is  the  first  author  and  is  a  famous  Canadian  opera-
tions  researcher  and  logistics  expert.  He  is  well-known  for  his
research  in  combinatorial  optimization,  vehicle  routing  prob-
lems  (VRP),  and  logistics  and  transportation  problems.  He  first
proposed  the  concept  of  DARP  and  designed  a  taboo  search
heuristic  algorithm  to  solve  it.  An  interesting  phenomenon  is
that  among  the  top  10  prolific  authors,  Chinese  authors
account  for  as  much  as  50%,  and  the  top  10  prolific  authors
have published more than 30 papers.

Figure  5 shows  the  co-citation  relationship  between  two
authors,  which  means  that  their  articles  are  cited  together  by
another  article  written  by  a  third  author. Figure  5 contains  a
total  of  32  nodes  and  87  links. Table  3 lists  the  top  10  highly
cited  authors  according to  their  citation  half-life.  Authors  who
publish  a  large  number  of  articles  are  not  necessarily  the
authors  with  a  large  number  of  citations.  Highly  cited  authors
are  usually  regarded  as  the  most  advanced  and  influential
scholars in a certain field, and their papers and works are neces-
sary  references  and  studies  for  beginners  interested  in  this
research.  The  first  one  is  Dantzig[30] ,  who  was  one  of  the
pioneers  in  the  field  of  linear  programming  and  operations
research.  His  most  famous contribution is  the invention of  the
simplex method, which has led to a wide range of scientific and
technological applications in important problems such as logis-
tics, scheduling, and network optimization, as well as the effec-
tive use of mathematical theories using computers. Solomon[2]

was the second most cited author, he was a well-known scholar
in the field of optimization, scheduling, and supply chain mana-
gement,  famous  for  his  research  on  vehicle  routing  problems
and logistics management.  Solomon designed a set of famous
benchmark  problems  (Solomon's  benchmark  problems)  for
evaluating  and  comparing  different  VRP  algorithms.  These
benchmark  problems  have  become  the  standard  reference  in
the VRP research field.

Another noteworthy phenomenon is that Laporte is the only
scholar who is both a high-publishing and highly cited author,
which  also  means  that  his  academic  contributions  have  been
widely  recognized by his  peers  in  PDP research.  Gendreau's[31]

paper  publication  ranks  fourth,  but  his  citation  half-life  ranks
sixth. Specifically, from 1996 to 2024, Gendreau's papers in this
field  were cited 1,197 times,  and many scholars  from different
institutions have worked closely with him, such as Coreau, Tail-
lard,  and Christofides,  Coreau,  and Christofides  ranked 5th and
9th respectively. 

Analysis of cited journals
To  have  a  clearer  understanding  of  the  research  directions

involved,  CiteSpace  was  used  to  draw  a  co-citation  network
diagram  of  the  journals  in  the  CCVRP  research,  as  shown  in
Fig. 6, which consists of 21 nodes and 49 links. Table 4 lists the
top 10 highly cited journals and their basic information. Among
them,  the  European Journal  of  Operations  Research ranks  first
among the highly cited journals, with 5,787 citations, a central-
ity  of  0.86,  and  an  impact  factor  of  6.4.  That  is,  the  European
Journal  of  Operations  Research  is  an  important  journal  that
must  be  paid  attention  to  in  the  field  of  cold  chain  logistics
vehicle routing problems.  'Optimization for  dynamic ride-shar-
ing:  'A  review'[32],  'Dynamic  pickup  and  delivery  problems'[33],
and 'Heuristic algorithms for single and multiple depot vehicle
routing  problems  with  pickups  and  deliveries'[34] are  the  most
cited  papers  published  in  the European  Journal  of  Operations
Research.  The second is Computers  &  Operations  Research,  with
5,338  citations  and  an  impact  factor  of  4.7.  The  journal  has
published 1,204 articles in the past four years, with an average
citation  rate  of  8.355  (OOIR)  per  article.  One  of  the  most  cited
papers  is  'Vehicle  Routing  Problem:  An  Overview  of  Exact  and
Approximate Algorithms' by Laporte[35], published in 1992. This
paper  has  a  high citation rate  in  the field,  reflecting its  impor-
tance  in  the  study  of  vehicle  routing  problems.  The  third  is
Transportation  Science,  with  4,157  citations  and  an  impact
factor  of  5.1.  It  is  mainly  based  on  theory,  supplemented  by
observation  and  experimental  research  on  traffic  phenomena.
The  article  entitled  'An  Adaptive  Large  Neighborhood  Search
Heuristic  for  Pickup  and  Delivery  Problem  with  Time

 

Fig. 6    Network diagram of co-citations of CCVRP research journals.
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Windows'[36] has  the  highest  citation  rate  among  the  papers
published in Transportation Science.

Considering  the  distribution  of  highly  cited  journals,  CCVRP
research results mainly focus on using optimization theory and
combining  methodologies  from  other  professional  fields  to
analyze managers' path selection behavior in real logistics situ-
ations.  Moreover,  the  main  scope  of  these  journals  coincides
with  the  above  categories,  further  proving  that  it  is  the  inter-
section and combination of knowledge in diversified fields that
has  promoted  the  progress  of  research  on  cold  chain  logistics
vehicle routing issues. 

Country and institution analysis
To  confirm  the  contribution  and  influence  of  each  country/

institution  and  better  examine  the  mutual  cooperation  rela-
tionship  between  different  countries/institutions,  CiteSpace
was  used  to  perform  country  and  institution  analysis,  setting
the  node  type  to  'country'  and  'institution'  respectively.  First,
the  country  collaboration  network  diagram  is  shown  in Fig.  7,
where  each  circle  represents  a  country  and  each  link  repre-
sents the cooperation relationship between countries. Next, the
institution  collaboration  network  diagram  is  shown  in Fig.  8,
where  each  node  represents  a  research  institution  and  each
link represents the cooperation relationship between two insti-
tutions. Tables 5 & 6 show the top 10 countries and the top 10

institutions in terms of publication volume from 2008 to 2024,
respectively.

According  to Fig.  7 & Table  5,  China  is  the  most  productive
country  in  the  world,  publishing  2,280  papers  from  2008  to
2024,  accounting  for  about  30.80%  of  the  total  number  of
published  documents.  Although  China's  CCVRP-related
research  work  started  later  than  in  other  countries,  it  has
achieved rich results so far. Among them, Singapore and France
have close academic cooperation with China. The United States
is  one  of  the  countries  that  analyzed  CCVRP  earlier,  ranking
second with 796 publications. From the country composition in
Table 5, except for China, Turkey, and Iran, other output coun-
tries  are  from  Europe  and  North  America,  and  the  academic
cooperation between countries is still weak and loose.

As shown in Table 6, three Chinese institutions (Beijing Jiao-
tong  University,  Huazhong  University  of  Science  and  Tech-
nology,  and  Tsinghua  University)  are  among  the  top  10  insti-
tutions  with  the  highest  number  of  publications,  which  is
consistent with the conclusion that China ranks first among all
countries .  In terms of the number of publications,  the Univer-
sity  of  Montreal  in  Canada  ranks  first  in  the  world,  with  252
publications,  which  is  roughly  equivalent  to  the  total  of  246
publications  from  the  United  Kingdom.  However,  the  most
influential  institution is  HEC Montreal  in  Canada.  According to

 

Table 4.    Top 10 CCVRP research journals with the highest citations.

No. Citation Centrality SSCI/SCIE Journal title Count 7,416 percentile Five-Year Impact Factor

1 5787 0.86 SCIE, Q1 European Journal of Operational Research 330 4.45% 6.4
2 5338 1.51 SCIE, Q1 Computers & Operations Research 321 4.33% 4.7
3 4154 1.14 SCIE, Q1 Transportation Science 149 2.01% 5.1
4 3947 0.39 SCIE, Q1 Operations Research 27 0.36% 4.6
5 2892 0.38 SCIE, Q1 Computers & Industrial Engineering 220 2.97% 4.3
6 2387 0.2 SCIE, Q1 Expert Systems with Applications 195 2.63% 6.9
7 2273 0.38 SCIE, Q2 Journal of the Operational Research Society 52 0.70% 2.6
8 2184 0.2 SCIE, Q2 Networks 85 1.15% 2.8
9 2053 0.2 SCIE, Q1 Transportation Research Part E: Logistics and

Transportation Review
160 2.16% 4.0

10 1424 0 SCIE, Q1 Transportation Research Part B: Methodological 74 1.00% 5.6

 

Fig. 7    CCVRP research cooperation network of various countries.
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the analysis of authors and cited authors above, we know that
Cordeau's[37] research  team  is  from  the  Montreal  Institute  of
Technology  and  Laporte's[35] research  team  is  from  HEC
Montreal. These two institutions are ranked 4th and 5th in terms
of  the  number  of  publications,  respectively.  In  fact,  each  top
institution maintains cooperative relationships with other insti-
tutions. For example, in China, Huazhong University of Science

and Technology's close partners include City University of Hong
Kong,  Shanghai  Jiaotong  University,  and  Henan  University  of
Science and Technology. In addition, the University of Montreal
has established extensive cooperative relations with more than
30  academic  institutions,  including  Polytechnic  University  of
Milan,  Universidad  de  la  Laguna,  Laval  University,  Technical
University  of  Munich,  Mines  Saint-Etienne,  and  University  of
Vienna. In addition, given that the overall density of the institu-
tional  cooperation  network  is  only  0.0127,  the  breadth  and
depth  of  international  cooperation  in  the  academic  commu-
nity needs to be further strengthened.

From the perspective of  collaborative networks,  centrality  is
a crucial indicator that represents the central position of a node
in the entire network. The larger the value of a node's centrality,
the more nodes other nodes in the network must pass through
when  they  connect.  Specifically,  the  outermost  color  of  the
nodes  in Figs  7 & 8 is  used  to  measure  their  centrality.  The
closer to purple, the higher the centrality of the node, and the
more  critical  the  position  of  the  country  or  institution  in  this
study.  As  shown  in Tables  5 & 6,  countries  or  institutions  with
many  publications  do  not  necessarily  have  strong  centrality.
For example, although the United States is lower than China in
the number of publications, its centrality is about 1.8 times that
of  China.  Moreover,  the  sum  of  the  centralities  of  all  three
Chinese universities in Table 6 (Huazhong University of Science
and  Technology,  Beijing  Jiaotong  University,  and  City  Univer-
sity of Hong Kong) is still smaller than the centrality value of the
8th-ranked Polytechnic Institute of Troyes, France. These all indi-
cate  to  some  extent  that  China  and  its  institutions  play  a
limited mediating role in the CCVRP study.

Another  noteworthy  example  is  Canada.  Among  the  top  10
countries  in Table  5,  Canada  ranks  4th in  quantity  but  first  in
centrality.  Among  the  top  10  institutions  in Table  6,  three  are
from Canada and all are in the top 5. The University of Montreal
dominates  in  the  number  of  publications,  and  the  HEC
Montreal dominates in global centrality. In other words, Canada
and  its  institutions  not  only  make  great  contributions  to  the
number of publications, but also play an important 'hub' role in

 

Fig. 8    CCVRP research institution cooperation network.

 

Table  5.    The  top  10  countries  with  the  highest  publication  rates
between 2008 and 2024.

No. Count Centrality Year Country

1 2280 0.36 2008 China
2 796 0.65 2008 USA
3 504 0.74 2008 France
4 428 0.93 2011 Canada
5 401 0.83 2008 Italy
6 344 0.13 2008 Germany
7 265 0 2009 Iran
8 262 0.81 2008 Spain
9 246 0.88 2009 England
10 215 0.13 2011 Turkey

 

Table 6.    Top 10 institutions in terms of publication volume from 2008 to
2024.

No. Count Centrality Year Country Institution

1 252 0.31 2008 Canada Montreal University
2 153 0.19 2008 France National Center for

Scientific Research (CNRS)
3 94 0.02 2008 China Beijing Jiaotong University
4 83 0.35 2011 Canada HEC Montreal
5 74 0.25 2011 Canada Polytechnique Montreal
6 64 0.04 2009 China Huazhong University of

Science & Technology
7 53 0.04 2009 Spain UOC Open University of

Catalonia
8 49 0.13 2008 France University of Technology

of Troyes
9 48 0.04 2008 China Tsinghua University
10 47 0.08 2019 Singapore National University of

Singapore
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the  cooperation  network,  connecting  two  different  nodes,
which is particularly worthy of attention.

Table 7 lists and compares the top 10 most productive coun-
tries  and  institutions  over  the  past  decade,  which  can  better
identify  the  emerging  forces  of  CCVRP  research.  Obviously,
even if  we shorten the time interval  to  nearly  ten years,  China
and the United States are still the top two countries in terms of
the  number  of  publications,  and  the  HEC  Montreal  has  main-
tained its central position in the network of institutional collab-
orations.  Among the top 10 institutions in Table 7,  universities
from  China  (Huazhong  University  of  Science  and  Technology,
Beijing  Jiaotong  University,  Chongqing  University,  and
Tsinghua University)  have published a  total  of  221 documents
since  2011,  which  exceeds  the  number  of  publications
published by the United Kingdom, Brazil,  and Turkey. Combin-
ing the visualization results of Figs 7 & 8 with Tables 5 & 6, we
can  see  that  China,  Canada,  and  the  United  States  not  only
have a deep accumulation of professional knowledge, but also
have  strong  academic  innovation  capabilities  necessary  to
promote scientific and technological progress. 

Keyword analysis
Keywords are considered as a high-level summary and refine-

ment  of  the  document  content.  In  keyword  analysis,  the

frequency of occurrence is an indicator of the core strength of
keywords, and burst detection can be used to review the explo-
sive  research  hotspots  in  various  periods.  In  this  section,
keywords were collected from two streams: keywords given by
authors and keywords plus. In particular, keyword analysis uses
co-occurrence analysis and citation burst detection. 

Keyword co-occurrence analysis
Co-occurrence  analysis  attempts  to  explore  the  relationship

between  research  topics  by  calculating  the  frequency  of  two
keywords appearing in the same document. Figure 9 shows the
keyword  co-occurrence  network  related  to  CCVRP  research,
where a total of 268 keywords were selected from 7,381 publi-
cations.  In Fig.  9,  each  node  represents  a  keyword,  and  each
link  between  nodes  represents  their  co-occurrence  relation-
ship.  The larger the size of the node, the higher the frequency
of the word.

Table 8 lists the top 20 keywords with the highest co-occur-
rence  frequency.  Among  them,  'VRP'  is  the  most  important
keyword,  appearing  3,617  times  with  other  related  terms.
Keywords related to 'VRP' include 'traveling salesman problem',
'system',  'time  window',  'transportation',  'tabu  search',  'vehicle
routing',  'distribution'  and  'cold  chain  logistics'.  The  second  is
'algorithm',  with  a  co-occurrence  frequency  of  1,573  times  ,

 

Table 7.    The top 10 most productive countries and institutions in the past decade.

No.
High-published countries High-published institutions

Count Centrality Country Count Centrality Institution

1 1847 0.55 China 209 0.64 University of Montreal
2 683 1.3 USA 126 0.42 Centre National de la Recherche Scientifique (CNRS)
3 424 0.97 France 77 0.05 Beijing Jiaotong University
4 374 0.85 Canada 64 0.51 Polytechnique Montreal
5 341 0.2 Italy 64 0.77 HEC Montreal
6 299 0 Germany 57 0 Huazhong University of Science & Technology
7 257 0 Iran 49 0.11 UOC Universitat Oberta de Catalunya
8 217 0.2 United Kingdom (UK, England) 47 0.2 National University of Singapore
9 196 0.37 Spain 44 0.05 Chongqing University
10 181 0 Turkey 43 0.11 Tsinghua University

 

Fig. 9    Keyword co-occurrence network diagram in CCVRP research.
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which is closely related to 'model',  'optimization', 'meta-heuris-
tic', 'scheduling', 'tabu search', 'genetic algorithm', and 'particle
swarm  optimization'.  In  addition,  based  on  the  distribution  of
keywords in Table 8, we can further draw the following conclu-
sions:  (1)  Scholars  attach  great  importance  to  establishing
mathematical models under realistic backgrounds and assump-
tions  to  study  the  relationship  between  routing  selection  and
optimization. (2) Most of the research results of CCVRP involves
designing  algorithms  and  methods  with  high  computational
efficiency  to  ensure  the  computability  of  the  formulated
models and further obtain the optimal strategy for reference by
logistics  managers.  (3)  The  most  commonly  used  algorithms
include  genetic  algorithms,  taboo  search,  ant  colony  algo-
rithms and other heuristic algorithms, which are also an impor-
tant  basis  for  proposing  more  innovative  and  better-perform-
ing methodologies. 

Keyword citation burst detection
To  reflect  the  historical  development  of  research  hotspots

and  highlight  current  research  hotspots  to  inspire  scholars  to
conduct  follow-up  research,  we  list  the  top  28  keywords  with
the strongest citation bursts in Table 9. Generally speaking, for
a  specific  keyword,  the  longer  the  burst  duration  and  the
higher the burst intensity, the more people will pay attention to
it within a certain period of time.

As  shown  in Table  9,  'tabu  search'  ranks  first  with  a  citation
burst intensity of 33.9, starting in 2008 and ending in 2015. The
second  is  the  keyword  'vehicle  routing',  with  a  citation  burst
intensity  of  23.95,  starting  in  2009  and  ending  in  2013.  It  is
worth noting that reinforcement learning,  deep reinforcement
learning, and machine learning appeared in the keywords with
a surge in citation bursts,  starting in 2021 and ending in 2024.
This  also shows that  new directions may have emerged in  the
research of CCVRP in recent years.

Emerging  keywords  such  as  'last  mile  delivery',  'electric
vehicle  routing  problem',  'reinforcement  learning',  'deep
reinforcement  learning',  'carbon  emissions',  and  'machine
learning' have become hot topics in recent years. Judging from
the  distribution  of  emerging  keywords,  the  current  hot  topics
are focused on solving more complex business needs involved

in  CCVRP.  For  example,  Phiboonbanakit  et  al.[38] proposed  a
novel  approach  to  a  new  vehicle  route  optimization  model,
using reinforcement learning interconnected with a tree-based
regression  model  to  create  a  reinforcement  learning  traffic
environment. The reinforcement learning agent uses the previ-
ous  environment  state  as  experience  to  select  appropriate
actions to determine the current vehicle route by selecting the
optimal strategy. 

Reference analysis
Reference  co-citation  is  measured  by  the  frequency  with

which  two  documents  are  cited  together  by  other
documents[39,40] . Generally speaking, the more times two docu-
ments are cited together by a third document,  the more likely
they are to be related in content and the more likely they are to
be classified into the same cluster, which is also the principle of
the  co-citation  cluster  analysis  below.  Understanding  the  co-
citation relationship between references helps us to master the
knowledge  base  and  review  previous  research  frontiers  in  our
research.  References  with  high  co-citation  frequencies  usually
represent  the  most  influential  and  prominent  literature
resources. Therefore, in the CCVRP research, the node type was
set  to  'reference'  and  CiteSpace  was  used  to  visualize  the  co-
citation relationship between references to grasp the composi-
tion and historical development of the knowledge base. 

Co-citation network analysis of references
As  shown  in Fig.  10,  each  node  in  the  reference  co-citation

network represents  a  reference,  and each line connecting two
nodes represents the co-citation relationship between the two

 

Table 8.    Top 20 keywords with the highest co -occurrence frequency.

No. Freq. Centrality Year Keyword

1 3617 0.16 2008 Vehicle routing problem
2 1573 0 2008 Algorithm
3 1178 0.09 2008 Optimization
4 1137 0.12 2008 Time windows
5 815 0.04 2008 Vehicle routing
6 698 0.19 2008 Genetic algorithm
7 653 0.1 2008 Tabu search
8 594 0.08 2009 Model
9 562 0.13 2008 Search
10 506 0.03 2008 Delivery
11 485 0.46 2008 Traveling salesman problem
12 460 0.15 2009 Pickup
13 440 0.04 2008 Algorithms
14 365 0.23 2010 Variable neighborhood search
15 345 0.09 2009 Local search
16 305 0.19 2008 System
17 276 0.1 2013 Large neighborhood search
18 258 0.05 2008 Ant colony optimization
19 250 0.12 2011 Models
20 244 0.62 2008 Particle swarm optimization

 

Table 9.    Top 28 keywords with a  surge in citations between 2008 and
2024.

No. Keywords Year Burst BurstBegin BurstEnd

1 Tabu search 2008 33.9 2008 2015
2 Vehicle routing 2008 23.95 2009 2013
3 Constraints 2008 22.83 2012 2018
4 Scheduling problems 2008 20.22 2008 2017
5 Genetic algorithm 2008 19.7 2008 2010
6 Reinforcement learning 2021 13.37 2021 2024
7 Last-mile delivery 2020 12 2021 2024
8 Vehicle routing problem 2008 11.58 2008 2010
9 Deep reinforcement

learning
2022 11.39 2022 2024

10 Stochastic demands 2011 11.24 2016 2019
11 Bee colony algorithm 2019 10.33 2019 2021
12 Mathematical model 2019 10.29 2020 2021
13 Electric vehicle routing

problem
2022 10.21 2022 2024

14 Shortest path problem 2011 10.16 2013 2015
15 Vehicle routing problems 2011 10.07 2011 2015
16 Multi-depot vehicle

routing problem
2011 9.87 2011 2018

17 Approximation algorithms 2011 9.84 2011 2016
18 Resource constraints 2013 9.62 2013 2015
19 Hybrid 2019 9.53 2021 2024
20 Search problems 2020 9.49 2020 2022
21 Carbon emission 2022 9.44 2022 2024
22 Machine learning 2021 9.3 2021 2024
23 Energy consumption 2019 9.27 2022 2024
24 Column generation 2009 9.23 2013 2014
25 Fleet 2019 9.16 2021 2024
26 Task analysis 2022 9.01 2022 2024
27 Optimization model 2020 8.82 2020 2022
28 Tabu search algorithm 2011 8.72 2013 2016
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references.  The  larger  the  radius  of  the  circle,  the  more
frequently  the  reference  is  cited.  In  addition,  considering  that
the  overall  density  of  the  co-citation  network  is  only  0.0084,
since  the  references  contained  in  some  academic  papers  may
be  from  different  disciplines,  there  may  be  few  opportunities
for co-citation between core references.

Table 10 lists the top 10 most cited papers in CCVRP research,
sorted  by  citation  frequency.  For  example,  the  top-ranked
paper,  'The  vehicle  routing  problem:  State  of  the  art  classifi-
cation and review'[20], provides a taxonomic review of VRP liter-
ature  published  between  2009  and  June  2015.  Based  on  an
adapted  version  of  an  existing  comprehensive  taxonomy,  277
papers  were  classified  and  trends  in  VRP  literature  were
analyzed. This classification is the first to classify papers to such
a  detailed  level.  Lin  et  al.[41] conducted  an  extensive  literature
review  on  the  Green  Vehicle  Routing  Problem  (GVRP).  They
provided  a  taxonomy  of  GVRP,  dividing  GVRP  into  Green-VRP,
polluted  routing  problem,  and  VRP  in  reverse  logistics,  and
proposed  research  gaps  between  its  state  and  richer  models
that describe the complexity of real-world cases.

The goal is to review the state of the art in GVRP, discuss how
traditional  VRP  variants  interact  with  GVRP,  and  provide
insights  into  the  next  wave  of  GVRP  research.  Another  study
that extended the VRP was conducted by Sacramento et al.[43] .
Although  they  were  not  the  pioneers  in  studying  the  truck-
drone  problem,  they  proposed  a  new  mathematical  formula-
tion for the problem, which is an extension of FSTP for multiple
trucks,  including  capacity  and  time  completion  constraints,
while minimizing cost as the objective function. They proposed
an  adaptive  large  neighborhood  search  (ALNS)  metaheuristic
method  to  solve  the  multiple  truck  problem.  This  algorithm
represents a new method for two vehicles to cooperate in plan-
ning routes.

Although  the  optimal  solution  is  difficult  to  obtain,  some
researchers have reformulated CCVRP as a special optimization
model and adopted an exact algorithm that matches the model
structure  to  cope  with  the  computational  difficulties.  In

contrast,  Hiermann  et  al.[44] combined  exact  algorithms  with
heuristic  algorithms  and  introduced  the  electric  fleet  size  and
mixed vehicle routing problem with time windows and charg-
ing  stations  (E-FSMFTW)  to  model  the  decisions  on  fleet
composition and actual vehicle routes (including the choice of
charging time and location). To accurately define the problem,
they provided a mathematical formulation of a MIP model and
used  a  state-of-the-art  branch  and  price  algorithm  designed
specifically  for  VRPTW  to  solve  a  set  of  smaller  instances  to
provide a benchmark for heuristic methods. Based on this, they
proposed  a  metaheuristic  method  based  on  adaptive  large
neighborhood search (ALNS)  with embedded local  search and
labeling procedures.  There is  an interesting phenomenon that
Table  10 lists  two  highly  cited  papers  related  to  the  topic  of
'electric  vehicles'[44,45] and  three  highly  cited  papers  related  to
the topic of 'unmanned aerial vehicles'[41,47,48] . 'Electric vehicles'
and 'drone vehicles' are both hot topics in the current VRP field.
It  can  be  seen  that  in  the  co-cited  literature,  the  research  on
vehicle  routing  problems  related  to  cold  chain  logistics  does
not occupy an advantage. 

Co-citation cluster analysis of references
Co-citation cluster analysis is an indispensable component of

bibliometric  research.  First,  the distribution of  co-citation clus-
ters  usually  represents  the  composition  of  a  domain  knowl-
edge base, and the top terms contained in each cluster can be
regarded  as  the  research  frontier  of  each  knowledge  field.  In
addition,  analyzing  the  co-citation  cluster  results  over  the
entire  time  range  can  help  us  correctly  conduct  time  series
analysis  of  the  historical  development  of  the  knowledge
system.

Based  on  the  above  reference  co-citation  network,  the
log-likelihood  ratio  (LLR)  weighted  algorithm  was  used  in
CiteSpace  to  generate  and  label  co-citation  clusters,  and  the
characteristics  of  the  top 15  largest  clusters  are  listed in Table
11.  As  shown  in Table  11,  cluster  labels  are  selected  from
keywords  by  running  the  LLR  algorithm  to  ensure  that  the

 

Fig. 10    Co-citation network of references in CCVRP research.
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labels of each cluster have high uniqueness and coverage. Size
refers to the number of documents grouped into the same clus-
ter.  Silhouette  is  used  as  a  measure  of  the  homogeneity  or
consistency  level  of  clustering.  When  the  silhouette  score  is
higher than 0.7, the clustering results are reliable and convinc-
ing. The average value indicates the average citation year of the
references  included  in  a  cluster.  In Table  11,  the  silhouette
scores  of  the  top  15  largest  clusters  are  all  higher  than  0.7,
which indicates that the relevant results of the clustering analy-
sis are of high quality and reasonable.

Different  from  the  descriptive  co-citation  analysis  in  tradi-
tional  bibliometric  research,  the  timeline/time  zone  visualiza-
tion  of  reference  co-citation  clusters  in  CiteSpace  can  more
intuitively show the temporal distribution and historical evolu-
tion  of  knowledge  fields.  As  shown  in Fig.  11,  the  top  of  the
timeline  visualization  shows  the  time  when  the  reference  was
first  cited,  from  2008  to  2024.  The  right  side  of  the  timeline
visualization  shows the  top 15  largest  co-citation  clusters.  The
references  contained  in  a  cluster  are  represented  by  nodes,
which  are  distributed  on  the  horizontal  timeline  according  to
the  year  of  the  first  citation.  The  curve  connecting  two  nodes
represents the citation evolution path of the reference.

As shown in Table 11 & Fig. 11, the largest Cluster #0 (column
generation) has 28 members and a silhouette score of 0.986. It
mainly  focuses  on  processing  TSP.  Traditionally,  the
Christofides  algorithm  plays  an  important  role  in  TSP  approxi-
mate solutions, ensuring that the solution is within 50% of the
optimal  solution.  Recent  research  attempts  to  make  break-
throughs on this basis. For example, the algorithm proposed by
Karlin  et  al.[49] improves  the  solution  for  specific  types  of  TSP
instances (such as graph TSP) by using a random tree selection
method.  Quantum  computing  has  shown  great  potential  in
solving TSP. Pirnay's[50] research team explored the application
of  quantum algorithms (especially  Shor's  algorithm)  in  solving
TSP  and  found  that  quantum  computing  can  reduce  the
computational  complexity  from  exponential  time  to  polyno-
mial time.

Cluster #1 (delivery request) ranks second with 25 members.
In the Cold Chain Logistics Vehicle Routing Problem (CCVRP), it
is crucial to analyze the role and principle of delivery requests.
This  problem  not  only  involves  the  complexity  of  the  tradi-
tional  vehicle  routing  problem  but  also  needs  to  consider  the
special  temperature  requirements  and  time  sensitivity  in  cold
chain  logistics.  Based  on  the  data  of  delivery  requests,

optimization algorithms (such as genetic algorithms, ant colony
algorithms, etc.) are used to plan the optimal path. These algo-
rithms  consider  factors  such  as  time  windows,  temperature
requirements,  delivery locations, and cargo priorities to gener-
ate  efficient  distribution  plans.  For  example,  Liu  &  Zhang[51]

proposed  a  time  window  constraint  for  trapezoidal  fuzzy
membership functions based on the analysis of the characteris-
tics  of  urban  cold  chain  transportation.  Based  on  whether  the
distribution  center  is  out  of  stock  and  customer  priority,  the
cold chain distribution path optimization was analyzed. A cold
chain  distribution  path  optimization  model  considering
customer  priority  was  constructed,  and  the  improved  genetic
algorithm  was  used  to  solve  the  two  scenarios  of  no  out-of-
stock  and  out-of-stock.  Xu  et  al.[52] proposed  a  two-stage
segmentation  strategy  based  on  multiple  distribution  centers
and demand splitting based on the consideration of the impact
of  manufacturers  joining  the  overall  logistics  distribution.  This
strategy  comprehensively  considers  vehicle  load  capacity,
mixed  cargo  restrictions  and  service  time  window  constraints,
provides services in multiple rounds, and fully considers factors
such as vehicle driving distance, waiting time, and vehicle occu-
pancy rate.

 

Table 10.    The top 10 most cited references in CCVRP research.

No. Article title Author Freq. Journal title

1 The vehicle routing problem: State of the art classification and
review

Braekers K
(2016)[20]

181 Computers & Industrial Engineering

2 Vehicle Routing: Problems, Methods, and Applications Toth P (2014)[42] 168 Society for Industrial and Applied Mathematics
3 Survey of green vehicle routing problem: past and future trends Lin CH (2014)[41] 141 Expert Systems with Applications
4 An adaptive large neighborhood search metaheuristic for the

vehicle routing problem with drones
Sacramento D
(2019)[43]

124 Transportation Research Part C: Emerging
Technologies

5 A review of dynamic vehicle routing problems Pillac V (2013)[13] 122 European Journal of Operational Research
6 The electric fleet size and mix vehicle routing problem with time

windows and recharging stations
Hiermann G
(2016)[44]

116 European Journal of Operational Research

7 The electric vehicle-routing problem with time windows and
recharging stations

Schneider M
(2014)[45]

112 Transportation Science

8 New benchmark instances for the capacitated vehicle routing
problem

Uchoa E (2017)[46] 112 European Journal of Operational Research

9 Vehicle routing problem with drones Wang Z (2019)[47] 112 Transportation Research Part B: Methodological
10 Optimization approaches for the traveling salesman problem

with drone
Agatz N (2018)[48] 107 Transportation Science

 

Table  11.    The  top  15  largest  reference  co-citation  clusters  in  CCVRP
studies.

Cluster
ID Size Silhouette Label (LLR) Average

year

0 28 0.986 Traveling salesman problem 2019
1 25 0.98 Delivery request 2007
2 25 0.923 Split delivery vehicle 2007
3 22 1 Green vehicle 2013
4 21 0.948 Electric vehicle 2017
5 20 0.982 Path flexibility 2014
6 20 1 Electric vehicle 2016
7 20 0.9 Multi-depot vehicle 2005
8 19 0.965 Electric vehicle 2010
9 16 0.878 Electric vehicle 2013

10 15 1 Multiple stack 2008
11 13 1 Grain logistics vehicle 2005
12 13 0.892 Periodic location-routing

problem
2004

13 11 0.879 Different traffic condition 2006
14 5 1 Neighborhood-based search

heuristic
2010
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Cluster  #4  (electric  vehicles)  plays  an increasingly  important
role  in  CCVRP.  They  not  only  help  reduce  transportation  costs
and  environmental  impact  but  also  improve  operational  effi-
ciency and service quality.  Electric  vehicles reduce costs in the
cold  chain  logistics  process.  Modern  electric  cold  chain  vehi-
cles  are  also  equipped  with  efficient  electric  refrigeration
systems that  can continuously  supply power while  the vehicle
is  in  motion  to  maintain  the  temperature  conditions  required
for  cold  chain  goods.  Electric  vehicle  batteries  can  also  con-
tinue to power refrigeration equipment when parked, avoiding
temperature  fluctuations  caused  by  engine  shutdown.
However,  the  current  range  of  electric  vehicles  is  limited,  and
vehicle  routing  planning  in  cold  chain  logistics  needs  to  take
into  account  the  location  and  charging  time  of  charging
stations.  Combined  with  advanced  routing  optimization  algo-
rithms,  it  is  possible  to  optimize  charging  arrangements  while
meeting  cold  chain  transportation  needs  and  maximize  distri-
bution  efficiency.  For  example,  Chen  et  al.[53] studied  the  cold
chain  green  multi-station  vehicle  routing  problem  with  time
windows and mixed fleets (CC-GMD-VRPTW-MF) in urban logis-
tics  distribution,  using  electric  vehicles  (EVs)  and  gasoline  and
diesel vehicles (GDVs). To accurately evaluate energy consump-
tion,  a  realistic  energy  consumption  model  was  used.  An
improved  Variable  Neighborhood  Search  (VNS0)  algorithm  is
proposed,  which  introduces  a  new  equilibrium  perturbation
mechanism and a new memory-based local search mechanism
to enhance the computational performance. Numerical studies
are  conducted  on  the  newly  designed  CC-GMD-VRPTW-MF
instance  to  investigate  the  effects  of  incorporating  electric
vehicles into joint delivery, considering different carbon prices,
and adjusting the time window.

Cluster  #13  (different  traffic  conditions)  focuses  on  evaluat-
ing  the  negative  impact  of  traffic  congestion,  road  closures,
accidents,  and  other  uncertainties  on  the  cold  chain  logistics
cargo  delivery  process,  such  as  time  delays,  increased  fuel
consumption  and  costs,  increased  routing  complexity,  and
decreased service levels. The latest research is mainly reflected
in two aspects: dynamic routing planning and the use of hybrid

and  electric  vehicles.  For  example,  the  transportation  route  is
adjusted  based  on  real-time  traffic  conditions,  and  artificial
intelligence  and  machine  learning  algorithms  are  used  to
predict traffic congestion and adjust the distribution plan. Zhao
et  al.[54] designed  an  electric  vehicle  routing  problem  (EVRP)
model  under  time-varying  traffic  conditions  to  plan  the
itinerary of fresh products in the urban cold chain. The goal of
the EVRP model is  to minimize the total  cost of logistics distri-
bution, including economic costs and fresh value loss costs. To
reflect  the  real  situation,  the  EVRP  model  considers  multiple
influencing factors, including time-varying road network traffic,
road  type,  customer  time  window  requirements,  freshness  of
fresh products, and queuing during charging. To solve the EVRP
problem,  an  improved  adaptive  ant  colony  algorithm  is
designed.  The  algorithm  also  takes  into  account  the  charging
station  layout  strategy  based  on  the  principle  of  minimum
power  consumption  to  solve  the  key  problem  of  when  and
where to charge quickly during the layout process.

As the research content deepens, mathematical models with
complex structures and multiple constraints put forward higher
requirements  for  solution  algorithms,  and  the  scenarios  in
which precise algorithms can be applied are subject to certain
restrictions.  Therefore,  scholars  often  use  more  powerful  and
efficient  heuristic  algorithms  and  meta-heuristic  algorithms  in
CCVRP  research.  As  can  be  seen  from Fig.  12,  Cluster  #14
(neighborhood-based  search  heuristics)  has  undergone
roughly  4  years  of  development,  and  references  related  to
heuristics have been frequently cited in recent years. Neighbor-
hood-based search heuristics are widely used in CCVRP, mainly
used to optimize paths to meet the special needs of cold chain
logistics.  Neighborhood-based  search  methods  find  the  opti-
mal  solution  by  continuously  searching  for  adjacent  solutions
in  the  solution  space.  Specific  methods  include  local  search,
simulated  annealing,  taboo  search,  and  particle  swarm  opti-
mization. These methods can effectively reduce transportation
time  and  cost  in  CCVRP  and  ensure  that  goods  are  delivered
within  the  specified  time  window.  For  example,  considering
multiple  paths  between  two  nodes  and  real-time  traffic
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#1 delivery request
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Fig. 11    Timeline view of the top 15 largest reference co-citation clusters.
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information  on  different  paths,  as  well  as  cargo  damage  costs
and refrigeration costs  during the distribution process,  Hou et
al.[55] established  a  two-stage  mixed  integer  programming
model  based  on  the  idea  of  pre-optimization  to  minimize  the
total  cost  through  real-time  adjustment.  A  hybrid  variable
neighborhood chaotic genetic algorithm was designed to solve
the model. The pseudo-randomness of the chaotic system was
introduced  into  the  algorithm  to  ensure  the  diversity  of  the
initial  solution  and  an  adaptive  neighborhood  search  number
strategy was  introduced to  take into  account  the breadth and
depth required for population evolution.

Through  the  visualization  analysis  previous,  we  have  a  full
understanding  of  the  development  and  evolution  of  CCVRP
research,  the  strength  of  different  countries  and  institutions,
the collaborative relationship between authors, the transforma-
tion of research hotspots, and future development trends. Next,
the progress of CCVRP research from three aspects: CCVRP opti-
mization  objectives,  problem  scenarios,  and  solution  algo-
rithms will be elaborated on. 

Cold chain logistics vehicle routing
optimization objectives

Like the traditional vehicle routing problem, the vehicle rout-
ing of  cold chain logistics  also needs to solve a  specific  objec-
tive  function to  achieve the routing layout.  From the perspec-
tive of cost priority, the goal of cold chain logistics vehicle rout-
ing  is  to  minimize  the  distribution  cost.  Ming  &  Zhou[56]

constructed a cold chain vehicle routing model with the goal of
minimizing  the  total  cost.  The  total  distribution  cost  is  mainly
composed  of  fixed  costs,  transportation  costs,  refrigeration
costs,  cargo  damage  costs,  and  overload  penalty  costs.  From
the  cost  perspective,  agricultural  product  cold  chain  logistics
has  problems  such  as  a  high  turnover  rate,  insufficient

hardware  facilities,  insufficient  number  of  cold  chain  logistics
centers,  and  imperfect  construction  of  agricultural  product
logistics  information  platforms[57] .  When  analyzing  to  mini-
mize cost, the constraint of picking up and delivering goods at
the  same  time  can  also  be  added  to  improve  the  distribution
efficiency[58]. Zeng et al.[59] added a time window penalty factor
to  the  model  of  various  cost  factors  affecting  the  cold  chain
logistics  vehicle  routing.  A  mixed  time  window  mode  is
adopted, and a multi-segment function is used to represent the
penalty cost of violating the time window.

From  the  perspective  of  customer  priority,  the  goal  of  cold
chain logistics vehicle routes is  to maximize customer satisfac-
tion.  Cold chain logistics  has strict  time requirements,  but due
to the influence of subjective and objective conditions such as
scheduling  strategies  and  transportation,  there  may  be  situa-
tions where delivery cannot be made within the specified time
range. Most studies on traditional vehicle routing problems use
single-objective models and consider traditional time windows,
ignoring  the  diversity  of  objectives  and  the  effectiveness  of
algorithm  calculation  time.  Due  to  the  particularity  of  cold
chain transportation goods, the setting of time windows often
needs to be more flexible,  and the connection with customers
must also be closer. Not only costs need to be considered, but
also  time  and  customer  satisfaction.  Considering  that  the
goods  carried  by  cold  chain  logistics  have  certain  particulari-
ties  and  have  high-temperature  requirements,  Liang  et  al.[60]

proposed  setting  a  fuzzy  time  window  in  cold  chain  logistics
distribution to reflect customer satisfaction, and added the goal
of  maximizing  customer  satisfaction  by  quantifying  the  fuzzy
time window in the target optimization. The freshness of fresh
products  directly  determines  customer  satisfaction.  Based  on
the cost-effectiveness idea, Wu et al.[61] proposed a comprehen-
sive cold chain vehicle routing optimization model to minimize
the unit cost of product freshness. The establishment of a fuzzy
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Fig. 12    Application of traffic big data in cold chain logistics distribution.

The evolution of CCVRP
 

Qi & Li Digital Transportation and Safety 2024, 3(3): 92−114   Page 105 of 114



time  window  means  that  the  vehicle  should  try  its  best  to
provide  services  within  the  time  window  required  by  the
customer. However, unlike the rigid requirements of fixed time
windows,  it  mostly faces non-rigid requirements.  When neces-
sary,  services  can  be  provided  outside  the  service  hours,  but
part of the fee will be charged as a penalty. Improving the time-
liness  of  delivery  will  also  improve  customer  satisfaction.  Lu  &
Zhang[62] considered  the  proximity  of  customer  geographical
locations  and  the  similarity  of  delivery  time  windows,  and
proposed a cold chain logistics partition vehicle routing model
based  on  spatiotemporal  similarity  measurement  to  solve  the
problem of cold chain logistics.  The problem of low timeliness
of  chain  logistics  distribution,  customer  time  window,  and
product  quality  are important  factors  affecting customer satis-
faction. Ren et al.[63] added the weights of the time window and
product quality,  and used a VRP model with soft time window
constraints  and  penalty  functions  to  describe  customer  satis-
faction. The satisfaction level of cold chain logistics distribution
quality  transforms the maximum goal  of  customer satisfaction
into  the  minimum  goal  of  penalty  cost.  In  addition,  based  on
the  cost-benefit  idea,  a  comprehensive  cold  chain  vehicle
routing  optimization  model  with  minimization  of  unit  cus-
tomer  satisfaction  cost  as  the  objective  function  can  also  be
established[14] .  For  customer  satisfaction,  on-time  delivery  is
used as the evaluation criterion.

From  the  perspective  of  energy  conservation  and  emission
reduction,  the  goal  of  cold  chain  logistics  vehicle  routes  is  to
minimize  carbon  emissions.  Cold  chain  logistics  vehicles
consume  fuel  and  generate  carbon  emissions  during  trans-
portation and refrigeration. Since cold chain logistics uses cool-
ing  equipment  such  as  air  conditioners  during  transportation,
cold  chain  logistics  has  the  disadvantages  of  high  energy
consumption,  and  high  emissions.  Tao  et  al.[64] analyzed  the
carbon  tax  cost  caused  by  the  fuel  consumption  of  vehicle
transportation and its refrigeration equipment in the establish-
ment  of  a  target  model  for  minimizing  total  cost.  Low-carbon
routing will  increase the total  distance of  distribution,  but  can
significantly  reduce  carbon  emissions  and  energy  consump-
tion.  Unlike  other  models  with  cost  as  the  optimization  goal,
Wang & Lu[65] established a vehicle routing model to minimize
carbon  emissions  while  considering  factors  such  as  vehicle
speed, distance, and load capacity. Yang et al.[66] also aimed to
minimize  carbon  emissions,  but  subdivided  the  carbon  emis-
sions  of  refrigerated  truck  transportation  and  emptying.  Cold
chain  logistics  can  also  be  linked  to  joint  distribution  and
carbon  trading  mechanisms.  Ning  et  al.[67] established  a  joint
distribution-green  vehicle  routing  problem  (JD-GVRP)  model
for  cold  chain  logistics  companies  to  coordinate  the  distribu-
tion  of  cold  chain  goods  under  the  premise  of  considering
carbon  tax  policies.  Under  the  influence  of  carbon  neutrality,
green logistics concepts, and economic background, cold chain
logistics of agricultural products is a relatively energy-consum-
ing project in the logistics industry. On this basis, the optimiza-
tion objective of the cold chain distribution model of fresh agri-
cultural  products  established  by  Jia[68] takes  into  account  the
pollution  cost,  including  the  cost  of  atmospheric  pollutant
emissions, the cost of solid and liquid pollutant emissions, and
the  cost  of  noise  pollution.  In  the  cold  chain  logistics  vehicle
routing model, the optimization objective of most models is to
minimize  the  total  distribution  cost.  To  consider  carbon  emis-
sions,  the method of  converting carbon emissions into econo-
mic benefits in the target optimization and introducing carbon
emission costs[69−74] is widely used.

Generally  speaking,  the  focus  of  cold  chain  logistics  vehicle
route  objectives  can  be  summarized  as  distribution  costs,
customer  satisfaction,  carbon  emissions,  etc.  When  setting
goals,  the  above  points  can  also  be  considered  at  the  same
time.  For  example,  through  multi-temperature  collaborative
configuration,  customer  satisfaction  can  be  improved  and
distribution  costs  can  be  reduced.  For  traditional  cold  chain
logistics  distribution,  multi-temperature  co-configuration  can
achieve  complex  temperature  requirements  during  the  distri-
bution  process  and  meet  the  different  storage  temperatures
required  by  various  products.  Ding[75] constructed  a  multi-
temperature  co-location  cold  chain  logistics  vehicle  route
model based on the total cost, time, and risk of multi-tempera-
ture  co-location  cold  chain  logistics  distribution.  When  opti-
mizing  the  target,  temperature  is  taken  as  an  important
influencing  factor,  and  the  deterioration  rate  that  changes
exponentially with temperature is applied to the model[76] . The
temperature  is  adjusted  in  real-time  to  find  a  route  that  can
meet  the  customer's  freshness  requirements  and  reduce  the
supplier's  costs.  In  addition,  the  actual  road  conditions  during
the delivery  process  should  also  be  considered when optimiz-
ing  the  target.  The  actual  road  conditions  of  cold  chain  logis-
tics  during  the  distribution  process  indirectly  affect  the  deliv-
ery  timeliness.  Therefore,  optimizing  the  distribution  model
target  based  on  real-time  road  traffic  conditions[77−80] can
greatly  reduce  distribution  costs,  improve  customer  satisfac-
tion, and better meet the actual situation of cold chain logistics
distribution of fresh products. Yao & He[81] obtained urban road
congestion information from big data based on cost optimiza-
tion  and  used  it  to  optimize  the  vehicle  routes  for  cold  chain
distribution  of  agricultural  products.  To  reduce  the  number  of
times  cold  chain  distribution  vehicles  travel  to  and  from  the
distribution  center,  reasonable  docking  points  are  set  in  cold
chain  distribution,  and  a  mathematical  model  of  the  route  of
agricultural product cold chain logistics vehicles based on real-
time road conditions are established. Chen[82] uses cloud com-
puting technology as the basis for the constituent elements of
the  cold  chain  distribution  problem,  obtains  real-time  traffic
information  in  the  transportation  system  through  a  unified
access  interface,  and  analyzes  the  delivery  time  and  cost  of
refrigerated trucks to establish a cold chain distribution vehicle
route optimization model. Compared with the single-objective
model  that  only  provides  a  single  distribution  route  to  mini-
mize  costs,  multi-objective  optimization  can  provide  logistics
companies with a variety of distribution route options in prac-
tice[83] .  The  focus  types  of  optimization  objectives  and  corre-
sponding literature are shown in Table 12. 

Problem scenarios for cold chain logistics
vehicle routes

According  to  the  different  objective  function  settings  and
constraints of  the cold chain logistics vehicle route model,  the
problem scenarios of cold chain logistics vehicle routes can be
roughly  divided  into  three  categories:  distribution  cost
scenarios, time window penalty cost and customer satisfaction
scenarios, and real-time traffic conditions scenarios. 

Distribution cost scenario
The  total  cost  of  cold  chain  logistics  distribution  is  mainly

composed  of  fixed  costs,  transportation  costs,  refrigeration
costs,  cargo  damage  costs,  and  carbon  emission  costs.  It  is
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generally  believed  that  fixed  costs  will  not  change  with  trans-
portation conditions and are fixed values[57].  But  there is  over-
lap in scenario building for fixed costs and transportation costs.
Fixed costs  include vehicle repairs,  maintenance,  depreciation,
and  personnel  wages[56].  There  are  also  views  that  transporta-
tion  costs  should  be  composed  of  fixed  costs  and  variable
costs[84].  The  variable  costs  are  vehicle  fuel  costs,  and  mainte-
nance  costs.  Some  models  are  relatively  rough  in  quantifying
transportation costs, directly giving the transportation cost per
unit mile during calculation[62]; the quantification of transporta-
tion  costs  can  be  subdivided  into  fuel  consumption  and  fuel
costs  are  calculated  based  on  volume[64],  Wu  et  al.[61] quanti-
fied  through  fixed  costs,  vehicle  maintenance  costs  during
transportation  and  loading  and  unloading  stages;  taking  into
account the freight price per unit weight, the distance between
customers, and customer demand, Zhao et al.[83] used customer
demand  to  calculate  refrigerated  truck  transportation  costs.
The  construction  of  refrigeration  cost  and  cargo  damage  cost
scenarios is  more complex than fixed costs  and transportation
costs.  The quantification of  refrigeration costs  is  related to the
consumption  of  refrigerant  during  vehicle  transportation  and
loading and unloading[57],  and the fuel consumed by refrigera-
tion  equipment[85].  When  measuring  refrigerant  consumption,
it is necessary to consider the heat load caused by the tempera-
ture difference between the inside and outside of the refriger-
ated  truck  during  transportation  and  the  heat  load  caused  by
air  convection  during  loading  and  unloading  at  the  customer
point[76] . The heat load is related to the volume of the carriage,
the  area  inside  and  outside  the  carriage,  and  the  degree  of
depreciation.  Among  them,  Li  et  al.[86] considered  the  trans-
portation and loading and unloading process when calculating
the refrigeration cost, and considered factors such as heat load,
compartment  damage,  and  compartment  heat  transfer  area.
Although  Lü  &  Sun[87] also  considered  the  heat  load,  the  unit
cooling  cost  was  used  in  the  calculation.  Refrigeration  equip-
ment is powered by generators powered by fuel consumed by
delivery  vehicles,  which  increases  fuel  consumption  in  the
process[64].  Given  the  differences  in  energy  consumption
parameters  during  cooling  of  different  vehicles,  the  energy
consumption  assessment  adjustment  coefficient  can  be  intro-
duced  into  the  energy  cost  calculation[59].  The  most  direct
manifestation of refrigeration cost is fuel consumption. Shen et
al.[69] quantified  the  amount  of  fuel  consumed  to  reduce  unit
heat  load  during  transportation  and  loading,  and  then  calcu-
lated the fuel cost.

Part of the cargo damage cost is  the damage caused by the
increase  in  delivery  time  and  temperature  fluctuations  during
the delivery  process;  the  other  part  is  caused by  the  tempera-
ture  inside  the  refrigerated  box  rising  due  to  the  hot  air  from
the outside entering the car body due to opening and closing

the door when serving customers. In fact, the deterioration rate
will  change with the transportation distance and temperature.
Liang  &  Zhou[76] added  the  temperature  constraints  during
transportation  and  the  temperature-related  deterioration  rate
into  the  cargo  damage  cost,  where  the  deterioration  rate  is
determined  by  the  AllenNieus  equation,  the  cost  of  cargo
damage  can  be  measured  more  effectively  through  tempera-
ture.  Warm  co-balancing  is  a  new  way  to  reduce  the  cost  of
cargo  damage.  Given  the  risk  of  cargo  damage  during  trans-
portation  and  reloading,  the  probability  of  product  damage
and  transportation  accidents  is  introduced  during  the  trans-
portation  process,  and  the  value  is  [0,1].  During  the  transfer
process,  the  probability  of  cost  and  accident  probability  are
introduced. Each type of product has a corresponding vulnera-
bility value, and risk offset factors can also be added during the
calculation process[75],  including traffic risk offset factors corre-
sponding  to  driver  skills,  traffic  vehicle  performance,  road
conditions,  replacement  technicians,  tool  performance,  and
replacement factors. Risk offsetting factors generated by instal-
lation  management.  The  longer  the  delivery  time,  the  greater
the  chance  that  the  goods  will  be  lost.  Accordingly,  Huang  et
al.[88] constructed a cargo damage coefficient formula based on
the  sensitivity  of  cargo  to  time  to  express  the  exponential
change  pattern  of  the  cargo  damage  coefficient  with  time.
Kang et  al.[73] established a  variable  function for  the quality  of
refrigerated  goods,  and  based  on  this,  calculated  the  cost  of
cargo  damage  during  the  transportation  and  loading  and
unloading stages. With the improvement of scientific and tech-
nological levels, the logistics industry is paying more and more
attention  to  sustainable  development.  Optimizing  the  carbon
emission structure of the cold chain logistics industry is the top
priority to ensure the sustainable development of the logistics
industry[89] .

Carbon emission cost  is  the cost  for  enterprises to purchase
corresponding  carbon  emission  indicators  through  carbon
exchanges. In the quantification of carbon emission costs, CCD
releases  more  carbon dioxide  than ordinary  commodities.  The
load  estimation  method  can  be  used  for  calculation  and  the
fuel consumption is calculated based on the fuel consumption
rate and distance under different loads[61,90,91]. There is a certain
linear  relationship  between  carbon  emissions  and  fuel
consumption[92],  so  that  the  carbon  specific  values  for  emis-
sions. Given the double calculation of fuel consumption costs in
transportation  and  refrigeration  and  the  fact  that  most  schol-
ars  only  consider  the  fuel  consumption  in  transportation  and
ignore the impact of refrigeration fuel consumption on carbon
emissions,  Fang  et  al.[93] unified  the  measurement  of  fuel
consumption  and  carbon  emissions,  and  unified  the  measure-
ment  of  fuel  consumption  and  carbon  emissions.  The  cost  of
fuel  consumption  during  distribution  and  the  environmental

 

Table 12.    Objective function types and characteristics of cold chain logistics vehicle routes.

Objective function type Priorities of optimization objectives Ref.

Multiple targets Based on minimizing the total cost of distribution [56, 57]
Based on maximizing customer satisfaction and minimizing total distribution cost [14, 58−63]
Based on carbon emission minimization, total distribution cost minimization [14, 64], etc.
Based on the minimization of total distribution cost and multi temperature co distribution [75, 76]
Based on real-time road conditions and minimize total distribution cost [77−82]
Based on minimizing total distribution cost, minimizing carbon emissions, and maximizing customer
satisfaction

[14]

Single target Based on minimizing carbon emissions [65]
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cost  of  carbon  pollution  are  considered  as  green  costs  and
entered  into  the  model.  Moncer  et  al.  proposed  an  activity-
based  cost  minimization  model  and  a  carbon  footprint  mini-
mization  model[94].  The  introduction  of  a  carbon  tax  mecha-
nism[64] can  also  quickly  obtain  the  cost  of  carbon  emissions,
provided  that  the  carbon  emissions  are  calculated  based  on
fuel  consumption  and  carbon  dioxide  emission
coefficients[71,88].  Some  scholars  collected  relevant  statistical
data  for  regression  analysis  and  found  that  fuel  consumption
per  unit  distance  can  be  expressed  as  a  linear  function  that
depends  on  the  truck's  cargo  capacity[95].  The  total  vehicle
weight  is  divided  into  vehicle  weight  and  cargo  weight,  then
the  fuel  consumption  per  unit  distance  can  be  expressed
linearly by the two[73] . 

Time window penalty cost and customer
satisfaction scenario

In  cold  chain  logistics  vehicle  routes,  the  establishment  of
time window penalty costs has become increasingly important.
Cold chain goods are shipped from distribution centers to vari-
ous  customer  points.  The  temperature  in  the  container  needs
to  be  constantly  adjusted  to  ensure  the  quality  of  cold  chain
goods.  At  the  same  time,  the  shorter  the  delivery  time  and
service time, the more conducive it is to maintaining the qual-
ity  of  the  goods.  Customer  satisfaction  is  converted  from  the
vehicle  service  time  and  is  determined  by  the  specific  time
when  the  vehicle  arrives  at  the  customer  point.  Specifically,
given a time period, it is determined by the lower or upper limit
of  the  fuzzy  time  window  and  the  lower  or  upper  limit  of  the
optimal  service  time.  According  to  the  actual  arrival  time,  it  is
determined which time period it is, and the difference between
the  upper  or  lower  limit  of  the  optimal  service  time  and  the
arrival time and the difference between the time segments are
calculated.  The  ratio  of  the  difference  is  used  to  measure
customer satisfaction[60]. Similar to the traditional VRPTW prob-
lem,  cold  chain  distribution  logistics  also  has  corresponding
early  and  late  arrival  penalty  costs.  Ren  et  al.[63] studied  the
maximum  customer  satisfaction  by  converting  it  into  penalty
cost minimization. 

Real-time traffic scene
Big  data  can  be  used  to  easily  obtain  real-time  traffic  infor-

mation  in  the  traffic  system.  Therefore,  using  big  data  and
cloud  computing  analysis  to  build  a  cold  chain  logistics  distri-
bution model based on real-time road conditions is one of the
current  hot  topics.  Traffic  big  data  plays  an  important  role  in
cold  chain  logistics.  Its  application  in  distribution  is  shown  in
Fig. 12.

Chen[82] obtained  real-time  traffic  information  during  the
model  construction  process.  Through  the  unified  interface  of
the  established  service  architecture,  real-time  traffic  informa-
tion  of  urban  road  sections  where  vehicles  are  distributed  is
obtained  in  the  traffic  information  cloud.  Using  the  real-time
road conditions of the vehicles, the driving speed of the distri-
bution  vehicles  on  the  relevant  sections  is  obtained,  and  the
driving  time  of  the  distribution  vehicles  is  calculated,  so  that
the  vehicles  can  choose  the  shortest  route  during  driving.
Obtaining  urban  road  congestion  information  from  big  data
can  also  be  used  for  vehicle  route  optimization  in  cold  chain
distribution  of  agricultural  products.  To  reduce  the  number  of
cold chain distribution vehicles traveling to and from the distri-
bution center,  it  is  recommended to introduce docking points
and  equipment  connections  in  the  cold  chain  distribution  of

fresh  agricultural  products.  The  shuttle  solution[81] (cold  chain
distribution  shuttles  are  mainly  small  and  micro  electric  vans
with  low  investment  and  operating  costs.  They  generally  use
phase  change  cold  storage  materials  for  refrigeration  or  foam
boxes for insulation to ensure the temperature and freshness of
agricultural  products)  further  studied  the  docking  point  selec-
tion and cold chain logistics vehicle routes based on the dock-
ing point situation, and established an agricultural product cold
chain  vehicle  route  model  based  on  traffic  big  data  including
docking points.

Regarding the construction of real-time traffic scenarios, Zhu
&  Wang[77] directly  considered  the  time  window  penalty  cost
caused  by  the  failure  of  medicines  to  be  delivered  within  the
specified time due to weather and other reasons in their model.
In  addition,  by  introducing  the  corruption  function  of  fresh
products,  under  the  premise  of  time-varying  road  network
theory,  the  time  variable  in  the  corruption  function  that  is
closely related to food quality  can be solved[80],  and the cargo
damage cost of multi-temperature distribution under the time-
varying  road  network  traffic  environment  can  also  be  solved.
Lan  et  al.[78] divided  the  actual  road  conditions  into  five  cate-
gories  based  on  the  theory  of  road  accessibility  and  fuzzy
comprehensive  evaluation  method  of  road  accessibility.  The
real-time  traffic  scenario  constructed  by  Bai  et  al.[79] is  divided
into  two  stages.  The  first  stage  is  to  obtain  the  travel  time
based  on  the  real-time  traffic  conditions  of  each  connected
path of  the initial  customer point,  and the second stage is  the
dynamic  allocation  process.  After  each  refrigerated  truck  deli-
vers to a customer point, it is eliminated, and then the delivery
order  is  planned  based  on  the  real-time  traffic  conditions
between  the  remaining  customer  points,  the  demand  con-
ditions  of  each  customer  point,  and  the  time  window.  Wu[96]

plan  logistics  vehicle  routes  based  on  real-time  traffic  infor-
mation,  and  consider  the  impact  of  road  congestion,  inter-
section congestion,  and one-way road restrictions on the path
planning.

In  general,  the  distribution  cost  scenario,  time  window
penalty cost, and customer satisfaction scenario are both differ-
ent and related to the real-time traffic scenario.  The difference
is  that  the  constraints  and  variables  are  set  differently  when
constructing the three scenarios. When constructing the distri-
bution  cost  scenario,  if  the  variables  involved  in  each  type  of
cost are different or the quantification method of the same vari-
able is different, the corresponding constraint settings will also
be different. In the process of setting such scenarios, it is neces-
sary  to  pay  attention  to  the  repeated  accounting  of  cost  vari-
ables.  Repeated  accounting  does  not  mean  that  they  appear
repeatedly  in  the  target,  but  when  setting  the  cost  variables,
different  quantification methods are used to repeatedly  quan-
tify  the  same  variables.  In  the  time  window  penalty  cost  and
customer  satisfaction  scenarios,  it  is  necessary  to  consider
adding  time  window  constraints  and  customer  satisfaction
functions  and  quantify  customer  satisfaction  by  setting
delivery time variables and cargo damage cost variables. When
constructing  the  real-time  traffic  scenario,  it  is  necessary  to
consider  the  quantification  of  variables  such  as  traffic  flow,
customer  demand,  road  congestion,  road  infrastructure,  and
weather.  By  introducing  the  traffic  congestion  coefficient,
constraints such as delivery speed,  delivery volume, and deliv-
ery  priority  can  be  set  to  measure  the  impact  of  road  traffic
conditions  on  the  route  selection  of  cold  chain  logistics

 
The evolution of CCVRP

Page 108 of 114   Qi & Li Digital Transportation and Safety 2024, 3(3): 92−114



vehicles.  Different  distribution scenario  types  and correspond-
ing literature are shown in Table 13. 

Cold chain logistics vehicle route solving
algorithm

Generally,  algorithms  for  solving  vehicle  path  optimization
problems  can  be  roughly  divided  into  two  categories,  one  is
the  exact  algorithm  and  the  other  is  the  heuristic  algorithm.
The  exact  algorithms  mainly  include  the  branch  and  bound
method[98−101],  the  dynamic  programming  algorithm[102] ,  the
branch  and  cut  method[103,104] ,  etc.  When  conducting  case
analysis on a few cases at the customer site, the exact solution
algorithm  is  often  used.  For  example,  Wang  et  al.[105] focused
on  dynamic  path  planning  for  unmanned  environment  moni-
toring  vehicles  under  complex  road  conditions.  Based  on  the
idea  of  two-level  planning,  they  proposed  a  hybrid  algorithm
that combines global and local path planning. It can effectively
solve  the  local  optimization  problem  of  the  path,  but  the
optimization  of  path  cost  and  carbon  emission  problems  still
needs  to  be  further  studied.  In  practical  applications,  since
most problems do not have a benign structure, it is impossible
to  establish  a  strict  mathematical  expression;  some  problems
do  not  have  a  strict  optimal  solution,  or  some  problems  are
large in scale and it takes too much cost to obtain the optimal
solution.  Therefore,  heuristic  algorithms  are  generally  used  to
solve  them.  Among  them,  the  ant  colony  algorithm[71] is  the
most  common.  Other  intelligent  algorithms  mainly  include
genetic  algorithm[82],  simulated  annealing  algorithm[80,91],

particle  swarm  algorithm[56,106],  A*  algorithm[93],  artificial  fish
swarm algorithm[66], hybrid algorithm[72], etc.

Ming  &  Zhu[56] improved  the  particle  swarm  algorithm  by
using  Levy  flight  and  reverse  learning  optimization.  The  step
size of reverse learning was obtained through Levy flight. When
the search was stuck in the local optimal state, the particle indi-
vidual  was  learned  from  the  worst  position.  The  optimization
was performed through reverse learning, which prevented the
particle  swarm  algorithm  from  falling  into  the  local  optimal
state and causing the algorithm search to stagnate. At the same
time,  the  algorithm's  search  ability  was  also  improved.  When
using  genetic  algorithms  to  solve  problems,  Liang  &  Zhou[76]

used  the  double-point  cut  crossover  method,  took  the  objec-
tive  function  value  as  the  individual  fitness  value,  and  used
natural  number  coding  to  encode  the  data,  while  considering
the vehicle configuration and vehicle temperature. Ding[75] first
used the linear weighted method to transform and simplify the
multi-objective  optimization  problem  into  a  single-objective
optimization  problem  to  solve,  thereby  improving  the  effi-
ciency of path optimization. Secondly, they used quantum bits
to  describe the relevant  information of  the path and gave the
individual  probability  radiation  of  the  quantum  bits  in  the
corresponding  two-state  system.  The  corresponding  quantum
individuals can be represented as the pheromones contained in
each  cold  chain  logistics  distribution  path.  Finally,  the  ant
colony  algorithm  was  combined  to  obtain  the  pheromone
coding of ants on each cold chain logistics transportation path.
Based on the solution idea of a non-dominated sorting genetic
algorithm, the adaptive adjustment of crossover rate and muta-
tion rate can be improved to improve the convergence speed.
After the improvement, the potential optimal solution popula-
tion is formed through optimization between different genera-
tions  to  avoid  local  optimality  and  search  for  Pareto  optimal
solution.  Compared  with  the  traditional  algorithm,  Liang  et
al.[60] selected the genes after crossover for repair, which effec-
tively  prevented  the  situation  that  the  chromosome  did  not
meet  the  constraint  conditions.  The  non-dominated  sorting
and  crowding  calculation  after  merging  the  new  population
improved the accuracy of selecting the optimal solution. Xie[106]

combined  the  advantages  of  the  particle  swarm  algorithm  in
multidimensional  search  space  with  the  improved  ant  colony
algorithm,  used  the  insertion-based  heuristic  method  to
construct  weak  feasible  solutions,  and  used  crossover  and
inversion  to  optimize  individual  ant  colonies.  After  operations
such  as  crossover  and  inversion,  the  optimal  path  planning  is
found under constraints such as time window, avoiding the ant
colony  algorithm  from  being  unable  to  obtain  the  local  opti-
mal  solution due to the fast  convergence speed.  Fang et  al.[93]

used the  global  convergence and rapidity  of  the  A*  algorithm
to  perform  initial  pheromone  distribution  on  the  path  corre-
sponding to the optimal solution, and then made full use of the
positive feedback and high solution efficiency of the ant colony
algorithm  to  find  the  optimal  solution.  Ding[75] proposed  an
optimization  method  for  the  delivery  routes  of  multi-tempe-
rature  and  low-temperature  cold  chain  logistics  vehicles.
Considering  the  interference  factors  at  each  stage,  controlling
the  delivery  time,  delivery  cost,  and  delivery  risk  of  multi-
temperature cold chain logistics,  optimizing the vehicle routes
of  multi-temperature  cold  chain  logistics,  and  realizing  the
route  optimization  by  using  the  ant  colony  algorithm.  This
method can effectively plan the route, but since the ant colony

 

Table  13.    Cold  chain  logistics  vehicle  routing  problem  scenario  types
and characteristics.

Scene type Content of scenario construction Ref.

Distribution
cost scenario

Transportation cost [60, 62, 97]
Fixed cost, transportation cost [56]
Cargo damage cost [75]
Carbon emission cost [66, 70], etc.
Fixed cost, refrigeration cost [57]
Refrigeration cost [69, 85]
Refrigeration cost, transportation cost [59, 64], etc.
Cargo damage cost, transportation
cost

[76]

Transportation cost, carbon emission
cost

[61, 64], etc.

Refrigeration cost, cargo damage cost [76]
Refrigeration cost, carbon emission
cost

[64]

Cost of cargo damage, carbon
emission

[73, 88]

Transportation cost, refrigeration cost,
cargo damage cost

[76]

Transportation cost, refrigeration cost,
carbon emission cost

[64]

Time window
penalty cost
and customer
satisfaction
scenario

Time window penalty cost [60]
Maximize customer satisfaction [63]

Real time
traffic scene

Get real-time road conditions based
on big data

[81, 82]

Fuzzy comprehensive evaluation
method based on road smoothness

[78]

Real time traffic scene construction [77, 79]
Based on time-varying road network
theory

[80]
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algorithm  requires  a  large  number  of  iterations  to  obtain  the
optimal value, the data results are redundant, which can easily
extend  the  route  optimization  time.  By  improving  the  tradi-
tional  pheromone  update  mode,  limiting  the  maximum  and
minimum  concentrations  of  pheromones  on  the  road,  and
changing  the  path  selection  transfer  probability,  a  cold  logis-
tics vehicle route plan based on the improved ant colony opti-
mization  algorithm  (IACO)  is  formed.  Xiong[107] conducted
simulation experiments and results  and showed that the IACO
algorithm  is  lower  than  the  hybrid  simulated  annealing  ant
colony algorithm (CSAACO) and the traditional  ACO algorithm
in  terms  of  convergence  speed,  logistics  transportation
distance and logistics delivery time. Ren et al.[108] integrated the
taboo  search  operator  and  the  knowledge  model  of  dynamic
probability selection under the knowledge-based elite strategy
into the ant colony algorithm and designed a new knowledge-
based ant colony algorithm. The effectiveness of the proposed
model  and  knowledge-based  ant  colony  algorithm  was  veri-
fied  by  comparing  the  traditional  ant  colony  algorithm,  the
improved ant colony algorithm based on taboo search, and the
proposed  knowledge-based  ant  colony  algorithm.  Liu  et  al.[72]

combined the genetic algorithm with strong global search abil-
ity  and  the  taboo  search  algorithm  with  good  local  optimiza-
tion ability. They used the genetic algorithm for the entire vehi-
cle route in the global space and the taboo search algorithm for
a single vehicle route in the local space, thereby improving the
efficiency  of  the  algorithm.  Considering  that  the  traditional
genetic  algorithm  is  prone  to  premature  convergence,  local
convergence,  difficulty  in  obtaining  the  optimal  solution,  and
insufficient  global  search  characteristics  of  the  simulated
annealing algorithm when solving the VRP problem, Bai et al.[79]

combined the two to solve the cold chain logistics distribution
path optimization problem.

To avoid the premature convergence and local optimality of
the  genetic  algorithm,  Fu  et  al.[109] introduced  the  Tent  chaos
perturbation  method  to  optimize  the  genetic  algorithm.  This
method uses a perturbation mechanism to initialize the popu-
lation perturbs it again after the selection operation to increase
the  diversity  of  the  population,  and  designs  the  rules  of

selection,  crossover,  and  mutation  operators  to  speed  up  the
solution. Chen & Shen[110] proposed a cold chain logistics path
decision  optimization  method  for  fresh  products  considering
transportation  risk  factors  and  constructed  a  cold  chain  trans-
portation  risk  factor  index  system  using  risk  quantification
methods.  At  the  same  time,  the  K  nearest  neighbor  algorithm
was  used  to  predict  traffic  congestion  risks  and  extract  cold
chain  logistics  transportation  risk  factors,  thereby  shortening
transportation  time.  To  reduce  the  error  of  path  planning,  the
hierarchical  analysis  method  was  used  to  establish  a  calcula-
tion model, and the risk factor matrix was used to calculate the
indicator weights of risk factors. To maximize the robustness of
the  solution,  Yang  et  al.[111] proposed  a  multidimensional
robust  optimization model  and solved the  problem through a
hybrid algorithm combining the Pareto genetic  algorithm and
the  improved  grey  relational  analysis  (IGRA).  The  research
results  show  that  this  method  can  slightly  reduce  costs  and
improve robustness, and can effectively avoid the blindness of
allocation while considering the urgency of demand.

Generally speaking, the path optimization problem is an NP-
Hard problem. When choosing a solution algorithm, we should
first  determine  whether  to  choose  an  exact  algorithm  or  a
heuristic  algorithm  based  on  the  size  of  the  solution  case.
Secondly,  we  should  choose  the  algorithm  that  best  suits  the
model  based  on  the  differences  in  the  objective  function  and
the  scenario.  Through  the  application  of  actual  cases,  we  can
compare  the  differences  in  the  optimal  solution,  solution
speed,  and  solution  process  under  different  algorithms  to
determine whether the algorithm needs to be improved, other
algorithms  should  be  used,  or  a  hybrid  algorithm  should  be
used  to  solve  the  problem.  Finally,  when  designing  an  algo-
rithm, we should fully combine the characteristics of the model,
fully embed the elements in the model into the algorithm, and
establish  an  effective  connection  between  the  algorithm  and
the  model.  In  response  to  the  existing  literature,  a  series  of
summaries  on  the  improvements  of  the  algorithms  used  have
been made, where the null value means that the algorithm has
not  been  improved.  The  types,  characteristics,  and  effects  of
the improved algorithms are shown in Table 14. 

 

Table 14.    Solving algorithm types and characteristics.

Type Refs Improved advantage

Ant colony algorithm [61, 63, 73, 75, 83]
[62, 86, 107, 108, 112]

[63] Good optimization effect, high solution stability, and stronger search ability, suitable for medium
and large-scale data sets;
[73, 85]: Overall cost reduction;
[75]: High timeliness and low cost greatly improve the distribution and transfer efficiency of multi-
temperature co-distribution cold chain logistics;
[107, 112]: fast convergence speed and high solving efficiency;
[108]: Reduction in convergence time, total distance and total cost of carbon emissions satisfaction.

Genetic algorithm [60, 70, 72, 74]
[76, 84, 86, 109]

[60]: Double optimization that effectively takes into account cost and customer satisfaction, the total
distribution cost is better than the standard genetic algorithm;
[70]: Significant cost reduction;
[72]: Has better convergence efficiency and optimization capabilities;
[74, 76, 109]: Total cost reduction, closer to reality;
[86]: More suitable for solving distribution problems with narrow time windows and random
geographical locations of customers or partial clustering and partial randomization.

Simulated annealing
algorithm
Particle swarm
optimization

[56] [56]: Lower total cost and 100% on-time rate.

A* algorithm
Artificial fish
swarm algorithm

[66] [66]: Fast convergence speed, strong global search capability, and can further balance costs such as
fuel consumption, refrigeration, and carbon emissions during the distribution process.

Hybrid algorithm [62, 111] [62]: The time penalty cost is significantly reduced, and the total distribution cost is lower;
[111]: Reduce costs, improve robustness, and effectively avoid blindness in distribution.
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Conclusions and outlook

Through  bibliometrics  and  visualization  techniques,  this
paper  systematically  traces  the  research  evolution  of  the  cold
chain  logistics  vehicle  routing  issues.  The  early  focus  on  basic
route  optimization  has  gradually  shifted  to  research  on  the
optimization  of  complex  cold  chain  logistics  networks,  reflect-
ing  the  increasing  emphasis  by  academia  and  industry  on  the
efficiency and sustainable development of cold chain logistics.
Bibliometric analysis shows that the current research hot spots
on  cold  chain  logistics  vehicle  routing  issues  mainly  focus  on
dynamic  route  optimization,  multi-modal  transportation,  elec-
tric  vehicles,  and  intelligent  algorithms.  These  research  hot-
spots  reflect  the  urgent  need  to  improve  cold  chain  logistics
transportation efficiency, reduce costs, and cope with complex
environmental  challenges.  With  the  continuous  development
of  fields  such  as  computer  science,  operations  research,  and
logistics management,  research methods and technologies for
cold chain logistics vehicle routing problems have been signifi-
cantly  improved  and  expanded.  The  application  of  traditional
mathematical  programming  methods  to  heuristic  algorithms,
meta-heuristic  algorithms,  and hybrid  optimization algorithms
provides  more  options  and  possibilities  for  solving  complex
problems  in  actual  cold  chain  logistics  transportation.  The
study also found that the research on cold chain logistics vehi-
cle routing is not only limited to a single field but also involves
the intersection of multiple disciplines and fields, such as oper-
ations  research,  computer  science,  logistics  management,  etc.,
which provides more information for  the further development
of this field.

Based  on  the  research  conclusions  of  this  study,  the  follow-
ing prospects for future research directions are proposed.

(1)  Interdisciplinary  integration:  Future  research  can  further
cross  disciplinary  boundaries  and  combine  knowledge  from
computer  science,  logistics  management,  operations  research,
etc.  to  conduct  more  in-depth  research.  For  example,  cutting-
edge  technologies  such  as  artificial  intelligence  and  big  data
analysis can be introduced into the solution of cold chain logis-
tics  vehicle  routing  problems  to  improve  the  intelligence  and
real-time nature of the solution.

(2)  Customization  of  application  scenarios:  As  the  applica-
tion  of  cold  chain  logistics  in  various  industries  continues  to
deepen,  future  research  will  focus  more  on  personalized  solu-
tions  for  different  industries  and  specific  scenarios.  For  exam-
ple,  in the pharmaceutical  field,  special  transportation require-
ments for drugs may need to be considered, while in the food
field,  logistics  path  optimization  under  different  temperature
requirements may need to be considered.

(3)  Sustainable  development  considerations:  As  the  world
pays  more  attention  to  sustainable  development,  future
research  will  pay  more  attention  to  the  potential  contribution
of  cold  chain  logistics  vehicle  route  optimization  in  energy
conservation,  emission  reduction,  resource  utilization,  etc.
Therefore,  future  research  may  incorporate  more  sustainable
development  concepts  such  as  environmental  protection  and
carbon  neutrality  to  achieve  the  sustainable  development
goals of the cold chain logistics industry.

In  summary,  with  the  continuous  development  and  innova-
tion  of  the  cold  chain  logistics  industry,  the  research  on  cold
chain  logistics  vehicle  routing  problems  will  continue  to  face

new  challenges  and  opportunities.  Through  interdisciplinary
integration,  customized  solutions,  and  sustainable  develop-
ment  considerations,  the  research  on  cold  chain  logistics
vehicle  routing  problems  will  provide  more  effective  support
and  guidance  for  the  development  of  the  cold  chain  logistics
industry. 

Author contributions

The  authors  confirm  contribution  to  the  paper  as  follows:
research  concept  and manuscript  draft  preparation:  Qi  B;  data
collection  and  chart  analysis:  Li  G.  Both  authors  reviewed  the
results and approved the final version of the manuscript.  

Data availability

The data that support the findings of this study are available
in the Web of Science (WoS) repository.

Acknowledgments

This research was supported by the Natural Science Founda-
tion  of  China  (No.  52062027),  the  'Double-First  Class'  Major
Research  Programs,  the  Educational  Department  of  Gansu
Province  (GSSYLXM-04),  Soft  Science  Special  Project  of  Gansu
Basic  Research  PIan  under  Grant  No.  22JR4ZA035,  Gansu
Provincial  Science  and  Technology  Major  Special  Project -
Enterprise  Innovation  Consortium  Project  (No.  22ZD6GA010),
Natural  Science  Foundation  of  Gansu  Province  (22JR5RA343),
Foundation  of  A  Hundred  Youth  Talents  Training  Program  of
Lanzhou Jiaotong University, China, and Open Fund of National
Engineering  Research  Center  of  Highway  Maintenance  Tech-
nology,  Changsha  University  of  Science  &  Technology  (No.
kfj220108),  Key  Research  and  Development  Project  of  Gansu
Province  (No.  22YF7GA142)  and  Industry  Support  Plan  Project
from  the  Department  of  Education  of  Gansu  Province  (No.
2024CYZC-28).

Conflict of interest

The authors declare that they have no conflict of interest.

Dates

Received  8  November  2023; Revised  5  July  2024; Accepted
25 July 2024; Published online 30 September 2024

References 

 Desrochers  M,  Verhoog  TW. 1991. A  new  heuristic  for  the  fleet
size  and  mix  vehicle  routing  problem. Computers  &  Operations
Research 18(3):263−74

1.

 Solomon  MM,  Desrosiers  J. 1988. Survey  paper—time  window
constrained  routing  and  scheduling  problems. Transportation
science 22(1):1−13

2.

 Jabali  O,  Leus  R,  Van  Woensel  T,  de  Kok  T. 2015. Self-imposed
time  windows  in  vehicle  routing  problems. OR  Spectrum
37:331−52

3.

 Moghaddam  BF,  Ruiz  R,  Sadjadi  SJ. 2012. Vehicle  routing  prob-
lem with uncertain demands:  An advanced particle swarm algo-
rithm. Computers & Industrial Engineering 62(1):306−17

4.

 Cattaruzza  D,  Absi  N,  Feillet  D. 2016. Vehicle  routing  problems
with multiple trips. 4OR 14:223−59

5.

The evolution of CCVRP
 

Qi & Li Digital Transportation and Safety 2024, 3(3): 92−114   Page 111 of 114

https://doi.org/10.1016/0305-0548(91)90028-p
https://doi.org/10.1016/0305-0548(91)90028-p
https://doi.org/10.1287/trsc.22.1.1
https://doi.org/10.1287/trsc.22.1.1
https://doi.org/10.1007/s00291-013-0348-1
https://doi.org/10.1016/j.cie.2011.10.001
https://doi.org/10.1007/s10288-016-0306-2


 Laporte G, Mercure H, Nobert Y. 1986. An exact algorithm for the
asymmetrical  capacitated  vehicle  routing  problem. Networks
16(1):33−46

6.

 Righini  G,  Salani  M. 2008. New  dynamic  programming  algo-
rithms  for  the  resource  constrained  elementary  shortest  path
problem. Networks 51(3):155−70

7.

 Kallehauge  B. 2008. Formulations  and  exact  algorithms  for  the
vehicle routing problem with time windows. Computers & Opera-
tions Research 35(7):2307−30

8.

 Pichpibul  T,  Kawtummachai  R. 2012. An  improved  Clarke  and
Wright  savings  algorithm  for  the  capacitated  vehicle  routing
problem. ScienceAsia 38(3):307−18

9.

 Yu  B,  Jin  PH,  Yang  ZZ. 2012. Two-stage  heuristic  algorithm  for
multi-depot vehicle routing problem with time windows. Systems
Engineering-Theory and Practice 32(8):1793−800

10.

 Alfredo  Tang  Montané  F,  Galvão  RD. 2006. A  tabu  search  algo-
rithm for the vehicle routing problem with simultaneous pick-up
and  delivery  service. Computers  &  Operations  Research
33(3):595−619

11.

 Li H, Zhou J, Xu K. 2023. Evolution of Green Vehicle Routing Prob-
lem:  A  Bibliometric  and  Visualized  Review. Sustainability
15(23):16149

12.

 Pillac  V,  Gendreau  M,  Guéret  C,  Medaglia  AL. 2013. A  review  of
dynamic  vehicle  routing  problems. European  Journal  of  Opera-
tional Research 225(1):1−11

13.

 Qin G,  Tao F,  Li  L. 2019. A vehicle  routing optimization problem
for  cold  chain  logistics  considering  customer  satisfaction  and
carbon emissions. International Journal of Environmental Research
and Public Health 16(4):576

14.

 Ostermeier  M,  Henke  T,  Hübner  A,  Wäscher  G. 2021. Multi-
compartment vehicle routing problems:  State-of-the-art,  model-
ing framework and future directions. European Journal  of  Opera-
tional Research 292(3):799−817

15.

 Koç Ç, Bektaş T, Jabali O, Laporte G. 2016. Thirty years of hetero-
geneous  vehicle  routing. European  Journal  of  Operational
Research 249(1):1−21

16.

 Kucukoglu I, Dewil R, Cattrysse D. 2021. The electric vehicle rout-
ing  problem  and  its  variations:  A  literature  review. Computers  &
Industrial Engineering 161:107650

17.

 Sar K, Ghadimi P. 2023. A systematic literature review of the vehi-
cle routing problem in reverse logistics  operations. Computers  &
Industrial Engineering 177:109011

18.

 Erdelić T,  Carić T . 2019. A  survey  on  the  electric  vehicle  routing
problem:  variants  and solution  approaches. Journal  of  Advanced
Transportation 2019:5075671

19.

 Braekers K, Ramaekers K, Van Nieuwenhuyse I. 2016. The vehicle
routing  problem:  State  of  the  art  classification  and  review.
Computers & Industrial Engineering 99:300−13

20.

 Zhang  J,  Van  Woensel  T. 2023. Dynamic  vehicle  routing  with
random  requests:  A  literature  review. International  Journal  of
Production Economics 256:108751

21.

 Asghari M, Mirzapour Al-e-hashem SMJ. 2021. Green vehicle rout-
ing  problem:  A  state-of-the-art  review. International  Journal  of
Production Economics 231:107899

22.

 Li B, Wu G, He Y, Fan M, Pedrycz W. 2022. An overview and exper-
imental  study of  learning-based optimization algorithms for  the
vehicle  routing  problem. IEEE/CAA  Journal  of  Automatica  Sinica
9(7):1115−38

23.

 Ni Q, Tang Y. 2023. A Bibliometric Visualized Analysis and Classifi-
cation  of  Vehicle  Routing  Problem  Research. Sustainability
15(9):7394

24.

 Demir  E,  Bektaş T,  Laporte  G . 2014. A  review  of  recent  research
on green road freight transportation. European Journal of Opera-
tional Research 237(3):775−93

25.

 Mardešić N,  Erdeli ć T,  Cari ć T,  Đurasević M . 2023. Review  of
Stochastic Dynamic Vehicle Routing in the Evolving Urban Logis-
tics Environment. Mathematics 12(1):28

26.

 Wang Q. 2018. Distribution features and intellectual structures of
digital humanities. Journal of Documentation 74:223−46

27.

 Harzing  AW,  Alakangas  S. 2016. A  longitudinal  and  cross-disci-
plinary comparison. Scientometrics 106:787−804

28.

 Wang Y, Ma X, Lao Y, et al. 2013. Vehicle routing problem: simul-
taneous  deliveries  and  pickups  with  split  loads  and  time
windows. Transportation Research Record 2378(1):120−28

29.

 Dantzig GB. 1960. On the significance of solving linear program-
ming  problems  with  some  integer  variables. Econometrica
28(1):30−44

30.

 Gendreau  M,  Guertin  F,  Potvin  JY,  Taillard  É. 1999. Parallel  tabu
search for real-time vehicle routing and dispatching. Transporta-
tion Science 33(4):381−90

31.

 Agatz N, Erera A, Savelsbergh M, Wang X. 2012. Optimization for
dynamic  ride-sharing:  A  review. European  Journal  of  Operational
Research 223(2):295−303

32.

 Berbeglia  G,  Cordeau  JF,  Laporte  G. 2010. Dynamic  pickup  and
delivery  problems. European  Journal  of  Operational  Research
202(1):8−15

33.

 Nagy  G,  Salhi  S. 2005. Heuristic  algorithms  for  single  and  multi-
ple depot vehicle routing problems with pickups and deliveries.
European Journal of Operational Research 162(1):126−41

34.

 Laporte  G. 1992. The  vehicle  routing  problem:  an  overview  of
exact  and  approximate  algorithms. European  Journal  of  Opera-
tional Research 59(3):345−58

35.

 Ropke  S,  Pisinger  D. 2006. An  adaptive  large  neighborhood
search  heuristic  for  the  pickup  and  delivery  problem  with  time
windows. Transportation Science 40(4):455−72

36.

 Cordeau  JF,  Laporte  G. 2003. The  dial-a-ride  problem  (DARP):
Variants, modeling issues and algorithms. Quarterly Journal of the
Belgian, French and Italian Operations Research Societies 1:89−101

37.

 Phiboonbanakit  T,  Horanont  T,  Huynh  VN,  Supnithi  T. 2021. A
hybrid reinforcement learning-based model for the vehicle rout-
ing problem in transportation logistics. IEEE Access 9:163325−47

38.

 Small  H. 1973. Co-citation  in  the  scientific  literature:  A  new
measure of the relationship between two documents. Journal of
the American Society for information Science 24(4):265−69

39.

 Marshakova SI. 1973. System of document connections based on
references. Scientific  and  Technical  Information  Serial  of  VINITI
6(2):3

40.

 Lin C, Choy KL, Ho GTS, Chung SH, Lam HY. 2014. Survey of green
vehicle  routing  problem:  past  and  future  trends. Expert  Systems
with Applications 41(4):1118−38

41.

 Toth  P,  Vigo  D.  2014. Vehicle  routing:  problems,  methods,  and
applications. 2nd Edition. Philadelphia, PA, United States: Society
for  Industrial  and  Applied  Mathematics,  University  City  Science
Center. 481 pp.

42.

 Sacramento  D,  Pisinger  D,  Ropke  S. 2019. An  adaptive  large
neighborhood search metaheuristic for the vehicle routing prob-
lem  with  drones. Transportation  Research  Part  C:  Emerging  Tech-
nologies 102:289−315

43.

 Hiermann  G,  Puchinger  J,  Ropke  S,  Hartl  RF. 2016. The  electric
fleet  size  and  mix  vehicle  routing  problem  with  time  windows
and recharging stations. European Journal of Operational Research
252(3):995−1018

44.

 Schneider M, Stenger A, Goeke D. 2014. The electric vehicle-rout-
ing problem with  time windows and recharging stations. Trans-
portation Science 48(4):500−20

45.

 Uchoa  E,  Pecin  D,  Pessoa  A,  Poggi  M,  Vidal  T,  et  al. 2017. New
benchmark  instances  for  the  capacitated  vehicle  routing  prob-
lem. European Journal of Operational Research 257(3):845−58

46.

 Wang  Z,  Sheu  JB. 2019. Vehicle  routing  problem  with  drones.
Transportation Research Part B: Methodological 122:350−64

47.

 Agatz  N,  Bouman  P,  Schmidt  M. 2018. Optimization  approaches
for  the  traveling  salesman  problem  with  drone. Transportation
Science 52(4):965−81

48.

 
The evolution of CCVRP

Page 112 of 114   Qi & Li Digital Transportation and Safety 2024, 3(3): 92−114

https://doi.org/10.1002/net.3230160104
https://doi.org/10.1002/net.20212
https://doi.org/10.1016/j.cor.2006.11.006
https://doi.org/10.1016/j.cor.2006.11.006
https://doi.org/10.1016/j.cor.2006.11.006
https://doi.org/10.2306/scienceasia1513-1874.2012.38.307
https://doi.org/10.12011/1000-6788(2012)8-1793
https://doi.org/10.12011/1000-6788(2012)8-1793
https://doi.org/10.12011/1000-6788(2012)8-1793
https://doi.org/10.12011/1000-6788(2012)8-1793
https://doi.org/10.1016/j.cor.2004.07.009
https://doi.org/10.3390/su152316149
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.3390/ijerph16040576
https://doi.org/10.3390/ijerph16040576
https://doi.org/10.1016/j.ejor.2020.11.009
https://doi.org/10.1016/j.ejor.2020.11.009
https://doi.org/10.1016/j.ejor.2020.11.009
https://doi.org/10.1016/j.ejor.2015.07.020
https://doi.org/10.1016/j.ejor.2015.07.020
https://doi.org/10.1016/j.cie.2021.107650
https://doi.org/10.1016/j.cie.2021.107650
https://doi.org/10.1016/j.cie.2023.109011
https://doi.org/10.1016/j.cie.2023.109011
https://doi.org/10.1155/2019/5075671
https://doi.org/10.1155/2019/5075671
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.ijpe.2022.108751
https://doi.org/10.1016/j.ijpe.2022.108751
https://doi.org/10.1016/j.ijpe.2020.107899
https://doi.org/10.1016/j.ijpe.2020.107899
https://doi.org/10.1109/JAS.2022.105677
https://doi.org/10.3390/su15097394
https://doi.org/10.1016/j.ejor.2013.12.033
https://doi.org/10.1016/j.ejor.2013.12.033
https://doi.org/10.1016/j.ejor.2013.12.033
https://doi.org/10.3390/math12010028
https://doi.org/10.1108/JD-05-2017-0076
https://doi.org/10.1007/s11192-015-1798-9
https://doi.org/10.3141/2378-13
https://doi.org/10.2307/1905292
https://doi.org/10.1287/trsc.33.4.381
https://doi.org/10.1287/trsc.33.4.381
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1016/j.ejor.2002.11.003
https://doi.org/10.1016/0377-2217(92)90192-C
https://doi.org/10.1016/0377-2217(92)90192-C
https://doi.org/10.1016/0377-2217(92)90192-C
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1007/s10288-002-0009-8
https://doi.org/10.1007/s10288-002-0009-8
https://doi.org/10.1109/ACCESS.2021.3131799
https://doi.org/10.1002/asi.4630240406
https://doi.org/10.1002/asi.4630240406
https://doi.org/10.1016/j.eswa.2013.07.107
https://doi.org/10.1016/j.eswa.2013.07.107
https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/10.1016/j.ejor.2016.01.038
https://doi.org/10.1287/trsc.2013.0490
https://doi.org/10.1287/trsc.2013.0490
https://doi.org/10.1016/j.ejor.2016.08.012
https://doi.org/10.1016/j.trb.2019.03.005
https://doi.org/10.1287/trsc.2017.0791
https://doi.org/10.1287/trsc.2017.0791


 Karlin AR, Klein N, Gharan SO. 2021. A (slightly) improved approx-
imation  algorithm  for  metric  TSP. STOC  2021:  Proceedings  of  the
53rd  Annual  ACM  SIGACT  Symposium  on  Theory  of  Computing,
Virtual  Italy,  2021.  New  York,  USA:  Association  for  Computing
Machinery. pp. 32−45. doi: 10.1145/3406325.3451009

49.

 Pirnay N, Ulitzsch V, Wilde F, Eisert J, Seifert JP. 2024. An in-princi-
ple  super-polynomial  quantum  advantage  for  approximating
combinatorial  optimization  problems  via  computational  learn-
ing theory. Science Advances 10(11):eadj5170

50.

 Liu  S,  Zhang  C. 2022. Optimization  of  Cold  Chain  Distribution
Route  with  Mixed  Time  Window  considering  Customer  Priority.
Computational Intelligence and Neuroscience 2022:2953205

51.

 Xu B, Sun J, Zhang Z, Gu R. 2023. Research on cold chain logistics
transportation  scheme  under  complex  conditional  constraints.
Sustainability 15(10):8431

52.

 Chen W, Zhang D, Van Woensel T, Xu G, Guo J. 2023. Green vehi-
cle  routing  using  mixed  fleets  for  cold  chain  distribution. Expert
Systems with Applications 233:120979

53.

 Zhao  Z,  Li  X,  Zhou  X. 2020. Distribution  route  optimization  for
electric  vehicles  in  urban  cold  chain  logistics  for  fresh  products
under  time-varying  traffic  conditions. Mathematical  Problems  in
Engineering 2020:9864935

54.

 Hou  DK,  Fan  HM,  Lv  YC,  Ren  XX. 2022. Dynamic  multicompart-
ment  refrigerated  vehicle  routing  problem  with  multigraph
based on real-time traffic information. Journal of Advanced Trans-
portation 2022:5538113

55.

 Ming  XJ,  Zhu  L. 2022. Research  on  optimization  technology  of
urban fresh food cold chain logistics distribution path. Packaging
and Food Machinery 40:76−81

56.

 Pan  YM. 2017. Research  on  optimization  of  cold  chain  logistics
distribution  route  of  agricultural  products  based  on  cost
constraint. Agricultural Economy 357:140−41

57.

 Zhou Y,  Ji  YF,  Yang LH, Yu K. 2016. Optimization of delivery and
pickup  vehicle  routing  in  cold  chain  logistics. Mathematics  in
Practice and Theory 46(20):18−26

58.

 Zeng ZX, Zhou CD, Wei JF, Lu HZ, Lü EL, et al. 2019. Optimization
of logistics distribution cost model of lychee cold chain based on
ant colony algorithm. Packaging Engineering 40:58−65

59.

 Liang CJ,  Huang T,  Xu DH, Ding Y. 2016. Improved genetic algo-
rithm for solving cold chain distribution problem with fuzzy time
window. Journal  of  Guangxi  University  (Natural  Science  Edition)
41:826−35

60.

 Wu D, Cui J, Li D, Fouad Mansour R. 2022. A new route optimiza-
tion  approach  of  fresh  agricultural  logistics  distribution. Intelli-
gent Automation & Soft Computing 34:1553−69

61.

 Lu JD, Zhang JB. 2018. Cold chain logistics zonal distribution path
optimization  based  on  time-space  similarity  measure. Journal  of
Shanghai Maritime University 39:32−37

62.

 Ren  T,  Luo  TY,  Li  SX,  Xiang  S,  Xiao  HL,  et  al. 2022. Knowledge
based  ant  colony  algorithm  for  cold  chain  logistics  distribution
path optimization. Control and Decision 37(3):545−54

63.

 Tao DH, Liu R, Lei YJ, Zhang XQ. 2019. Optimization of cold chain
logistics  distribution  path  based  on  green  supply  chain. Indus-
trial Engineering 22(2):89−95

64.

 Wang  ZY,  Lu  JY. 2017. Optimization  of  cold  chain  logistics  vehi-
cle distribution routes considering low carbon. Science and Tech-
nology Management Research 37(17):228−32

65.

 Yang L, Wang YC, Hou HP. 2019. Research on optimization of cold
chain  low-carbon  distribution  path. Commercial  Economic
Research 2019(17):104−7

66.

 Ning T,  An L,  Duan X. 2021. Optimization of  cold chain distribu-
tion  path  of  fresh  agricultural  products  under  carbon  tax
mechanism:  a  case  study  in  china. Journal  of  Intelligent  &  Fuzzy
Systems 40:10549−58

67.

 Jia  X. 2022. Research  on  the  optimization  of  cold  chain  logistics
distribution  path  of  agricultural  products  e-commerce  in  urban
ecosystem from the perspective of carbon neutrality. Frontiers in
Ecology and Evolution 10:966111

68.

 Shen L, Li CY, Gan Y, Zhao G. 2021. Optimization of fresh product
distribution  path  considering  cargo  damage  and  carbon  emis-
sions. Journal of Shanghai Maritime University 42:44−49+70

69.

 Bao CL, Zhang SB. 2021. Optimization of cold chain logistics joint
distribution  path  considering  carbon  emissions. Industrial  Engi-
neering and Management 23(5):95−100+107

70.

 Pan QQ, G HC. 2016. Research on cold chain logistics distribution
path optimization considering carbon emissions. Mathematics in
Practice and Theory 46(2):62−68

71.

 Liu  YB,  Wang  K,  Wang  ZY,  Wang  SJ. 2019. Optimization  of  cold
chain  logistics  distribution  path  considering  carbon  emissions
and  freshness. Journal  of  Jiangxi  Normal  University  (Natural
Science Edition) 43:188−95

72.

 Kang K,  Han J,  Wei  P,  Ma YF. 2018. Research  on low-carbon dis-
tribution  path  optimization  of  cold  chain  logistics  of  fresh  agri-
cultural  products. Computer  Engineering  and  Applications
55(2):259−65

73.

 Chen  YZ. 2021. Location  and  path  optimization  of  green  cold
chain  logistics  based  on  improved  genetic  algorithm  from  the
perspective  of  low  carbon  and  environmental  protection. Frese-
nius Environmental Bulletin 30(6):5961−73

74.

 Ding Y. 2021. Multi temperature co distribution cold chain logis-
tics  vehicle  distribution  path  optimization  simulation. Journal  of
Shenyang University of Technology 43(3):311−16

75.

 Liang CJ,  Zhou QQ. 2017. Research on vehicle  routing optimiza-
tion of cold chain logistics with temperature decision. Journal of
Guangxi University (Natural Science Edition) 42:1802−9

76.

 Zhu X, Wang Y. 2021. Optimization of pharmaceutical cold chain
logistics  distribution  path  based  on  road  conditions. Science
Technology and Engineering 21:1548−54

77.

 Lan  H,  He  QF,  Bian  Z,  Jin  ZH. 2015. Optimization  of  cold  chain
logistics  distribution  path  considering  road  traffic  conditions.
Journal of Dalian Maritime University 41(4):67−74

78.

 Bai  QY,  Yin  XQ,  Lin  Y. 2021. Optimization  of  cold  chain  logistics
path  considering  real-time  traffic  in  the  road  network. Industrial
Engineering and Management 26:56−65

79.

 Zhang  JF,  Yang  ZH. 2020. Research  on  multi-temperature  cold
chain  distribution  route  optimization  under  time-varying  road
network  environment. Journal  of  Chongqing  Normal  University
(Natural Science Edition) 37(1):119−26

80.

 Yao  YG,  He  SY. 2019. Research  on  optimization  of  cold  chain
logistics  distribution  path  of  agricultural  products  based  on
transportation big data. Management Review 31(4):240−53

81.

 Chen  YH. 2020. Intelligent  algorithms  for  cold  chain  logistics
distribution  optimization  based  on  big  data  cloud  computing
analysis. Journal of Cloud Computing 9:37

82.

 Zhao  B,  Gui  H,  Li  H,  Xue  J. 2020. Cold  chain  logistics  path  opti-
mization via improved multi-objective ant colony algorithm. IEEE
Access 8:142977−95

83.

 Miao XH, Zhou XN, L S, Fang WC, Wang XM, et al. 2011. Research
on the optimization of  the third party  cold chain logistics  distri-
bution path. Operations Research and Management 20:32−38

84.

 Sun MM, Zhang CY, Lin GL, D Y. 2017. Cold chain logistics distri-
bution  problems  and  path  optimization  of  fresh  agricultural
products. Jiangsu Agricultural Sciences 45(11):282−85

85.

 Li Q, Jiang L, Liang CY. 2021. Multi-objective cold chain distribu-
tion  optimization  based  on  fuzzy  time  window. Computer  Engi-
neering and Applications 57(23):255−62

86.

 Lü  JJ,  Sun  SS. 2013. Research  on  vehicle  routing  optimization
based  on  cold  chain  logistics  distribution  of  fresh  agricultural
products. Guangdong Agricultural Sciences 40(9):178−81

87.

 Huang  XX,  Hu  JK,  Huang  YF. 2018. Optimization  of  cold  chain
distribution route of fresh agricultural products under carbon tax
and  carbon  limit  rules. Journal  of  Shanghai  Maritime  University
39:74−79+110

88.

 Liu Z, Guo H, Zhao Y, Hu B, Shi L, et al. 2021. Research on the opti-
mized route of  cold chain logistics  transportation of  fresh prod-

89.

The evolution of CCVRP
 

Qi & Li Digital Transportation and Safety 2024, 3(3): 92−114   Page 113 of 114

https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1126/sciadv.adj5170
https://doi.org/10.1155/2022/2953205
https://doi.org/10.3390/su15108431
https://doi.org/10.1016/j.eswa.2023.120979
https://doi.org/10.1016/j.eswa.2023.120979
https://doi.org/10.1155/2020/9864935
https://doi.org/10.1155/2020/9864935
https://doi.org/10.1155/2022/5538113
https://doi.org/10.1155/2022/5538113
https://doi.org/10.1155/2022/5538113
https://doi.org/10.3969/j.issn.1005-1295.2022.02.014
https://doi.org/10.3969/j.issn.1005-1295.2022.02.014
https://doi.org/10.3969/j.issn.1001-6139.2017.02.055
https://doi.org/10.19554/j.cnki.1001-3563.2019.11.008
https://doi.org/10.13624/j.cnki.issn.1001-7445.2016.0826
https://doi.org/10.32604/iasc.2022.028780
https://doi.org/10.32604/iasc.2022.028780
https://doi.org/10.13340/j.jsmu.2018.04.006
https://doi.org/10.13340/j.jsmu.2018.04.006
https://doi.org/10.13195/j.kzyjc.2021.0160
https://doi.org/10.3233/JIFS-201241
https://doi.org/10.3233/JIFS-201241
https://doi.org/10.3389/fevo.2022.966111
https://doi.org/10.3389/fevo.2022.966111
https://doi.org/10.13340/j.jsmu.2021.01.008
https://doi.org/10.19495/j.cnki.1007-5429.2018.05.013
https://doi.org/10.19495/j.cnki.1007-5429.2018.05.013
https://doi.org/10.19495/j.cnki.1007-5429.2018.05.013
https://doi.org/10.16357/j.cnki.issn1000-5862.2019.02.13
https://doi.org/10.16357/j.cnki.issn1000-5862.2019.02.13
https://doi.org/10.7688/j.issn.1000-1646.2021.03.13
https://doi.org/10.7688/j.issn.1000-1646.2021.03.13
https://doi.org/10.13624/j.cnki.issn.1001-7445.2017.1802
https://doi.org/10.13624/j.cnki.issn.1001-7445.2017.1802
https://doi.org/10.3969/j.issn.1671-1815.2021.04.043
https://doi.org/10.3969/j.issn.1671-1815.2021.04.043
https://doi.org/10.16411/j.cnki.issn1006-7736.2015.04.010
https://doi.org/10.11721/cqnuj20200104
https://doi.org/10.11721/cqnuj20200104
https://doi.org/10.1186/s13677-020-00174-x
https://doi.org/10.1109/ACCESS.2020.3013951
https://doi.org/10.1109/ACCESS.2020.3013951
https://doi.org/10.3969/j.issn.1007-3221.2011.04.005
https://doi.org/10.3969/j.issn.1004-874X.2013.09.050
https://doi.org/10.13340/j.jsmu.2018.01.013


ucts in context of energy-saving and emission reduction. Mathe-
matical Biosciences and Engineering 18:1926−40
 Ren XY, Chen CF, Xiao YL, Su SC. 2019. Path optimization of cold
chain distribution with multiple distribution centers considering
carbon  emissions. Applied  Ecology  and  Environmental  Research
17:9437−53

90.

 Liu, G, Hu J, Yang Y, Xia S, Lim MK. 2020. Vehicle routing problem
in  cold  Chain  logistics:  a  joint  distribution  model  with  carbon
trading  mechanisms. Resources,  Conservation  and  Recycling
156:104715

91.

 Yao Z, Zhang Y. 2020. Research on the optimization of cold chain
logistics distribution path based on the dual perspectives of the
Internet of Things and low carbon. Ecological Economy 36:61−66

92.

 Fang  WT,  Ai  SZ,  Wang  Q,  Fan  JB. 2019. Research  on  cold  chain
logistics  distribution  path  optimization  based  on  hybrid  ant
colony algorithm. China Management Science 27(11):107−15

93.

 Moncer H, Rami A, Abdulrahim S. 2017. Integrated economic and
environmental models for a multi stage cold supply chain under
carbon tax regulation. Journal of Cleaner Production 166:1357−71

94.

 Xiao  Y,  Zhao  Q,  Kaku  I,  Xu  Y. 2017. Development  of  a  fuel  con-
sumption  optimization  model  for  the  capacitated  vehicle  rout-
ing problem. Computers & Operations Research 39:1419−31

95.

 Wu  SA. 2017. Optimization  of  cold-chain  logistics  distribution
path based on dijkstra algorithm. Boletín Técnico 55(7):439−44

96.

 Cai HY, Pan Y. 2017. Optimization of cold chain logistics distribu-
tion  path  for  fresh  agricultural  products  based  on  artificial  bee
colony  algorithm. Journal  of  Jiangsu  Agricultural  Sciences
45(15):318−21

97.

 Ma  J,  Yang  Y,  Guan  W,  Wang  F,  Liu  T,  et  al. 2017. Large-scale
demand driven design of  a customized bus network:  a  method-
ological  framework  and  beijing  case  study. Journal  of  Advanced
Transportation 2017:3865701

98.

 An JY, Song R, Bi MK, Xue SQ. 2019. Research on the optimization
design of flexible bus routes connecting high-speed rail stations.
Transportation  System  Engineering  and  Information
19(5):150−155+176

99.

 Huang D,  Gu Y,  Wang S,  Liu Z,  Zhao W. 2020. A two-phase opti-
mization  model  for  the  demand  responsive  customized  bus
network  design. Transportation  Research  Part  C:  Emerging  Tech-
nologies 111:1−21

100.

 Han  Z,  Chen  Y,  Li  H,  Zhang  K,  Sun  J. 2019. Customized  bus
network  design  based  on  individual  reservation  demands.
Sustainability 11:5535

101.

 Ou  W,  Jiao  LP. 2011. Dynamic  programming  algorithm  for  vehi-
cle  routing  problem  under  emergencies. Computer  Simulation
28(8):354−58

102.

 Li  Z,  Song  R,  He  S,  Bi  M. 2018. Methodology  of  mixed  load
customized  bus  lines  and  adjustment  based  on  time  windows.
PLoS One 13:e0189763

103.

 Guo  R,  Guan  W,  Zhang  W,  Meng  F,  Zhang  Z. 2019. Customized
bus  routing  problem  with  time  window  restrictions:  model  and
case study. Transportmetrica A: Transport Science 15:1804−24

104.

 Wang Z, Li G, Ren J. 2021. Dynamic path planning for unmanned
surface vehicle in complex offshore areas based on hybrid algo-
rithm. Computer Communications 166:49−56

105.

 Xie YL. 2022. Multi temperature zone cold chain logistics distribu-
tion  path  optimization  algorithm  based  on  hybrid  ant  colony.
Journal of Shenyang University of Technology 44(5):552−57

106.

 Xiong H. 2021. Research on cold chain logistics distribution route
based on ant colony optimization algorithm. Discrete Dynamics in
Nature and Society 2021:6623563

107.

 Ren  T,  Chen  Y,  Xiang  YC,  Xing  LY,  Li  SD. 2020. Low  carbon  cold
chain  vehicle  routing  optimization  considering  customer  satis-
faction. Computer Integrated Manufacturing Systems 26:1108−17

108.

 Fu  Q,  Li  J,  Chen  H. 2022. Resource  scheduling  method  for  opti-
mizing the distribution path of fresh agricultural products under
low-carbon  environmental  constraints. Scientific  Programming
2022:7692135

109.

 Chen  LF,  Shen  ZF. 2022. Logistics  path  decision  optimization
method  of  fresh  product  export  cold  chain  considering  trans-
portation  risk. Computational  Intelligence  and  Neuroscience
2022:8924938

110.

 Yang Y, Ma C, Zhou J, Dong S, Ling G, et al. 2022. A multi-dimen-
sional  robust  optimization  approach  for  cold-chain  emergency
medical  materials  dispatch  under  COVID-19,  A  case  study  of
Hubei  Province. Journal  of  Traffic  and  Transportation  Engineering
(English Edition) 9:1−20

111.

 Fan SQ, Lou D, Sun Y. 2017. Research on the optimization of vehi-
cle distribution routes for cold chain logistics of fresh agricultural
products. Preservation and Processing 17(6):106−11

112.

Copyright:  © 2024 by the author(s).  Published by
Maximum  Academic  Press,  Fayetteville,  GA.  This

article  is  an  open  access  article  distributed  under  Creative
Commons  Attribution  License  (CC  BY  4.0),  visit https://creative-
commons.org/licenses/by/4.0/.

 
The evolution of CCVRP

Page 114 of 114   Qi & Li Digital Transportation and Safety 2024, 3(3): 92−114

https://doi.org/10.3934/mbe.2021100
https://doi.org/10.3934/mbe.2021100
https://doi.org/10.15666/aeer/1704_94379453
https://doi.org/10.1016/j.resconrec.2020.104715
https://doi.org/10.16381/j.cnki.issn1003-207x.2019.11.011
https://doi.org/10.1016/j.jclepro.2017.08.105
https://doi.org/10.1016/j.cor.2011.08.013
https://doi.org/10.1155/2017/3865701
https://doi.org/10.1155/2017/3865701
https://doi.org/10.16097/j.cnki.1009-6744.2019.05.021
https://doi.org/10.1016/j.trc.2019.12.004
https://doi.org/10.1016/j.trc.2019.12.004
https://doi.org/10.1016/j.trc.2019.12.004
https://doi.org/10.3390/su11195535
https://doi.org/10.1371/journal.pone.0189763
https://doi.org/10.1080/23249935.2019.1644566
https://doi.org/10.1016/j.comcom.2020.11.012
https://doi.org/10.7688/j.issn.1000-1646.2022.05.13
https://doi.org/10.1155/2021/6623563
https://doi.org/10.1155/2021/6623563
https://doi.org/10.13196/j.cims.2020.04.024
https://doi.org/10.1155/2022/7692135
https://doi.org/10.1155/2022/8924938
https://doi.org/10.1016/j.jtte.2022.01.001
https://doi.org/10.1016/j.jtte.2022.01.001
https://doi.org/10.3969/j.issn.1009-6221.2017.06.018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Data collection and research methods
	Data processing and results
	Basic statistical results of the Web of Science
	Temporal evolution of publications and citations
	Category distribution

	Visualization results and bibliometric analysis based on CiteSpace
	Analysis of authors and cited authors
	Analysis of cited journals
	Country and institution analysis

	Keyword analysis
	Keyword co-occurrence analysis
	Keyword citation burst detection

	Reference analysis
	Co-citation network analysis of references
	Co-citation cluster analysis of references


	Cold chain logistics vehicle routing optimization objectives
	Problem scenarios for cold chain logistics vehicle routes
	Distribution cost scenario
	Time window penalty cost and customer satisfaction scenario
	Real-time traffic scene

	Cold chain logistics vehicle route solving algorithm
	Conclusions and outlook
	Author contributions
	Data availability
	References

