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Abstract
Risky driving behaviors, such as driving fatigue and distraction have recently received more attention. There is also much research about driving
styles, driving emotions, older drivers, drugged driving, DUI (driving under the influence), and DWI (driving while intoxicated). Road hypnosis is a
special behavior significantly impacting traffic safety. However, there is little research on this phenomenon. Road hypnosis, as an unconscious
state, is can frequently occur while driving, particularly in highly predictable, monotonous, and familiar environments. In this paper, vehicle and
virtual  driving experiments  are  designed to  collect  the  biological  characteristics  including eye movement  and bioelectric  parameters.  Typical
scenes in tunnels and highways are used as experimental scenes. LSTM (Long Short-Term Memory) and KNN (K-Nearest Neighbor) are employed
as the base learners, while SVM (Support Vector Machine) serves as the meta-learner. A road hypnosis identification model is proposed based on
ensemble learning, which integrates bioelectric and eye movement characteristics. The proposed model has good identification performance, as
seen from the experimental results. In this study, alternative methods and technical support are provided for real-time and accurate identification
of road hypnosis.
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Introduction

According  to  the  National  Highway  Administration  of  the
United  States,  90%  of  traffic  accidents[1] are  caused  by  driver
factors. In the analysis of accident causes by Treat et al.[2], road
factors accounted for 34.9%, vehicle factors only accounted for
9.1% and driver factors reached as high as 92.9%. Drivers with
subjective  initiative  are  the  direct  participants  and  decision-
makers in the operation of the transportation system. The ratio-
nality  of  its  decision-making  and  the  correctness  of  drivers’
behavior are key to the safe and efficient operation of the trans-
portation  system.  In  1963,  Williams[3] discovered  a  trance-like
state  similar  to  hypnosis  that  drivers  experience  on  long  and
monotonous  roads.  He  termed  this  state  'highway  hypnosis',
which leads to reduced awareness and lack of attention, posing
potential safety risks. In 1970, Williams & Shor[4] described high-
way hypnosis as a hypnosis-like state characterized by reduced
alertness  and  drowsiness,  in  which  drivers  are  unable  to
adequately respond to changes in road conditions. This state is
a  syndrome  that  affects  the  ability  of  humans  to  perform
several  psychological  functions.  Shor  &  Thackray[5] believed
that  highway  hypnosis  refers  to  the  tendency  of  drivers  to
become drowsy or  fall  asleep on monotonous and uninterest-
ing  highways.  They  noted  that  anyone  required  to  perform
continuous  and  repetitive  tracking  or  monitoring  tasks  under
monotonous conditions could be affected by this hypnosis-like
state.  Brown[6] further  explained that  even when drivers  main-
tained  the  correct  sitting  posture  kept  their  eyes  on  the  road

ahead,  and had their  hands  on the steering wheel,  they  could
still  experience a hypnosis-like state. In 2004, Cerezuela et al.[7]

conducted  experiments  based  on  the  hypothesis  of  highway
hypnosis proposed by Williams in 1963. They found that drivers
are  more  likely  to  experience  highway  hypnosis  when  driving
on monotonous highways compared to traditional roads.

Wang  et  al.  conducted  exploratory  research  on  road
hypnosis[8,9].  Road  hypnosis  was  defined  as  an  unconscious
driving  state  resulting  from  the  combined  effects  of  external
environmental factors and the psychological state of the driver.
It was proposed that road hypnosis arose due to repetitive and
low-frequency  stimuli  present  in  highly  predictable  driving
environments.  This  state  was  characterized  by  sensory  numb-
ness,  decreased  attention,  and  reduced  alertness,  and  was
accompanied  by  transient  states  such  as  trance,  amnesia,  and
fantasies.  Road hypnosis could be induced by multiple factors,
including  endogenous  factors  (such  as  the  driver's  suscepti-
bility  to  hypnosis,  fatigue,  and  circadian  rhythms)  and  exoge-
nous factors (such as road geometry,  monotony of  the driving
task, monotony of the driving situation, and vehicle enclosure).
Once  a  driver  emerged  from  the  state  of  road  hypnosis,  they
typically  experienced  a  noticeable  alert  state.  While  drivers
often did not  remember events  that  occurred during the road
hypnosis state, they had a clear memory of the trance-like state
they  just  experienced.  In  this  state,  drivers  might  appear  to
maintain normal driving behavior, but their reaction times were
significantly  slower  than  in  a  normal  driving  state.  To  identify
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road  hypnosis,  Wang  designed  virtual  and  vehicle  driving
experiments  to  collect  electrocardiogram  (ECG)  and  electro-
myogram  (EMG)  signals,  integrating  the  collected  data  to
establish a model for recognizing road hypnosis.

Driving is a complex process in which drivers need to process
real-time  information  obtained  from  the  road  environment,
including the perception of road information (Situation Aware-
ness), judgment of obtained information (Information Process),
decision making, and performance of action stages. During the
driving  process,  drivers  need  to  perceive  information  to  form
an understanding of  the surrounding environment,  and atten-
tion resources need to be reasonably allocated to various driv-
ing  tasks  and  possible  nondriving  tasks.  The  most  important
sensory organ is the visual organ. Research on the visual atten-
tion features of drivers is of great significance for improving the
perception  and  cognitive  level  of  intelligent  driving  vehicles.
The  decision-making  mechanism  of  driving  behavior  can  be
revealed with the study. In recent years, representative studies
on  driver  visual  attention  features  have  been  as  follows:
Konstantopoulos  et  al.[10] studied  the  eye  movements  of  driv-
ing  school  coaches  and  students  driving  through  three  virtual
routes  (day,  night,  and  rainy  days)  in  a  driving  simulator.  The
research  results  indicated  that  driving  experience  played  an
important  role  in  adjusting  eye  movement  strategies  during
the  driving  process.  Wang  et  al.[11] developed  a  driver's  atten-
tion  focus  tracking  system,  demonstrating  that  drivers  opti-
mize  overall  driving  performance  by  dynamically  adjusting
attention allocation. Deng et al.[12] found that the driver's atten-
tion was focused on the end of the road in front of the vehicle.
The driver’s  attention area  could  be  effectively  simulated with
the  bottom-up  and  top-down  combination  traffic  flow  signifi-
cance  detection  model.  Hills  et  al.[13] explored  the  adverse
effects of vertical eye movement on dynamic switching of driv-
ing tasks. The results showed that horizontal eye movement in
drivers could identify hazards faster and more accurately, while
vertical eye movement only had no significant negative impact
on  experienced  drivers.  Palazzi  et  al.[14] explored  the  distribu-
tion  of  drivers'  visual  attention  through  a  computer  vision
model  based on a  multi-branch deep architecture.  It  was  indi-
cated from the results  that  there  were  several  common atten-
tion  patterns  among  different  drivers.  Barlow  et  al.[15] evalu-
ated the impact of drones on road traffic safety by determining
whether the driver's visual attention can be distracted with the
flight near the road. The results showed that drones flying near
the  roadside  or  in  rural  environments  would  attract  the  visual
attention  of  nearby  road  drivers.  Young  et  al.[16] used  natural
driving  data  to  examine  the  nature  of  visual  or  manual
secondary task interruptions in drivers. They found that drivers
had  differences  in  the  number  of  interruptions.  They  could
withstand  to  secondary  tasks  with  different  characteristics,
including  task  duration  and  visual  load.  Secondary  tasks  with
longer  duration  and  higher  visual  load  were  more  likely  to  be
interrupted.  Kimura  et  al.[17] evaluated  the  allocation  of  atten-
tion resources in driver visual, cognitive, and action processing.
When  driving  at  high  speeds,  the  total  amount  of  attention
resources  allocated  to  visual,  cognitive,  and  motor  processing
by drivers would significantly increase. When driving on narrow
roads,  the  amount  of  attention  resources  allocated  to  visual
processing by drivers increases,  while the amount of attention
resources  allocated  to  cognitive  processing  decreases.  The
amount  of  resources  allocated  to  action  processing  remained

unchanged,  while  the  total  amount  of  attention  resources
remained  almost  unchanged.  Long  et  al.[18] proposed  a  lane-
changing behavior recognition algorithm based on the similar-
ity  of  driver's  visual  scanning  behavior  during  vehicle  driving.
The algorithm could effectively recognize drivers' lane-keeping,
left  lane  changing,  and  right  lane  changing  behaviors  with
considerations of time efficiency, accuracy, and interpretability.
The  recognition  ability  was  not  inferior  to  neural  network
models based on long-term and short-term memory.

The  physiological  indicators  of  drivers,  with  very  important
and far-reaching significance in driving behavior research, have
shown  excellent  performance  in  identifying  driving  behaviors,
especially in the study of driving fatigue and driving distraction.
Habibifar  &  Salmanzadeh[19] used  four  physiological  signals  to
identify negative emotions in drivers, including ECG, EMG, elec-
trodermal (EDA), and electroencephalogram (EEG). The identifi-
cation results of negative emotions obtained by using ECG and
EDA signals showed greater accuracy. Wiberg et al.[20] collected
physiological  characteristics  data  of  nine  drivers  under  long-
term  and  repetitive  urban  and  highway  scenes.  They  studied
their  moderate  mental  load  during  natural  driving.  Hu[21]

collected  the  fuzzy  entropy,  sample  entropy,  and  spectral
entropy of  the driver's  EEG signal  through a  driving simulator.
These three EEG feature vectors  were input into the Adaboost
classifier.  The  results  indicated  that  fuzzy  entropy  had  the
greatest  contribution  to  the  fatigue  identification  model.
However, there was similarity between feature parameters and
the performance of  the  model  had not  been verified  in  actual
driving  environments.  Du  et  al.[22] used  a  local  feedback  fuzzy
neural  network  to  process  EEG  signals.  The  temporal  and
spatial  information  of  the  EEG  signals  were  captured  and
processed, which was input into a convolutional recursive fuzzy
network  to  identify  the  driver's  fatigue.  The  experimental
results showed that the accuracy was 88%. Zhang et al.[23] used
clustering  algorithms  to  collect  ECG  spatial  nodes  from  differ-
ent driver EEG signals. Different degrees of fatigue were identi-
fied with pulse-coupled neural networks. The model had good
application prospects for driver fatigue identification. However,
it  was  not  validated  on  test  samples.  The  model  is  also  not
evaluated.  Awais  et  al.[24] collected  time-domain  and
frequency-domain features  from EEG,  the heart  rate  and heart
rate variability parameters from ECG. The important features of
the two were fused into the SVM model. The validation results
showed that the proposed algorithm had an accuracy of 93.3%
for  fatigue  identification.  Murugan  et  al.[25] classified  fatigue
into  four  categories:  drowsiness,  inattention,  fatigue,  and
cognitive  inattention.  Feature  parameters  were  collected  such
as driver heart rate, and heart rate variability with electrocardio-
gram  sensors,  and  train  the  selected  features  with  SVM,  KNN,
and  ensemble  algorithms.  The  experimental  results  showed
that  the  model  performed  well  in  classifying  a  single  fatigue
state.  However,  the  identification  accuracy  of  the  integrated
algorithm  for  four  classification  fatigue  detection  was  only
58.3%.  Ramos  et  al.[26] collected  nine  main  features  from  elec-
tromyography signals and heart rate variability to construct an
SVM  classifier  to  identify  driving  fatigue.  Barua  et  al.[27] used
multi-channel  active  electrodes  to  obtain  the  driver's  EEG  and
EOG signals. They trained the feature parameters through four
identification  algorithms,  which  are  KNN,  SVM,  random  forest
and case-based reasoning.  The model  was  evaluated with KSS
(Karolinska Sleepiness Scale).  The results showed that the SVM
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model was the best. The accuracy rate of the two categories of
fatigue  identification  reached  more  than  93%.  Mårtensson  et
al.[28] used the portable  digital  recording system to  collect  the
driver's  EEG,  ECG  and  EOG  signals.  The  sequence  floating
forward selection algorithm was used to reduce the dimension
of the feature parameters. The feature parameters after feature
selection  were  trained  through  the  random  forest  model.  The
verification results showed that the accuracy of model identifi-
cation  could  reach  94.1%.  However,  the  model  performed
poorly on the real data set.  Wang et al.[29] used sensors on the
driver's  seat  to collect  the driver's  electrocardiogram and elec-
tromyography  signals.  A  multiple  linear  regression  classifier
was trained to identify the driver's fatigue. The results showed
that the accuracy reaches 91%.

In previous studies,  eye movement parameters  and bioelec-
tricity  parameters  were  used  to  establish  two  different  road
hypnosis identification models. In the study by Shi et al.[8], elec-
trocardiogram features were used to observe and capture road
hypnotic  in  experiments  to  obtain  eye  movement  feature
parameters under that state. Principal component analysis was
used  to  preprocess  the  experimental  data.  A  road  hypnosis
identification model  was  established based on eye movement
parameters using the LSTM algorithm. The accuracy rates were
93.27%  and  97.01%  on  the  vehicle  and  virtual  driving  experi-
mental datasets, respectively. In the study by Wang et al.[9], eye
movement  characteristics  were  used  to  observe  and  capture
the road hypnosis  in  the experiment to obtain the bioelectric-
ity  characteristic  parameters  under  the  state.  Electrocardio-
gram  (ECG)  and  electromyogram  (EMG)  signals  were  selected
as characteristic parameters for identifying road hypnotics. The
experimental  ECG  and  EMG  signals  were  preprocessed  using
high-order spectral feature methods and the preprocessed ECG
and EMG signals were fused using principal component analy-
sis. KNN algorithm was used to establish a road hypnosis identi-
fication model, achieving accuracy rates of 97.06% and 98.84%
on both vehicle and virtual experimental datasets, respectively.

In this study, a road hypnosis identification model for drivers
is  established  using  various  feature  parameters,  which  are
fused  with  ensemble  learning  methods.  The  existence  of  road
hypnosis can be better proved by using multiple feature para-
meters  to  identify  road  hypnosis.  Typical  monotonous  scenes,
including  tunnel  scenes  and  highway  scenes,  are  selected  for
designing  virtual  driving  experiments  and  vehicle  driving
experiments,  respectively.  Eye  movement  feature  data  and
bioelectricity  feature  data  of  vehicle  drivers  are  collected  in
monotonous  scenes  such  as  tunnels  or  highways.  The  LSTM
algorithm is used to train eye movement data preprocessed by
principal  component  analysis  to  obtain  LSTM-based  learners.
The  KNN  algorithm  is  used  to  train  KNN-based  learners  from
ECG and EMG data that were preprocessed by high-order spec-
tral  feature  methods  and  fused  through  principal  component
analysis.  The SVM algorithm is  used to  train  data  predicted by
LSTM based learners and KNN-based learners. A road hypnosis
identification  model  for  drivers  is  established.  It  is  indicated
from  the  results  of  virtual  driving  experiments  and  vehicle
driving  experiments  that  the  road  hypnosis  can  be  accurately
identified  with  the  model  based  on  the  stacking  ensemble
learning method.

The contribution of this paper is as follows：
1.  Multiple  feature  parameters  including  eye  movement

features and bioelectrical features are used to achieve a multi-
dimensional analysis of road hypnosis states.

2.  The  stacking  ensemble  learning  method  is  employed  in
this study. The identification performance is improved with this
method.

3.  Road hypnosis  is  proven to  exist  during driving based on
vehicle  driving  experiments.  The  identification  of  road  hypno-
sis  is  achieved  in  vehicle  driving  experiments.  The  experi-
mental results are supplemented and enriched through virtual
driving  experiments  on  this  basis.  Finally,  the  identification  of
road hypnosis in vehicle driving is realized. 

Experimental methods
 

Experimental equipment
The  experimental  equipment  used  includes  eye  trackers,

human factor equipment, portable computers, cameras, etc. An
eye  tracker  was  used  to  collect  driver's  eye  movement  infor-
mation.  Human  factor  equipment  was  used  to  obtain  bio-
electricity characteristic information of drivers. The camera was
used to record the entire experimental process.

In the virtual driving experiment, a driving simulation system
consisting of a Logitech G29 driving kit, six degrees of freedom
platform, UC-win/Road software, and three 55-in triple displays
are  required.  The  virtual  driving  experimental  environment  is
shown in Fig. 1.

An  SUV  vehicle  is  used  in  the  driving  experiment  with  an
inverter  provided  for  electrical  needs.  The  experimental  envi-
ronment is shown in Fig. 2. 

Experimental participants
There were a total of 50 participants in the experiment, with

a  male-to-female  ratio  of  8:2.  Participants  in  the  experiment
were  required  to  have  a  maximum  of  600  degrees  of  myopia.
The distribution of age and driving experience information for
the drivers are shown in Table 1.
 

Fig. 1    Virtual driving experimental environment.

 

Fig. 2    Vehicle driving experimental environment.
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The  virtual  driving  experiment  was  conducted  in  a  labora-
tory  environment  with  a  driving  simulator.  The  safety  of  the
experiment  is  guaranteed.  Therefore,  a  fast  highway  was
chosen  as  the  experimental  scene  in  the  virtual  driving  expe-
riment.  A  bidirectional  four-lane  expressway  with  a  length  of
40  km  and  a  width  of  15  m  were  generated  in  the  simulation
software. There are no added curves throughout the road, all of
which  are  straight  sections.  Trees  and  grass  have  been  added
to both sides  of  the road according to  a  fixed proportion.  The
driver performs driving tasks back and forth in this scene until
the end of the experiment. The reason why tunnel scenes were
not selected in the virtual driving experiment is that the tunnel
environment displayed on the screen in the laboratory is more
likely to cause visual  fatigue for drivers compared to the high-
way environment, which can cause interference with the exper-
imental results.

The vehicle driving experiment poses certain risks due to the
need  to  drive  vehicles  on  actual  roads,  especially  on  fast-
moving highways.  Once an accident occurs,  it  is  easy to cause
serious  consequences  and  difficult  to  ensure  the  safety  of  the
experiment.  Therefore,  the  urban  road  sections  through
tunnels were selected as the experimental scene in the vehicle
driving  experiment  Qingdao  Binhai  Highway  (Qingdao,  China)
was selected for the experiment. Qingdao University of Science
and  Technology  Laoshan  Campus  was  chosen  as  the  start
point.  Shandong  University  Qingdao  Campus  was  chosen  as
the  end  point.  China  Ocean  University  Laoshan  Campus  was
chosen as the intermediate point.  The total  length of  the road
was  36  km,  with  a  speed  limit  of  80  km/h.  There  was  a
monotonous  environment  on  both  sides  of  the  road.  The
Yangkou  Tunnel,  which  passes  through  the  road,  has  a  total
length of 7.76 km and six lanes in both directions. It  is  divided
into two tunnels, with a left line length of 3.875 km and a right
line length of 3.888 km. The single tunnel was 14.8 m wide and
8 m high. 

Experimental process
The virtual driving experiment process was as follows:
Participants  in  the  experiment  had  sufficient  sleep  to  elimi-

nate interference caused by fatigue. The experiment started at
9:00 am on weekdays and ended at 11:00 am. In addition to the
experimental  participants,  three  colleagues  from  the  labora-
tory  participated  in  the  experimental  work.  Before  the  experi-
ment, one colleague needed to debug the experimental equip-
ment,  and  two  colleagues  assisted  the  participant  in  wearing
the  experimental  equipment.  The  entire  experiment  was
recorded through video recording. During the experiment, the
driver  needed to  drive  at  a  speed of  120 km/h and in  a  single
lane for 20 min. An experimental assistant observed the driver's
eye  movements  and  electrocardiogram  characteristics.  When
the  driver's  gaze  was  focused  on  the  front  and  the  electrocar-
diogram  signal  remained  stable,  the  assistant  recorded  this

time period. Especially when the driver may experience an alert
state,  an  experimental  assistant  proactively  asked  the  driver  if
he (she) had just experienced road hypnosis and recorded it at
this  point.  After  the  single  driving  process,  the  experimental
assistant  assisted the participants  in  removing the equipment.
The  experimental  participant  had  a  10  min  break.  An  experi-
mental  assistant  immediately  asked  the  participant  if  he  (or
she)  had  experienced  any  abnormal  driving  behaviors  such  as
fatigue,  distraction,  etc.  during  the  recent  driving  process  and
recorded them. The driver could recall whether or not he or she
has  road  hypnosis  states  through  the  experimental  video  and
the  corresponding  eye  movement  and  bioelectricity.  It  can  be
recorded  by  the  experimental  assistant.  After  this  process  is
completed, the driving experiment is restarted. The experimen-
tal  process  remained  consistent,  and  the  experimental  dura-
tion  was  extended  to  40  min.  After  the  driving  process  was
completed,  an  experimental  assistant  organized  the  equip-
ment and the experiment was ended.

The vehicle driving experiment process is as follows:
Due to traffic congestion and other issues during peak hours

in  the  morning,  the  vehicle  driving  experiment  was  chosen  to
start  at  10:00  am  and  ended  at  12:00  noon.  In  addition  to  the
experimental  participants,  three  colleagues  from  the  labora-
tory  participated  in  the  experimental  work.  The  most  impor-
tant  thing  in  vehicle  driving  experiments  is  to  ensure  driving
safety.  Any  experiment  should  be  conducted  under  the  pre-
mise  of  ensuring safety.  Before  the  experiment,  one colleague
needed  to  debug  the  experimental  equipment,  and  two
colleagues assisted the experimental personnel in wearing the
experimental  equipment.  The  start  section  of  the  experiment
was  from  the  Laoshan  Campus  of  Qingdao  University  of
Science  and  Technology  to  the  Laoshan  Campus  of  Ocean
University of China. The road conditions in this section are rela-
tively  complex,  and  the  driver  maintained  natural  driving
during this section to be familiar with the experimental equip-
ment  and  vehicle  driving  environment.  After  arriving  at  the
Laoshan Campus of Ocean University of China, the driver took a
break  and  continued  the  driving  process.  The  driver  was
required  to  avoid  overtaking  or  lane  changing  behavior  while
driving without affecting safe driving. Driver’s attention may be
distracted  by  frequent  overtaking  or  lane-changing  behaviors.
An  experimental  assistant  observed  the  driver's  eye  move-
ments  and  electrocardiogram  characteristics.  The  assistant
recorded  the  time  period  during  which  the  driver’s  gaze  was
focused  ahead  and  the  electrocardiogram  signal  remained
stable.  When  the  driver  may  have  experienced  an  alert  state,
the assistant proactively asked the driver if he (or she) had just
experienced road hypnosis and recorded it. After arriving at the
Qingdao  campus  of  Shandong  University,  the  experimental
assistant  assisted  the  participant  in  removing  the  equipment.
The  participant  had  a  rest  time  of  20  min.  An  experimental
assistant  immediately  asked  the  participant  if  he  (she)  had
experienced  any  abnormal  driving  behaviors  such  as  fatigue,
distraction, etc. during the recent driving process and recorded
them. The driver could recall whether or not he or she had road
hypnosis states through the experimental video and the corre-
sponding  eye  movement  and  bioelectricity  and  recorded  it.
After  this  process  was  completed,  the  driving  experiment  was
continued  from  Shandong  University  Qingdao  Campus  to
Qingdao  University  of  Science  and  Technology  Laoshan
Campus.  The  experimental  process  remained  consistent.  After

 

Table 1.    Basic information of experimental participants.

Range No. of participants

Age (year) 25−35 26
36−45 18
46−55 6

Driving experience (year) 1−5 11
5−10 18

10−22 21
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arriving at the destination, an experimental assistant organized
the equipment and ended the experiment. 

Experimental results and processing
 

Data
After  organizing  and  classifying  the  experimental  data,  50

sets of vehicle driving experimental  data and 50 sets of virtual
driving  experimental  data  were  obtained.  The  experimental
data  with  typical  road  hypnosis  characterization  phenomena
was  manually  screened  by  colleagues  with  relevant  research
experience for the construction of a road hypnosis dataset. Ten
minutes  of  experimental  data  from  each  set  of  experimental
data  was  selected.  Because  road  hypnosis  is  a  state  that  re-
peatedly  appears  and  disappears  within  a  certain  period  of
time,  the  10  min  of  data  selected  was  not  an  entirely  conti-
nuous driving period.  Similarly,  data with no abnormal driving
status  for  10  min  was  selected  as  the  normal  driving  dataset.
After  the  preliminary  screening  was  completed,  the  expert
scoring  method  was  used  to  score  the  two  types  of  datasets
obtained.  The  effectiveness  of  the  dataset  was  evaluated
through video playback. The final score was confirmed. During
the  vehicle  driving  experiment,  nine  participants  experience
fatigue  due  to  physical  exhaustion,  uncomfortable  sitting
posture,  and  other  reasons.  Finally,  35  sets  of  valid  video  data
were  obtained  as  the  vehicle  driving  experimental  dataset,
including  25  sets  of  normal  driving  and  10  sets  of  road
hypnosis data. In the virtual driving experiment, 43 sets of valid
video  data  were  selected,  including  27  sets  of  normal  driving
and 16 sets of road hypnosis data. 

Methodology
The  ensemble  learning  method  used  in  this  study  is  the

Stacking  method,  which  improves  the  overall  performance  of
the  model  by  combining  multiple  different  base  learners.
Firstly,  the LSTM and KNN-base learners  are  trained separately
to  obtain  their  predictions  on  the  input  data.  Then,  these
prediction results  are  used as  features  and input  into the SVM
model,  which  is  trained  to  obtain  the  final  ensemble  model.
By  leveraging  the  strengths  of  both  the  LSTM  and  KNN  base
learners, the SVM meta-learner can more accurately identify the
state of road hypnosis.

LSTM  (Long  Short-Term  Memory)  is  a  special  type  of  Recur-
rent Neural Network (RNN) suitable for processing and predict-
ing  time  series  data.  LSTM  addresses  the  long-term  depen-
dency problem in traditional RNNs by introducing three gates:
the  forget  gate,  the  input  gate,  and  the  output  gate.  In  this
study, LSTM is used to process and analyze the eye movement
characteristics  of  drivers  to  capture  their  dynamic  changes
during driving.  The preprocessed eye  movement  data  is  input
into the LSTM model for training, thus obtaining the LSTM base
learner for road hypnosis recognition.

KNN  (k-Nearest  Neighbors)  is  an  instance-based  non-para-
metric classification method. It predicts the class of a sample by
calculating  the  distance  between  the  samples  to  be  classified
and each sample in the training set, and then selecting the class
of  the  k-nearest  samples.  In  this  study,  the  KNN  algorithm  is
used to process  and analyze the bioelectric  characteristic  data
of  drivers,  such  as  electrocardiogram  (ECG)  and  electromyo-
gram  (EMG)  signals.  By  preprocessing  the  high-order  spectral
features  and  combining  them  with  Principal  Component
Analysis  (PCA),  the  KNN  base  learner  for  road  hypnosis  recog-
nition is constructed in this study.

SVM  (Support  Vector  Machine)  is  a  supervised  learning
model  primarily  used for  classification and regression analysis.
SVM  classifies  samples  of  different  classes  by  finding  an  opti-
mal  decision  boundary  in  a  high-dimensional  space.  In  this
study,  SVM  is  used  as  the  meta-learner  to  perform  ensemble
learning on the predictions of the LSTM and KNN base learners.
By  using  the  outputs  of  the  LSTM  and  KNN-base  learners  as
inputs,  SVM  can  better  integrate  the  information  from  both,
thereby improving the accuracy of road hypnosis recognition.

In our previous study[8], a road hypnotic identification model
is  established  by  using  eye  movement  data.  Principal  Compo-
nent  Analysis  (PCA)  is  selected  to  preprocess  eye  movement
feature  data.  Eye  tracker  acquisition  parameters  and  their
meanings  are  shown  in Table  2.  Descriptive  statistical  analysis
of  eye  movement  data  in  normal  driving  state  and  road-
hypnosis are shown in Tables 3 & 4.

Finally,  six  and five principal  components are obtained after
processing  virtual  experimental  data  and  vehicle  driving  ex-
perimental  data,  respectively.  Then,  the  preprocessed  data  is
trained  using  the  LSTM  network  to  establish  road  hypnosis
identification models  based on the vehicle driving experiment

 

Table 2.    Eye tracker acquisition parameters and their meanings.

Type Name Explanation

Pupil information Pupil Diameter Left (mm) Left eye pupil diameter
Pupil Diameter Right (mm) Right eye pupil diameter
IPD (mm) Interpupillary distance
Gaze Point X (px) Original fixation x-coordinate in pixels
Gaze Point Y (px) Original fixation y-coordinate in pixels
Gaze Point Right X (px) X-coordinate of the original gaze point of the right eye
Gaze Point Right Y (px) Y-coordinate of the original gaze point of the right eye
Gaze Point Left X (px) X-coordinate of the original gaze point of the left eye
Gaze Point Left Y (px) Y-coordinate of the original gaze point of the left eye
Fixation Point X (px) The x-coordinate of the gaze point in pixels
Fixation Point Y (px) The y-coordinate of the gaze point in pixels
Fixation Duration (ms) Gaze duration

Saccade information Saccade Single Velocity (px/ms) Average saccade velocity per frame
Saccade Velocity Peak (px/ms) Velocity peaks during saccades

Blink information Blink Index Blink Index
Blink Duration (ms) Duration of blink
Blink Eye Blink label: 0 for double wink; 1 for left wink; 2 for right wink
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and  the  virtual  driving  experiment.  The  accuracy  rates  of  the
two models are 93.27% and 97.01%, respectively. The principal
component  analysis  method  is  selected  to  process  the  eye
movement feature data. After processing the final virtual exper-
iment data and vehicle driving experiment data, 6 and 5 princi-
pal  components  are  also  obtained,  respectively.  The  principal
component  comprehensive  models  of  the  virtual  experiment
and  vehicle  experiment  are  shown  in  Eqns  (1)  and  (2),  respec-
tively.

C =
6∑

n=1

λn
6∑

i=1

λi

×Cn (1)

C =
5∑

n=1

λn
5∑

i=1

λi

×Cn (2)

where, C is the principal component. Cn is the nth principal com-
ponent  coefficient. λn is  the  n  principal  component  eigenvalue.
λi is the i principal component eigenvalue.

The  LSTM  network  consists  of  three  gates,  which  are  forget
gate,  input  gate,  and  output  gate.  Their  calculation  formulas
are shown in Eqns (3), (4), and (5), respectively.

ft = σ(W f · [ht−1, xt]+b f ) (3)
C̃t = tanh(WC · [ht−1, xt]+bC)
it = σ(Wi · [ht−1, xt]+bi)

(4)

Ct = ft ∗Ct−1+ it ∗ C̃t (5)
σ

C̃ t

C̃t

where, ft is  forget gate.  is  activation function. Wf is  the weight
matrix  of  forget  gate. ht-1 is  the  hidden  status  of  time  step  t−1.
xt is the input at the time step t. bf is the bias term of forget gate.

 is  the  state  of  the  candidate  cell  at  time  step  t.  h  is  hidden
state. WC is  the  correlation  weight  matrix  of  candidate  cell  state

. it is the activation state of input gate. Wi is the weight matrix of

 

Table 3.    Descriptive statistical analysis of eye movement data in normal driving state.

Name N Minimum value Maximum value Average value Standard deviation Variance

Saccade Velocity Average (px/ms) 68292 0.500 1.306 0.712 0.168 0.028
Pupil Diameter Left (mm) 68292 3.041 4.275 3.751 0.211 0.045
Pupil Diameter Right (mm) 68292 −1.534 4.232 3.677 0.413 0.170
IPD (mm) 68292 66.345 67.618 67.004 0.161 0.026
Gaze Point X (px) 68292 330.646 842.180 632.310 62.291 3880.145
Gaze Point Y (px) 68292 176.772 380.967 295.534 26.781 717.240
Gaze Point Left X (px) 68292 362.979 866.104 636.314 64.265 4129.937
Gaze Point Left Y (px) 68292 180.498 633.565 390.844 80.357 6457.305
Gaze Point Right X (px) 68292 298.318 829.718 627.969 66.181 4379.910
Gaze Point Right Y (px) 68292 −157.189 512.873 204.823 106.666 11377.556
Gaze Origin Left X (mm) 68292 −5.497 −4.155 −4.778 0.175 0.031
Gaze Origin Left Y (mm) 68292 −7.894 −5.095 −5.804 0.361 0.130
Gaze Origin Left Z (mm) 68292 −35.869 −33.335 −34.054 0.283 0.080
Gaze Origin Right X (mm) 68292 4.728 5.333 5.104 0.119 0.014
Gaze Origin Right Y (mm) 68292 −4.630 −2.530 −3.332 0.301 0.091
Gaze Origin Right Z (mm) 68292 −32.927 −31.464 −32.051 0.293 0.086
Fixation Duration (ms) 68292 66.000 90966.000 23206.851 22645.982 512840520.244
Fixation Point X (px) 68292 402.268 851.052 625.487 54.279 2946.158
Fixation Point Y (px) 68292 125.196 343.138 299.244 14.902 222.064

N is the sample size.

 

Table 4.    Descriptive statistical analysis of eye movement data in road hypnosis.

Name N Minimum value Maximum value Average value Standard deviation Variance

Saccade Velocity Average (px/ms) 42775 0.00001 0.500 0.174 0.146 0.021
Pupil Diameter Left (mm) 42775 2.791 4.301 3.629 0.231 0.053
Pupil Diameter Right (mm) 42775 −1.307 4.323 3.636 0.277 0.077
IPD (mm) 42775 66.149 67.536 67.017 0.125 0.016
Gaze Point X (px) 42775 320.779 855.683 603.739 56.414 3182.571
Gaze Point Y (px) 42775 160.197 393.530 302.320 20.799 432.589
Gaze Point Left X (px) 42775 355.348 856.234 616.640 59.496 3539.833
Gaze Point Left Y (px) 42775 165.291 655.587 386.817 71.875 5165.952
Gaze Point Right X (px) 42775 236.304 854.082 590.594 57.633 3321.547
Gaze Point Right Y (px) 42775 −186.220 513.097 218.809 84.647 7165.129
Gaze Origin Left X (mm) 42775 −5.450 −4.140 −4.871 0.170 0.029
Gaze Origin Left Y (mm) 42775 −7.917 −4.972 −5.682 0.347 0.120
Gaze Origin Left Z (mm) 42775 −35.888 −33.288 −34.064 0.265 0.070
Gaze Origin Right X (mm) 42775 4.548 5.374 5.127 0.100 0.010
Gaze Origin Right Y (mm) 42775 −4.590 −2.518 −3.304 0.234 0.055
Gaze Origin Right Z (mm) 42775 −32.966 −31.306 −31.926 0.248 0.062
Fixation Duration (ms) 42775 167.000 90966 40057.15 30047.406 902846577
Fixation Point X (px) 42775 402.268 851.052 608.402 39.981 1598.472
Fixation Point Y (px) 42775 59.117 408.848 302.290 12.971 168.255

N is the sample size.
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input gate. bi is  the bias term of input gate. Ct is  the cell  state at
time step t. ft is the activation state of forget gate.

The LSTM network is used to train the data preprocessed by
principal  component  analysis.  Road  hypnosis  identification
models  are  established with  virtual  experimental  datasets  and
vehicle driving experimental datasets, respectively.

In  another  study,  bioelectricity  data  is  used  to  establish  a
road  hypnosis  identification  model.  When  preprocessing
bioelectricity  data,  the  method  of  high-order  spectral  features
is chosen to process the ECG and EMG data obtained from the
experiment.  The  processed  ECG  and  EMG  data  can  be  further
fused  through  principal  component  analysis.  Bioelectricity
characteristic  parameters  and  their  meanings  are  shown  in
Table 5. A descriptive statistical analysis of bioelectricity charac-
teristic parameters are shown in Table 6.

Linear  Discriminant  Analysis  (LDA),  Quadratic  Discriminant
Analysis  (QDA),  and  KNN  algorithm  are  used  to  train  and  clas-
sify the preprocessed data. Road hypnosis identification models
based on virtual driving experiments and vehicle driving exper-
iments  are  trained,  respectively.  The  accuracy  of  the  two
models  trained  using  the  KNN  algorithm  is  the  highest,  with
99.84% and 97.06%. The high-order spectral feature method is
used  to  preprocess  the  ECG  and  EMG  data  collected  in  the
experiment.  Among  them,  the  calculation  formula  of  the  first
order moment to the third order moment is similar, as follows:

m1 = E [X] (6)

m2 (τ1) = E [X (K) ·X (K +τ1)] = c2 (τ1) (7)

m3 (τ1, τ2) = E [X (K) ·X (K +τ1) ·X (K +τ2)] = c3 (τ1, τ2) (8)
The calculation method of the fourth-order moment is differ-

ent  from  the  first  three  orders.  The  calculation  formula  is  as
follows:

m4 (τ1, τ2, τ3) = E [X (K) ·X (K +τ1) ·X (K +τ2) ·X (K +τ3)] (9)
m4 (τ1, τ2, τ3) = c4 (τ1, τ2, τ3)+ c2 (τ1) · c2 (τ3−τ2)+

c2 (τ2) · c2 (τ3−τ1)+ c2 (τ3) · c2 (τ2−τ1) (10)

In  this  study,  features  are  collected  from  the  bispectrum  of
the signal and obtained the sum of the logarithmic amplitudes
of the bispectrum (S1).  The sum of the logarithmic amplitudes
of the diagonal elements of the bispectrum (S2). The first-order
spectral  moment  of  the  diagonal  element  amplitude  of  the
bispectrum (S3), as follows:

S 1 =
∑
Ω

log(|B ( f1, f2)|) (11)

S 2 =
∑
Ω

log(|B ( fk, fk)|) (12)

S 3 =

N∑
k=1

k log(|B ( fk, fk)|) (13)

where, B(f1, f2) is the Fourier transform of the third-order cumulate
at frequencies f1 and f2. k is the counting variable

The preprocessed ECG and EMG data can be fused with prin-
cipal  component  analysis  method.  The  principal  components
are  calculated  by  determining  the  eigenvectors  and  eigenval-
ues  of  the  covariance matrix.  The covariance matrix  is  used to
measure the degree of change between dimensions relative to
the mean. The covariance of two random variables is the trend
of their fusion, calculated as follows:

cov (X : Y) =
N∑

i=1

(xi− x) (yi− y)
N

(14)

yi

x
y

where, xi is  the  i-th  observation  of  the  variable  X.  is  the  i-th
observation  of  variable  Y.  is  the  arithmetic  average  of  all
observations  of  the  variable  X.  is  the  arithmetic  average  of  all
observations  of  the  variable  Y.  N  is  the  total  number  of
observations.

The  preprocessed  data  is  trained  with  the  KNN  algorithm.
Road  hypnosis  identification  models  can  be  established  with
virtual experimental datasets and vehicle driving experimental
datasets, respectively. 

Road hypnosis identification model
The purpose of this study is to identify road hypnosis by inte-

grating  the  eye  movement  characteristics  and  bioelectricity
characteristics  of  drivers.  Therefore,  the  Stacking  method  in
ensemble learning is chosen to establish a road hypnosis iden-
tification  model.  The  Stacking  algorithm  is  a  heterogeneous
integration  method  based  on  multiple  different  base  learners.
For road hypnosis,  first-level  learners based on eye movement
feature data and bioelectricity feature data can be constructed
respectively.  A  second-level  learner  can  be  constructed  based
on  the  prediction  results  of  the  two  first-level  learners,  to
achieve  the  complementary  effect  of  the  two  first-level  learn-
ers. It can effectively reduce the error caused by factors such as
overfitting.  Among  them,  the  first-level  learner  is  called  the
base  learner,  and  the  second-level  learner  is  called  the  meta
learner. The algorithm calculation process is shown in Fig. 3.

In  this  study,  the  LSTM  model  and  the  KNN  model  as  two
basic  learners  are  selected to  learn the eye movement  feature
data  and  bioelectricity  feature  data  collected  in  the  experi-
ments. The SVM model is used as the meta-learner. Whether it’s
vehicle driving experimental data or virtual experimental data,
the  same  processing  method  is  used.  When  training  the  base
learner, the experimental data is divided into a training set and
a  testing  set  using  k-fold  cross-validation  to  train  the  base
learner.  The value of  k  is  5,  and 80% of  the data  is  selected as
the  training  set  each  time.  The  remaining  20%  of  the  data  is
used as the test set. The eye movement data is trained with the
LSTM  algorithm  to  obtain  the  LSTM-based  learners.  The  ECG

 

Table 5.    Bioelectricity characteristic parameters and their meanings.

Name Explanation

ECG Signal (mV) ECG signal amplitude in millivolts
Heart Rate (bpm) Heart rate in beats per minute
R-R Interval (ms) Interval between consecutive R-waves
SDNN (ms) Standard deviation of NN intervals

 

Table 6.    Descriptive statistical analysis of bioelectricity characteristic parameters.

State
Minimum value Maximum value Average

value
Standard
deviation Variance Skewness Kurtosis

Value Value Value Standard error Value Value Value Standard error Value Standard error

Road hypnosis −1827.865 2595.328 −0.017 1.026 332.738 110714.259 2.961 0.008 19.341 0.015
Normal state −1672.206 2353.899 0.092 2.018 310.955 96692.828 3.071 0.016 20.910 0.032
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and  EMG  data  are  trained  with  the  KNN  algorithm  to  obtain
KNN-based  learners.  The  SVM  algorithm  is  used  to  train  data
predicted with the LSTM-based learners and KNN-based learn-
ers.  A  road  hypnosis  identification  model  is  established.  The
algorithm principle of the SVM model is as follows:

(1) The appropriate kernel function is K(x, z) and penalty func-
tion is C > 0. The convex quadratic programming problem can
be constructed and solved with Eqn (15):

f (x) =min
α

1
2

N∑
i=1

N∑
j=1

αiα jyiy jK(xi, x j)−
N∑

i=1

αi (15)

K(xi, x j)
N∑

i=1
αi

where, αi and αj are the Lagrange multiplier of SVM. yi and yj are

the sample label. K(xi, xj) is the kernel function. is the

bias term.
α∗j

0 < α∗j <C
(2)  The  component  is α*,  that  satisfies  the  condition

.  The  classification  decision  function  can  be  cal-
culated as follows:

f (x) = sign

 N∑
1

α∗i yiK(x, xi)+b∗
 (16)

b∗ = y j−
N∑

i=1

α∗i yiK(xi · x j) (17)

where, αi is  the  Lagrange  multiplier  of  SVM. yi and yj are  the
sample label. K(x, xi) is the kernel function. b* is the bias term.

K(x,z) = exp(−∥x− z∥2
2σ2 )

(3) When the kernel function is the commonly used Gaussian

kernel  function ,  the  classification  deci-

sion function is:

f (x) = sign

 N∑
i=1

α∗i yi exp
(
−∥x− z∥2

2σ2

)
+b∗

 (18)

α∗i

exp(−∥x− z∥2
2σ2 )

where,  is  the  coefficient  multiplied  by  the  radial  basis  kernel

function . b* is the bias term.

The classification results are shown in Fig. 4.
To evaluate the performance of the fused model, Root Mean

Square Error (RMSE) is used to evaluate the performance of the
trained model. RMSE represents the sample standard deviation
of  the  difference  between  predicted  and  observed  values,
which can indicate the degree of dispersion of the sample. The
calculation is as follows:

RMS E =

√√
1
n

n∑
i=1

|ŷi− yi|2 (19)

ŷiwhere,  RMSE  is  root-mean-square  error. yi is  true  value.  is
predicted value. n is the number of samples. 

Discussion

As  shown  in Fig.  4,  the  accuracy  of  the  obtained  model  has
been further  improved by fusing the two base learner  models
using  a  meta-learner.  To  further  validate  the  performance
improvement brought about by integrating two models  using
ensemble learning methods, the root mean square error (RMSE)
is  introduced  to  observe  the  degree  of  performance  improve-
ment  of  the  model.  From Fig.  5,  when  the  iteration  reaches
around  180  rounds,  the  root  mean  square  error  of  the  model
does not change. It can already converge well in the training of
vehicle  driving  experimental  data.  In  the  training  of  virtual
experimental  data,  when  the  iteration  reaches  about  120
rounds,  the  root  meant  square  error  of  the  model  remains
unchanged.  It  indicates  that  the  fused  model  can  more  accu-
rately  identify  road  hypnosis.  Its  performance  has  further
improvements  compared  to  models  with  a  single  type.
Compared to vehicle driving experiments, models trained with
virtual driving experimental data converge faster. This is consis-
tent with the conclusions of  previous studies.  Similarly,  due to
the  more  controllable  experimental  conditions  of  virtual  driv-
ing  and  less  irrelevant  interference,  such  as  pedestrian  and
vehicle  interference  during  driving,  the  stimulation  effect  of
road  hypnosis  is  better.  The  virtual  driving  scene  has  more
typical  road  hypnosis  characteristics.  However,  the  results  of
vehicle  driving  experiments  can  also  show  that  in  the  actual
driving environment, road hypnosis is existing and can be iden-
tified  through  the  model  established  by  the  fusion  of  eye
movement  feature  parameters  and  bioelectricity  feature
parameters.
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Fig. 4    Classification results of base learners and meta learners.

 

Fig. 3    Principle of ensemble learning algorithm.
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Fig. 5    RMSE results of vehicle and virtual driving experiment.
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In  previous studies,  eye movement parameters  and bioelec-
tricity  parameters  are  used  to  establish  road  hypnosis  identifi-
cation  models.  In  the  study  by  Kimura  et  al.[17],  electrocardio-
gram features are used to observe and capture the road hypno-
sis in experiments to obtain eye movement feature parameters
under that state. In this study, eye movement features are used
to observe and capture the road hypnosis in the experiment to
obtain  the  bioelectricity  feature  data  of  road  hypnosis.  The
difference  is  the  experimental  process.  The  characteristic
parameters of road hypnosis are not only determined through
a  single  feature  but  also  through  the  driver's  eye  movement
data and bioelectricity data. The data in this period of time for
the identification of road hypnosis can be collected by observ-
ing  the  characteristics  of  the  driver's  eyes  focusing  on  the
center  of  the  road  in  front  and  the  stable  ECG  during  driving.
The impact of cognitive distractions or other simple interfering
factors  can  be  avoided  through  the  improved  experimental
process.  For  example,  when  a  driver  is  stimulated  during
normal  driving,  they  will  also  experience  an  alert  state.  If  the
level  of  stimulation is  low or  the driver  has  strong psychologi-
cal  qualities,  the  external  performance  characteristics  of  the
driver  may  not  be  obvious.  It  can  easily  be  mistaken  for  road
hypnosis.  Compared to  the  experimental  methods  in  previous
studies,  the proposed method can more accurately  collect  the
characteristic  parameters  of  road  hypnosis.  The  accuracy  of
road hypnosis identification can be further improved.

In this study, the eye movement data and bioelectricity data
are  fused  to  identify  road  hypnosis.  It  is  not  an  occasional
abnormal driving state,  but a common driving behavior in our
daily lives. It is a state of external manifestation similar to cogni-
tive  distraction.  However,  the  two  states  are  different  in  the
perspective of definition and internal mechanism. If the driver's
cognitive resources are not focused on the main driving task, it
is  considered  a  cognitive  distraction.  Although  the  driver's
cognitive resources are not focused on the main driving task in
road  hypnosis,  they  are  also  not  occupied  by  other  specific
tasks. Therefore, whether in virtual driving experiments or vehi-
cle  driving  experiments,  the  method  of  using  secondary  tasks
to induce road hypnosis is not adopted. As a result, it is difficult
to  completely  distinguish  between  road  hypnosis  and  cogni-
tive  distraction.  The  experiment  under  natural  driving  condi-
tions  is  conducted without  other  human interference to  make
the experimental participants drive the vehicle naturally in the
environment  prone  to  road  hypnosis.  Through  observing  the
driver's eye movement characteristics and bioelectricity charac-
teristics during the driving process, the initiative is taken to ask
questions  to  determine  the  occurrence  of  road  hypnosis.
Therefore,  the existence of cognitive distraction is  excluded as
much  as  possible  through  the  experimental  method.  Parti-
cipants are required to have a good rest before the experiment.
Immediately  after  the  end  of  each  experiment,  the  driver  is
asked if he or she has experienced fatigue or distraction. Some
data that has been affected by fatigue or distraction is removed
from the dataset. Therefore, in both experimental methods and
data processing, the interference caused by driving fatigue and
distraction has been effectively eliminated.

There is also something to be improved in this study:
(1)  In  the  experimental  process,  drivers  do  not  need  to

complete  specific  tasks  to  maintain  a  natural  driving  state.
However,  the  active  inquiry  process  used  to  determine  the
occurrence  of  road  hypnosis  can  inevitably  cause  some

interference.  It  can  be  attempted  to  select  obvious  external
features  of  road  hypnosis  to  determine  its  occurrence,  which
can avoid interference caused by active questioning.

(2)  The  typical  monotonic  scenes  are  selected  as  experi-
mental  scenarios  to  induce  road  hypnosis  and  obtain  charac-
teristic data of road hypnosis. However, road hypnosis does not
only  appear  in  monotonous  scenes.  It  appears  more  often  in
highly  predictable  environments  during  daily  driving.  For
example,  a  driver  is  prone  to  fall  into  road  hypnosis  in  their
familiar  driving  environment,  which  is  not  monotonous.  A
reasonable  and  highly  predictable  environment  for  experi-
ments  can  be  selected  to  train  a  road  hypnosis  identification
model with more general applicability and stronger generaliza-
tion ability.

(3)  Two  different  types  of  data  are  integrated  through
ensemble  learning.  The  fused  data  is  collected  from  the  same
experimental  method,  either  virtual  driving  experiments  or
vehicle  driving  experiments.  At  present,  the  data  from  the
virtual  driving  experiment  and  the  vehicle  driving  experiment
have  not  been  integrated.  This  is  because  the  driving  expe-
rience of drivers in the experimental process and experimental
scenarios  are  different.  In  subsequent  research,  the  virtual
driving  experiment  and  the  vehicle  driving  experiment  with
identical  experimental  conditions  should  be  designed.  The
closed  highway  sections  can  be  applied  for  vehicle  driving
experimental verification. 

Conclusions

In  this  paper,  the vehicle  driving experiment and the virtual
driving  experiment  are  designed  to  collect  eye  movement
feature data and bioelectricity feature data of drivers in mono-
tonous  scenes,  such  as  tunnels  or  highways.  A  road  hypnosis
identification  model  based  on  ensemble  learning  is  proposed.
The main work includes the following aspects:

(1)  The  vehicle  driving  experiment  and  the  virtual  driving
experiment  are  designed  and  organized.  The  eye  movement
characteristics  and  bioelectricity  characteristics  data  of  50
experimental  participants  are  collected.  Combined  with  the
playback of experimental videos, experimental data is screened
with  the  expert  scoring  method.  Road  hypnosis  databases  for
the  vehicle  driving  experiment  and  the  virtual  driving  experi-
ment are constructed. It can be used for the analysis of feature
parameters, calibration, and training of identification models.

(2)  The  Stacking  ensemble  learning  method  for  integrating
eye  movement  features  and  bioelectricity  features  is  intro-
duced.  LSTM  base-learner  is  trained  with  the  eye  movement
data preprocessed through principal component analysis. KNN
base-learner  is  trained  with  ECG  and  EMG  data  preprocessed
through  high  order  spectral  feature  method.  The  data
predicted by two base learners can be used to establish a road
hypnosis identification model.

(3)  A  road  hypnosis  identification  model  is  trained  by  the
SVM  algorithm  with  the  data  predicted  by  LSTM  base  learner
and KNN base learner. To verify the effectiveness and accuracy
of the fusion model, RMSE is selected as the evaluation indica-
tor.  The  results  indicate  that  the  road  hypnosis  identification
model based on Stacking ensemble learning method proposed
in  this  paper  can  accurately  identify  the  road  hypnosis  in  the
virtual driving experiment and the vehicle driving experiment.
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The  existence  of  road  hypnosis  and  the  feasibility  of  identi-
fying road hypnosis through multiple feature parameters have
been further demonstrated in this research. It can provide more
selectable  methods  and  technical  support  for  real-time  and
accurate  identification  of  road  hypnosis.  It  is  of  great  signi-
ficance for improving and enriching driving assistance systems,
as  well  as  enhancing  the  intelligent  and  active  safety  perfor-
mance of vehicles. 
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